1
|
Shurygina AP, Zabolotnykh N, Vinogradova T, Khairullin B, Kassenov M, Nurpeisova A, Sarsenbayeva G, Sansyzbay A, Vasilyev K, Buzitskaya J, Egorov A, Stukova M. Preclinical Evaluation of TB/FLU-04L-An Intranasal Influenza Vector-Based Boost Vaccine against Tuberculosis. Int J Mol Sci 2023; 24:ijms24087439. [PMID: 37108602 PMCID: PMC10138401 DOI: 10.3390/ijms24087439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberculosis is a major global threat to human health. Since the widely used BCG vaccine is poorly effective in adults, there is a demand for the development of a new type of boost tuberculosis vaccine. We designed a novel intranasal tuberculosis vaccine candidate, TB/FLU-04L, which is based on an attenuated influenza A virus vector encoding two mycobacterium antigens, Ag85A and ESAT-6. As tuberculosis is an airborne disease, the ability to induce mucosal immunity is one of the potential advantages of influenza vectors. Sequences of ESAT-6 and Ag85A antigens were inserted into the NS1 open reading frame of the influenza A virus to replace the deleted carboxyl part of the NS1 protein. The vector expressing chimeric NS1 protein appeared to be genetically stable and replication-deficient in mice and non-human primates. Intranasal immunization of C57BL/6 mice or cynomolgus macaques with the TB/FLU-04L vaccine candidate induced Mtb-specific Th1 immune response. Single TB/FLU-04L immunization in mice showed commensurate levels of protection in comparison to BCG and significantly increased the protective effect of BCG when applied in a "prime-boost" scheme. Our findings show that intranasal immunization with the TB/FLU-04L vaccine, which carries two mycobacterium antigens, is safe, and induces a protective immune response against virulent M. tuberculosis.
Collapse
Affiliation(s)
- Anna-Polina Shurygina
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia
| | - Natalia Zabolotnykh
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, 191036 St. Petersburg, Russia
| | - Tatiana Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, 191036 St. Petersburg, Russia
| | - Berik Khairullin
- Research Institute for Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan
| | - Markhabat Kassenov
- Research Institute for Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan
| | - Ainur Nurpeisova
- Research Institute for Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan
| | - Gulbanu Sarsenbayeva
- Research Institute for Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan
| | - Abylai Sansyzbay
- Research Institute for Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan
| | - Kirill Vasilyev
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia
| | - Janna Buzitskaya
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia
| | - Andrey Egorov
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia
| | - Marina Stukova
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia
| |
Collapse
|
2
|
Jindra C, Hainisch EK, Brandt S. Immunotherapy of Equine Sarcoids—From Early Approaches to Innovative Vaccines. Vaccines (Basel) 2023; 11:vaccines11040769. [PMID: 37112681 PMCID: PMC10145708 DOI: 10.3390/vaccines11040769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Horses and other equid species are frequently affected by bovine papillomavirus type 1 and/or 2 (BPV1, BPV2)-induced skin tumors termed sarcoids. Although sarcoids do not metastasize, they constitute a serious health problem due to their BPV1/2-mediated resistance to treatment and propensity to recrudesce in a more severe, multiple form following accidental or iatrogenic trauma. This review provides an overview on BPV1/2 infection and associated immune escape in the equid host and presents early and recent immunotherapeutic approaches in sarcoid management.
Collapse
|
3
|
Yang P, Yang Y, Wu Y, Huang C, Ding Y, Wang X, Wang S. An optimized and robust SARS-CoV-2 pseudovirus system for viral entry research. J Virol Methods 2021; 295:114221. [PMID: 34182038 PMCID: PMC8233049 DOI: 10.1016/j.jviromet.2021.114221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/01/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 is the culprit causing Coronavirus Disease 2019 (COVID-19). For the study of SARS-CoV-2 infection in a BSL-2 laboratory, a SARS-CoV-2 pseudovirus particle (SARS2pp) production and infection system was constructed by using a lentiviral vector bearing dual-reporter genes eGFP and firefly luciferase (Luc2) for easy observation and analysis. Comparison of SARS2pp different production conditions revealed that the pseudovirus titer could be greatly improved by: 1) removing the last 19 amino acids of the spike protein and replacing the signal peptide with the mouse Igk signal sequence; 2) expressing the spike protein using CMV promoter other than CAG (a hybrid promoter consisting of a CMV enhancer, beta-actin promoter, splice donor, and a beta-globin splice acceptor); 3) screening better optimized spike protein sequences for SARS2pp production; and 4) adding 1 % BSA in the SARS2pp production medium. For infection, this SARS2pp system showed a good linear relationship between MOI 2-0.0002 and then was successfully used to evaluate SARS-CoV-2 infection inhibitors including recombinant human ACE2 proteins and SARS-CoV-2 neutralizing antibodies. The kidney, liver and small intestine-derived cell lines were also found to show different susceptibility to SARSpp and SARS2pp. Given its robustness and good performance, it is believed that this pseudovirus particle production and infection system will greatly promote future research for SARS-CoV-2 entry mechanisms and inhibitors and can be easily applied to study new emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Peng Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yang Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yuming Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Cong Huang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Yanlei Ding
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xuejun Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Shengqi Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
4
|
Kabiljo J, Laengle J, Bergmann M. From threat to cure: understanding of virus-induced cell death leads to highly immunogenic oncolytic influenza viruses. Cell Death Discov 2020; 6:48. [PMID: 32542113 PMCID: PMC7288254 DOI: 10.1038/s41420-020-0284-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 01/08/2023] Open
Abstract
Oncolytic viruses constitute an emerging strategy in immunomodulatory cancer treatment. The first oncolytic virus, Talimogene laherparepvec (T-VEC), based on herpes simplex virus 1 (HSV-1), was approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) in 2015. The field of oncolytic virotherapy is still in its beginnings, since many promising viruses remain only superficially explored. Influenza A virus causes a highly immunogenic acute infection but never leads to a chronic disease. While oncolytic influenza A viruses are in preclinical development, they have not made the transition into clinical practice yet. Recent insights into different types of cell death caused by influenza A virus infection illuminate novel possibilities of enhancing its therapeutic effect. Genetic engineering and experience in influenza A virus vaccine development allow safe application of the virus in patients. In this review we give a summary of efforts undertaken to develop oncolytic influenza A viruses. We discuss strategies for targeting viral replication to cancerous lesions and arming them with immunogenic transgenes. We furthermore describe which modes of cell death are induced by influenza A virus infection and how these insights may be utilized to optimize influenza A virus-based oncolytic virus design.
Collapse
Affiliation(s)
- Julijan Kabiljo
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Johannes Laengle
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Michael Bergmann
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
5
|
Oncolytic influenza A virus expressing interleukin-15 decreases tumor growth in vivo. Surgery 2016; 161:735-746. [PMID: 27776794 DOI: 10.1016/j.surg.2016.08.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Interleukin-15 has become a promising molecule in the context of eliciting an effective, antitumor immune response because it is able to stimulate cells of the innate and adaptive immune system. METHODS We generated an interleukin-15-expressing oncolytic influenza A virus for the treatment of an established murine tumor model. RESULTS Our oncolytic influenza A virus produced large amounts of interleukin-15 and induced proliferation and activation of human T cells in vitro. Intraperitoneal administration increased the amount of mouse natural killer cells and effector memory T cells, as well as T cell reactivity in vivo. Moreover, intratumoral injection induced a profound decrease in growth of established tumors in mice and increased the amount of tumor-infiltrating T cells and natural killer cells. CONCLUSION We established a stable, IL-15-producing oncolytic influenza A virus with promising immunostimulatory and antitumor attributes.
Collapse
|
6
|
An engineered avian-origin influenza A virus for pancreatic ductal adenocarcinoma virotherapy. J Gen Virol 2016; 97:2166-2179. [DOI: 10.1099/jgv.0.000549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
Interleukin-24 inhibits influenza A virus replication in vitro through induction of toll-like receptor 3 dependent apoptosis. Antiviral Res 2015; 123:93-104. [DOI: 10.1016/j.antiviral.2015.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 11/22/2022]
|
8
|
Jindra C, Huber B, Shafti-Keramat S, Wolschek M, Ferko B, Muster T, Brandt S, Kirnbauer R. Attenuated Recombinant Influenza A Virus Expressing HPV16 E6 and E7 as a Novel Therapeutic Vaccine Approach. PLoS One 2015; 10:e0138722. [PMID: 26381401 PMCID: PMC4575162 DOI: 10.1371/journal.pone.0138722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022] Open
Abstract
Persistent infection with high-risk human papillomavirus (HPV) types, most often HPV16 and HPV18, causes all cervical and most anal cancers, and a subset of vulvar, vaginal, penile and oropharyngeal carcinomas. Two prophylactic virus-like particle (VLPs)-based vaccines, are available that protect against vaccine type-associated persistent infection and associated disease, yet have no therapeutic effect on existing lesions or infections. We have generated recombinant live-attenuated influenza A viruses expressing the HPV16 oncogenes E6 and E7 as experimental immunotherapeutic vaccine candidates. The influenza A virus life cycle lacks DNA intermediates as important safety feature. Different serotypes were generated to ensure efficient prime and boost immunizations. The immune response to vaccination in C57BL/6 mice was characterized by peptide ELISA and IFN-γ ELISpot, demonstrating induction of cell-mediated immunity to HPV16 E6 and E7 oncoproteins. Prophylactic and therapeutic vaccine efficacy was analyzed in the murine HPV16-positive TC-1 tumor challenge model. Subcutaneous (s.c.) prime and boost vaccinations of mice with recombinant influenza A serotypes H1N1 and H3N2, followed by challenge with TC-1 cells resulted in complete protection or significantly reduced tumor growth as compared to control animals. In a therapeutic setting, s.c. vaccination of mice with established TC-1 tumors decelerated tumor growth and significantly prolonged survival. Importantly, intralesional vaccine administration induced complete tumor regression in 25% of animals, and significantly reduced tumor growth in 50% of mice. These results suggest recombinant E6E7 influenza viruses as a promising new approach for the development of a therapeutic vaccine against HPV-induced disease.
Collapse
Affiliation(s)
- Christoph Jindra
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bettina Huber
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Saeed Shafti-Keramat
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Wolschek
- Research Group Oncology (RGO), Equine Clinic, Veterinary University of Vienna, Vienna, Austria
- Bluesky Vaccines, Vienna, Austria
| | | | | | - Sabine Brandt
- Research Group Oncology (RGO), Equine Clinic, Veterinary University of Vienna, Vienna, Austria
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
9
|
Kittel C, Wressnigg N, Shurygina AP, Wolschek M, Stukova M, Romanovskaya-Romanko E, Romanova J, Kiselev O, Muster T, Egorov A. A genetically adjuvanted influenza B virus vector increases immunogenicity and protective efficacy in mice. Arch Virol 2015. [PMID: 26215439 DOI: 10.1007/s00705-015-2525-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The existence of multiple antigenically distinct types and subtypes of influenza viruses allows the construction of a multivalent vector system for the mucosal delivery of foreign sequences. Influenza A viruses have been exploited successfully for the expression of extraneous antigens as well as immunostimulatory molecules. In this study, we describe the development of an influenza B virus vector whose functional part of the interferon antagonist NS1 was replaced by human interleukin 2 (IL2) as a genetic adjuvant. We demonstrate that IL2 expressed by this viral vector displays immune adjuvant activity in immunized mice. Animals vaccinated with the IL2 viral vector showed an increased hemagglutination inhibition antibody response and higher protective efficacy after challenge with a wild-type influenza B virus when compared to mice vaccinated with a control virus. Our results demonstrate that it is feasible to construct influenza B vaccine strains expressing immune-potentiating foreign sequences from the NS genomic segment. Based on these data, it is now hypothetically possible to create a trivalent (or quadrivalent) live attenuated influenza vaccine in which each component expresses a selected genetic adjuvant with tailored expression levels.
Collapse
Affiliation(s)
- Christian Kittel
- Avir Green Hills Biotechnology AG, Forsthausgasse 11, 1200, Vienna, Austria.
| | - Nina Wressnigg
- Avir Green Hills Biotechnology AG, Forsthausgasse 11, 1200, Vienna, Austria
| | - Anna Polina Shurygina
- Avir Green Hills Biotechnology AG, Forsthausgasse 11, 1200, Vienna, Austria
- Influenza Research Institute, Russian Academy of Medical Sciences, Prof. Popov Str. 15/17, St. Petersburg, 197376, Russia
| | - Markus Wolschek
- Avir Green Hills Biotechnology AG, Forsthausgasse 11, 1200, Vienna, Austria
| | - Marina Stukova
- Influenza Research Institute, Russian Academy of Medical Sciences, Prof. Popov Str. 15/17, St. Petersburg, 197376, Russia
| | | | - Julia Romanova
- Avir Green Hills Biotechnology AG, Forsthausgasse 11, 1200, Vienna, Austria
| | - Oleg Kiselev
- Influenza Research Institute, Russian Academy of Medical Sciences, Prof. Popov Str. 15/17, St. Petersburg, 197376, Russia
| | - Thomas Muster
- Avir Green Hills Biotechnology AG, Forsthausgasse 11, 1200, Vienna, Austria
| | - Andrej Egorov
- Avir Green Hills Biotechnology AG, Forsthausgasse 11, 1200, Vienna, Austria
| |
Collapse
|
10
|
De Baets S, Verhelst J, Van den Hoecke S, Smet A, Schotsaert M, Job ER, Roose K, Schepens B, Fiers W, Saelens X. A GFP expressing influenza A virus to report in vivo tropism and protection by a matrix protein 2 ectodomain-specific monoclonal antibody. PLoS One 2015; 10:e0121491. [PMID: 25816132 PMCID: PMC4376807 DOI: 10.1371/journal.pone.0121491] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/02/2015] [Indexed: 11/30/2022] Open
Abstract
The severity of influenza-related illness is mediated by many factors, including in vivo cell tropism, timing and magnitude of the immune response, and presence of pre-existing immunity. A direct way to study cell tropism and virus spread in vivo is with an influenza virus expressing a reporter gene. However, reporter gene-expressing influenza viruses are often attenuated in vivo and may be genetically unstable. Here, we describe the generation of an influenza A virus expressing GFP from a tri-cistronic NS segment. To reduce the size of this engineered gene segment, we used a truncated NS1 protein of 73 amino acids combined with a heterologous dimerization domain to increase protein stability. GFP and nuclear export protein coding information were fused in frame with the truncated NS1 open reading frame and separated from each other by 2A self-processing sites. The resulting PR8-NS1(1-73)GFP virus was successfully rescued and replicated as efficiently as the parental PR8 virus in vitro and was slightly attenuated in vivo. Flow cytometry-based monitoring of cells isolated from PR8-NS1(1-73)GFP virus infected BALB/c mice revealed that GFP expression peaked on day two in all cell types tested. In particular respiratory epithelial cells and myeloid cells known to be involved in antigen presentation, including dendritic cells (CD11c+) and inflammatory monocytes (CD11b+ GR1+), became GFP positive following infection. Prophylactic treatment with anti-M2e monoclonal antibody or oseltamivir reduced GFP expression in all cell types studied, demonstrating the usefulness of this reporter virus to analyze the efficacy of antiviral treatments in vivo. Finally, deep sequencing analysis, serial in vitro passages and ex vivo analysis of PR8-NS1(1-73)GFP virus, indicate that this virus is genetically and phenotypically stable.
Collapse
Affiliation(s)
- Sarah De Baets
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Judith Verhelst
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Silvie Van den Hoecke
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anouk Smet
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Michael Schotsaert
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Emma R. Job
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kenny Roose
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bert Schepens
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Walter Fiers
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Finch C, Li W, Perez DR. Design of alternative live attenuated influenza virus vaccines. Curr Top Microbiol Immunol 2015; 386:205-35. [PMID: 25005928 DOI: 10.1007/82_2014_404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Each year due to the ever-evolving nature of influenza, new influenza vaccines must be produced to provide protection against the influenza viruses in circulation. Currently, there are two mainstream strategies to generate seasonal influenza vaccines: inactivated and live-attenuated. Inactivated vaccines are non-replicating forms of whole influenza virus, while live-attenuated vaccines are viruses modified to be replication impaired. Although it is widely believed that by inducing both mucosal and humoral immune responses the live-attenuated vaccine provides better protection than that of the inactivated vaccine, there are large populations of individuals who cannot safely receive the LAIV vaccine. Thus, safer LAIV vaccines are needed to provide adequate protection to these populations. Improvement is also needed in the area of vaccine production. Current strategies relying on traditional tissue culture-based and egg-based methods are slow and delay production time. This chapter describes experimental vaccine generation and production strategies that address the deficiencies in current methods for potential human and agricultural use.
Collapse
Affiliation(s)
- Courtney Finch
- Department of Veterinary Medicine, College Park and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | | | | |
Collapse
|
12
|
Abstract
During their nuclear replication stage, influenza viruses hijack the host splicing machinery to process some of their RNA segments, the M and NS segments. In this review, we provide an overview of the current knowledge gathered on this interplay between influenza viruses and the cellular spliceosome, with a particular focus on influenza A viruses (IAV). These viruses have developed accurate regulation mechanisms to reassign the host spliceosome to alter host cellular expression and enable an optimal expression of specific spliced viral products throughout infection. Moreover, IAV segments undergoing splicing display high levels of similarity with human consensus splice sites and their viral transcripts show noteworthy secondary structures. Sequence alignments and consensus analyses, along with recently published studies, suggest both conservation and evolution of viral splice site sequences and structure for improved adaptation to the host. Altogether, these results emphasize the ability of IAV to be well adapted to the host's splicing machinery, and further investigations may contribute to a better understanding of splicing regulation with regard to viral replication, host range, and pathogenesis.
Collapse
|
13
|
Kuznetsova I, Shurygina AP, Wolf B, Wolschek M, Enzmann F, Sansyzbay A, Khairullin B, Sandybayev N, Stukova M, Kiselev O, Egorov A, Bergmann M. Adaptive mutation in nuclear export protein allows stable transgene expression in a chimaeric influenza A virus vector. J Gen Virol 2013; 95:337-349. [PMID: 24222196 DOI: 10.1099/vir.0.056036-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of influenza virus vectors with long insertions of foreign sequences remains difficult due to the small size and instable nature of the virus. Here, we used the influenza virus inherent property of self-optimization to generate a vector stably expressing long transgenes from the NS1 protein ORF. This was achieved by continuous selection of bright fluorescent plaques of a GFP-expressing vector during multiple passages in mouse B16f1 cells. The newly generated vector acquired stability in IFN-competent cell lines and in vivo in murine lungs. Although improved vector fitness was associated with the appearance of four coding mutations in the polymerase (PB2), haemagglutinin and non-structural (NS) segments, the stability of the transgene expression was dependent primarily on the single mutation Q20R in the nuclear export protein (NEP). Importantly, a longer insert, such as a cassette of 1299 nt encoding two Mycobacterium tuberculosis Esat6 and Ag85A proteins, could substitute for the GFP transgene. Thus, the inherent property of the influenza virus to adapt can also be used to adjust a vector backbone to give stable expression of long transgenes.
Collapse
Affiliation(s)
- Irina Kuznetsova
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Anna-Polina Shurygina
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Brigitte Wolf
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Markus Wolschek
- Avir Green Hills Biotechnology AG, Vienna, Austria.,Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Florian Enzmann
- Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Abylay Sansyzbay
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Berik Khairullin
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Nurlan Sandybayev
- Research Institute for Biological Safety Problems, Gvardeyskyi, Kazakhstan
| | - Marina Stukova
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Oleg Kiselev
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Andrej Egorov
- Research Institute of Influenza, Russian Academy of Medical Sciences, Moscow, Russia
| | - Michael Bergmann
- Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.,Department of Surgery, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| |
Collapse
|
14
|
Abstract
Interleukin-24 (IL-24), a member of the IL-10 cytokine family whose physiological function remains largely unknown, has been shown to induce apoptosis when expressed in an adenoviral background. It is yet little understood, why IL-24 alone induced apoptosis only in a limited number of tumor cell lines. Analyzing an influenza A virus vector expressing IL-24 for its oncolytic potential revealed enhanced pro-apoptotic activity of the chimeric virus compared with virus or IL-24 alone. Interestingly, IL-24-mediated enhancement of influenza-A-induced apoptosis did not require viral replication but critically depended on toll-like receptor 3 (TLR3) and caspase-8. Immunoprecipitation of TLR3 showed that infection by influenza A virus induced formation of a TLR3-associated signaling complex containing TRIF, RIP1, FADD, cFLIP and pro-caspase-8. Co-administration of IL-24 decreased the presence of cFLIP in the TLR3-associated complex, converting it into an atypical, TLR3-associated death-inducing signaling complex (TLR3 DISC) that induced apoptosis by enabling caspase-8 activation at this complex. The sensitizing effect of IL-24 on TLR3-induced apoptosis, mediated by influenza A virus or the TLR3-specific agonist poly(I:C), was also evident on tumor spheroids. In conclusion, rather than acting as an apoptosis inducer itself, IL-24 sensitizes cancer cells to TLR-mediated apoptosis by enabling the formation of an atypical DISC which, in the case of influenza A virus or poly(I:C), is associated with TLR3.
Collapse
|
15
|
Mutations in the M-gene segment can substantially increase replication efficiency of NS1 deletion influenza A virus in MDCK cells. J Virol 2012; 86:12341-50. [PMID: 22951840 DOI: 10.1128/jvi.01725-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses unable to express NS1 protein (delNS1) replicate poorly and induce large amounts of interferon (IFN). They are therefore considered candidate viruses for live-attenuated influenza vaccines. Their attenuated replication is generally assumed to result from the inability to counter the antiviral host response, as delNS1 viruses replicate efficiently in Vero cells, which lack IFN expression. In this study, delNS1 virus was parallel passaged on IFN-competent MDCK cells, which resulted in two strains that were able to replicate to high virus titers in MDCK cells due to adaptive mutations especially in the M-gene segment but also in the NP and NS gene segments. Most notable were clustered U-to-C mutations in the M segment of both strains and clustered A-to-G mutations in the NS segment of one strain, which presumably resulted from host cell-mediated RNA editing. The M segment mutations in both strains changed the ratio of M1 to M2 expression, probably by affecting splicing efficiency. In one virus, 2 amino acid substitutions in M1 additionally enhanced virus replication, possibly through changes in the M1 distribution between the nucleus and the cytoplasm. Both adapted viruses induced levels of IFN equal to that of the original delNS1 virus. These results show that the increased replication of the adapted viruses is not primarily due to altered IFN induction but rather is related to changes in M1 expression or localization. The mutations identified in this paper may be used to enhance delNS1 virus replication for vaccine production.
Collapse
|
16
|
Abstract
The influenza virus is a respiratory pathogen with a negative-sense, segmented RNA genome. Construction of recombinant influenza viruses in the laboratory was reported starting in the 1980s. Within a short period of time, pioneer researchers had devised methods that made it possible to construct influenza viral vectors from cDNA plasmid systems. Herein, we discuss the evolution of influenza virus reverse genetics, from helper virus-dependent systems, to helper virus-independent 17-plasmid systems, and all the way to 3- and 1- plasmid systems. Successes in the modification of different gene segments for various applications, including vaccine and gene therapies are highlighted.
Collapse
Affiliation(s)
- Junwei Li
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | | | | |
Collapse
|
17
|
van Rikxoort M, Michaelis M, Wolschek M, Muster T, Egorov A, Seipelt J, Doerr HW, Cinatl J. Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame. PLoS One 2012; 7:e36506. [PMID: 22563505 PMCID: PMC3341362 DOI: 10.1371/journal.pone.0036506] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/02/2012] [Indexed: 11/24/2022] Open
Abstract
Oncolytic influenza A viruses with deleted NS1 gene (delNS1) replicate selectively in tumour cells with defective interferon response and/or activated Ras/Raf/MEK/ERK signalling pathway. To develop a delNS1 virus with specific immunostimulatory properties, we used an optimised technology to insert the interleukin-15 (IL-15) coding sequence into the viral NS gene segment (delNS1-IL-15). DelNS1 and delNS1-IL-15 exerted similar oncolytic effects. Both viruses replicated and caused caspase-dependent apoptosis in interferon-defective melanoma cells. Virus replication was required for their oncolytic activity. Cisplatin enhanced the oncolytic activity of delNS1 viruses. The cytotoxic drug increased delNS1 replication and delNS1-induced caspase-dependent apoptosis. Interference with MEK/ERK signalling by RNAi-mediated depletion or the MEK inhibitor U0126 did not affect the oncolytic effects of the delNS1 viruses. In oncolysis sensitive melanoma cells, delNS1-IL-15 (but not delNS1) infection resulted in the production of IL-15 levels ranging from 70 to 1140 pg/mL in the cell culture supernatants. The supernatants of delNS1-IL-15-infected (but not of delNS1-infected) melanoma cells induced primary human natural killer cell-mediated lysis of non-infected tumour cells. In conclusion, we constructed a novel oncolytic influenza virus that combines the oncolytic activity of delNS1 viruses with immunostimulatory properties through production of functional IL-15. Moreover, we showed that the oncolytic activity of delNS1 viruses can be enhanced in combination with cytotoxic anti-cancer drugs.
Collapse
Affiliation(s)
- Marijke van Rikxoort
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Martin Michaelis
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | - Hans Wilhelm Doerr
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Backström Winquist E, Abdurahman S, Tranell A, Lindström S, Tingsborg S, Schwartz S. Inefficient splicing of segment 7 and 8 mRNAs is an inherent property of influenza virus A/Brevig Mission/1918/1 (H1N1) that causes elevated expression of NS1 protein. Virology 2012; 422:46-58. [DOI: 10.1016/j.virol.2011.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 09/16/2011] [Accepted: 10/05/2011] [Indexed: 11/16/2022]
|