1
|
Krasnov VP, Andronova VL, Belyavsky AV, Borisevich SS, Galegov GA, Kandarakov OF, Gruzdev DA, Vozdvizhenskaya OA, Levit GL. Large Subunit of the Human Herpes Simplex Virus Terminase as a Promising Target in Design of Anti-Herpesvirus Agents. Molecules 2023; 28:7375. [PMID: 37959793 PMCID: PMC10649544 DOI: 10.3390/molecules28217375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is an extremely widespread pathogen characterized by recurrent infections. HSV-1 most commonly causes painful blisters or sores around the mouth or on the genitals, but it can also cause keratitis or, rarely, encephalitis. First-line and second-line antiviral drugs used to treat HSV infections, acyclovir and related compounds, as well as foscarnet and cidofovir, selectively inhibit herpesvirus DNA polymerase (DNA-pol). It has been previously found that (S)-4-[6-(purin-6-yl)aminohexanoyl]-7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine (compound 1) exhibits selective anti-herpesvirus activity against HSV-1 in cell culture, including acyclovir-resistant mutants, so we consider it as a lead compound. In this work, the selection of HSV-1 clones resistant to the lead compound was carried out. High-throughput sequencing of resistant clones and reference HSV-1/L2 parent strain was performed to identify the genetic determinants of the virus's resistance to the lead compound. We identified a candidate mutation presumably associated with resistance to the virus, namely the T321I mutation in the UL15 gene encoding the large terminase subunit. Molecular modeling was used to evaluate the affinity and dynamics of the lead compound binding to the putative terminase binding site. The results obtained suggest that the lead compound, by binding to pUL15, affects the terminase complex. pUL15, which is directly involved in the processing and packaging of viral DNA, is one of the crucial components of the HSV terminase complex. The loss of its functional activity leads to disruption of the formation of mature virions, so it represents a promising drug target. The discovery of anti-herpesvirus agents that affect biotargets other than DNA polymerase will expand our possibilities of targeting HSV infections, including those resistant to baseline drugs.
Collapse
Affiliation(s)
- Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| | - Valeriya L. Andronova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.L.A.); (G.A.G.)
| | - Alexander V. Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.V.B.); (O.F.K.)
| | | | - George A. Galegov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.L.A.); (G.A.G.)
| | - Oleg F. Kandarakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.V.B.); (O.F.K.)
| | - Dmitry A. Gruzdev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| | - Olga A. Vozdvizhenskaya
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| |
Collapse
|
2
|
Herpes Simplex Virus 1 Small Capsomere-Interacting Protein VP26 Regulates Nucleocapsid Maturation. J Virol 2017; 91:JVI.01068-17. [PMID: 28679756 DOI: 10.1128/jvi.01068-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 01/22/2023] Open
Abstract
VP26 is a herpes simplex virus 1 (HSV-1) small capsomere-interacting protein. In this study, we investigated the function of VP26 in HSV-1-infected cells with the following results. (i) The VP26 null mutation significantly impaired incorporation of minor capsid protein UL25 into nucleocapsids (type C capsids) in the nucleus. (ii) The VP26 mutation caused improper localization of UL25 in discrete punctate domains containing multiple capsid proteins (e.g., the VP5 major capsid protein) in the nucleus; these domains corresponded to capsid aggregates. (iii) The VP26 mutation significantly impaired packaging of replicated viral DNA genomes into capsids but had no effect on viral DNA concatemer cleavage. (iv) The VP26 mutation reduced the frequency of type C capsids, which contain viral DNA but not scaffolding proteins, and produced an accumulation of type A capsids, which lack both viral DNA and scaffold proteins, and had no effect on accumulation of type B capsids, which lack viral DNA but retain cleaved scaffold proteins. Collectively, these results indicated that VP26 was required for efficient viral DNA packaging and proper localization of nuclear capsids. The phenotype of the VP26 null mutation was similar to that reported previously of the UL25 null mutation and of UL25 mutations that preclude UL25 binding to capsids. Thus, VP26 appeared to regulate nucleocapsid maturation by promoting incorporation of UL25 into capsids, which is likely to be required for proper capsid nuclear localization.IMPORTANCE HSV-1 VP26 has been reported to be important for viral replication and virulence in cell cultures and/or mouse models. However, little is known about the function of VP26 during HSV-1 replication, in particular, in viral nucleocapsid maturation although HSV-1 nucleocapsids are estimated to contain 900 copies of VP26. In this study, we present data suggesting that VP26 promoted packaging of HSV-1 DNA genomes into capsids by regulating incorporation of capsid protein UL25 into capsids, which was reported to increase stability of the capsid structure. We also showed that VP26 was required for proper localization of capsids in the infected cell nucleus. This is the first report showing that HSV-1 VP26 is a regulator for nucleocapsid maturation.
Collapse
|
3
|
Vertex-Specific Proteins pUL17 and pUL25 Mechanically Reinforce Herpes Simplex Virus Capsids. J Virol 2017; 91:JVI.00123-17. [PMID: 28381566 DOI: 10.1128/jvi.00123-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/24/2017] [Indexed: 01/24/2023] Open
Abstract
Using atomic force microscopy imaging and nanoindentation measurements, we investigated the effect of the minor capsid proteins pUL17 and pUL25 on the structural stability of icosahedral herpes simplex virus capsids. pUL17 and pUL25, which form the capsid vertex-specific component (CVSC), particularly contributed to capsid resilience along the 5-fold and 2-fold but not along the 3-fold icosahedral axes. Our detailed analyses, including quantitative mass spectrometry of the protein composition of the capsids, revealed that both pUL17 and pUL25 are required to stabilize the capsid shells at the vertices. This indicates that herpesviruses withstand the internal pressure that is generated during DNA genome packaging by locally reinforcing the mechanical sturdiness of the vertices, the most stressed part of the capsids.IMPORTANCE In this study, the structural, material properties of herpes simplex virus 1 were investigated. The capsid of herpes simplex virus is built up of a variety of proteins, and we scrutinized the influence of two of these proteins on the stability of the capsid. For this, we used a scanning force microscope that makes detailed, topographic images of the particles and that is able to perform mechanical deformation measurements. Using this approach, we revealed that both studied proteins play an essential role in viral stability. These new insights support us in forming a complete view on viral structure and furthermore could possibly help not only to develop specific antivirals but also to build protein shells with improved stability for drug delivery purposes.
Collapse
|
4
|
Roller RJ, Baines JD. Herpesvirus Nuclear Egress. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:143-169. [PMID: 28528443 DOI: 10.1007/978-3-319-53168-7_7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herpesviruses assemble and package their genomes into capsids in the nucleus, but complete final assembly of the mature virion in the cell cytoplasm. This requires passage of the genome-containing capsid across the double-membrane nuclear envelope. Herpesviruses have evolved a mechanism that relies on a pair of conserved viral gene products to shuttle the capsids from the nucleus to the cytoplasm by way of envelopment and de-envelopment at the inner and outer nuclear membranes, respectively. This complex process requires orchestration of the activities of viral and cellular factors to alter the architecture of the nuclear membrane, select capsids at the appropriate stage for egress, and accomplish efficient membrane budding and fusion events. The last few years have seen major advances in our understanding of the membrane budding mechanism and helped clarify the roles of viral and cellular proteins in the other, more mysterious steps. Here, we summarize and place into context this recent research and, hopefully, clarify both the major advances and major gaps in our understanding.
Collapse
Affiliation(s)
- Richard J Roller
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Joel D Baines
- Kenneth F. Burns Chair in Veterinary Medicine, School of Veterinary Medicine, Skip Bertman Drive, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
5
|
Borst EM, Bauerfeind R, Binz A, Stephan TM, Neuber S, Wagner K, Steinbrück L, Sodeik B, Lenac Roviš T, Jonjić S, Messerle M. The Essential Human Cytomegalovirus Proteins pUL77 and pUL93 Are Structural Components Necessary for Viral Genome Encapsidation. J Virol 2016; 90:5860-5875. [PMID: 27009952 PMCID: PMC4907240 DOI: 10.1128/jvi.00384-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/15/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Several essential viral proteins are proposed to participate in genome encapsidation of human cytomegalovirus (HCMV), among them pUL77 and pUL93, which remain largely uncharacterized. To gain insight into their properties, we generated an HCMV mutant expressing a pUL77-monomeric enhanced green fluorescent protein (mGFP) fusion protein and a pUL93-specific antibody. Immunoblotting demonstrated that both proteins are incorporated into capsids and virions. Conversely to data suggesting internal translation initiation sites within the UL93 open reading frame (ORF), we provide evidence that pUL93 synthesis commences at the first start codon. In infected cells, pUL77-mGFP was found in nuclear replication compartments and dot-like structures, colocalizing with capsid proteins. Immunogold labeling of nuclear capsids revealed that pUL77 is present on A, B, and C capsids. Pulldown of pUL77-mGFP revealed copurification of pUL93, indicating interaction between these proteins, which still occurred when capsid formation was prevented. Correct subnuclear distribution of pUL77-mGFP required pUL93 as well as the major capsid protein (and thus probably the presence of capsids), but not the tegument protein pp150 or the encapsidation protein pUL52, demonstrating that pUL77 nuclear targeting occurs independently of the formation of DNA-filled capsids. When pUL77 or pUL93 was missing, generation of unit-length genomes was not observed, and only empty B capsids were produced. Taken together, these results show that pUL77 and pUL93 are capsid constituents needed for HCMV genome encapsidation. Therefore, the task of pUL77 seems to differ from that of its alphaherpesvirus orthologue pUL25, which exerts its function subsequent to genome cleavage-packaging. IMPORTANCE The essential HCMV proteins pUL77 and pUL93 were suggested to be involved in viral genome cleavage-packaging but are poorly characterized both biochemically and functionally. By producing a monoclonal antibody against pUL93 and generating an HCMV mutant in which pUL77 is fused to a fluorescent protein, we show that pUL77 and pUL93 are capsid constituents, with pUL77 being similarly abundant on all capsid types. Each protein is required for genome encapsidation, as the absence of either pUL77 or pUL93 results in a genome packaging defect with the formation of empty capsids only. This distinguishes pUL77 from its alphaherpesvirus orthologue pUL25, which is enriched on DNA-filled capsids and exerts its function after the viral DNA is packaged. Our data for the first time describe an HCMV mutant with a fluorescent capsid and provide insight into the roles of pUL77 and pUL93, thus contributing to a better understanding of the HCMV encapsidation network.
Collapse
Affiliation(s)
- Eva Maria Borst
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Rudolf Bauerfeind
- Institute for Cell Biology, Hannover Medical School, Hannover, Germany
| | - Anne Binz
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | | | - Sebastian Neuber
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Karen Wagner
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Lars Steinbrück
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute for Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Tihana Lenac Roviš
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Martin Messerle
- Institute for Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| |
Collapse
|
6
|
Intracellular Distribution of Capsid-Associated pUL77 of Human Cytomegalovirus and Interactions with Packaging Proteins and pUL93. J Virol 2016; 90:5876-5885. [PMID: 27053556 DOI: 10.1128/jvi.00351-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/31/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED DNA packaging into procapsids is a common multistep process during viral maturation in herpesviruses. In human cytomegalovirus (HCMV), the proteins involved in this process are terminase subunits pUL56 and pUL89, which are responsible for site-specific cleavage and insertion of the DNA into the procapsid via portal protein pUL104. However, additional viral proteins are required for the DNA packaging process. We have shown previously that the plasmid that encodes capsid-associated pUL77 encodes another potential player during capsid maturation. Pulse-chase experiments revealed that pUL77 is stably expressed during HCMV infection. Time course analysis demonstrated that pUL77 is expressed in the early late part of the infectious cycle. The sequence of pUL77 was analyzed to find nuclear localization sequences (NLSs), revealing monopartite NLSm at the N terminus and bipartite NLSb in the middle of pUL77. The potential NLSs were inserted into plasmid pHM829, which encodes a chimeric protein with β-galactosidase and green fluorescent protein. In contrast to pUL56, neither NLSm nor NLSb was sufficient for nuclear import. Furthermore, we investigated by coimmunoprecipitation whether packaging proteins, as well as pUL93, the homologue protein of herpes simplex virus 1 pUL17, are interaction partners of pUL77. The interactions between pUL77 and packaging proteins, as well as pUL93, were verified. IMPORTANCE We showed that the capsid-associated pUL77 is another potential player during capsid maturation of HCMV. Protein UL77 (pUL77) is a conserved core protein of HCMV. This study demonstrates for the first time that pUL77 has early-late expression kinetics during the infectious cycle and an intrinsic potential for nuclear translocation. According to its proposed functions in stabilization of the capsid and anchoring of the encapsidated DNA during packaging, interaction with further DNA packaging proteins is required. We identified physical interactions with terminase subunits pUL56 and pUL89 and another postulated packaging protein, pUL93, in infected, as well as transfected, cells.
Collapse
|
7
|
Human Cytomegalovirus pUL93 Is Required for Viral Genome Cleavage and Packaging. J Virol 2015; 89:12221-5. [PMID: 26401033 DOI: 10.1128/jvi.02382-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) pUL93 is essential for virus growth, but its precise function in the virus life cycle is unknown. Here, we characterize a UL93 stop mutant virus (UL93st-TB40/E-BAC) to demonstrate that the absence of this protein does not restrict viral gene expression; however, cleavage of viral DNA into unit-length genomes as well as genome packaging is abolished. Thus, pUL93 is required for viral genome cleavage and packaging.
Collapse
|
8
|
Funk C, Ott M, Raschbichler V, Nagel CH, Binz A, Sodeik B, Bauerfeind R, Bailer SM. The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain. PLoS Pathog 2015; 11:e1004957. [PMID: 26083367 PMCID: PMC4471197 DOI: 10.1371/journal.ppat.1004957] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/14/2015] [Indexed: 12/01/2022] Open
Abstract
Progeny capsids of herpesviruses leave the nucleus by budding through the nuclear envelope. Two viral proteins, the membrane protein pUL34 and the nucleo-phosphoprotein pUL31 form the nuclear egress complex that is required for capsid egress out of the nucleus. All pUL31 orthologs are composed of a diverse N-terminal domain with 1 to 3 basic patches and a conserved C-terminal domain. To decipher the functions of the N-terminal domain, we have generated several Herpes simplex virus mutants and show here that the N-terminal domain of pUL31 is essential with basic patches being critical for viral propagation. pUL31 and pUL34 entered the nucleus independently of each other via separate routes and the N-terminal domain of pUL31 was required to prevent their premature interaction in the cytoplasm. Unexpectedly, a classical bipartite nuclear localization signal embedded in this domain was not required for nuclear import of pUL31. In the nucleus, pUL31 associated with the nuclear envelope and newly formed capsids. Viral mutants lacking the N-terminal domain or with its basic patches neutralized still associated with nucleocapsids but were unable to translocate them to the nuclear envelope. Replacing the authentic basic patches with a novel artificial one resulted in HSV1(17+)Lox-UL31-hbpmp1mp2, that was viable but delayed in nuclear egress and compromised in viral production. Thus, while the C-terminal domain of pUL31 is sufficient for the interaction with nucleocapsids, the N-terminal domain was essential for capsid translocation to sites of nuclear egress and a coordinated interaction with pUL34. Our data indicate an orchestrated sequence of events with pUL31 binding to nucleocapsids and escorting them to the inner nuclear envelope. We propose a common mechanism for herpesviral nuclear egress: pUL31 is required for intranuclear translocation of nucleocapsids and subsequent interaction with pUL34 thereby coupling capsid maturation with primary envelopment. Herpesviral capsid assembly is initiated in the host nucleus. Due to size constraints, newly formed nucleocapsids are unable to leave the nucleus through the nuclear pore complex. Instead herpesviruses apply an evolutionarily conserved mechanism for nuclear export of capsids called nuclear egress. This process is initiated by docking of capsids at the inner nuclear membrane, budding of enveloped capsids into the perinuclear space followed by de-envelopment and release of capsids to the cytoplasm where further maturation occurs. Two viral proteins conserved throughout the herpesvirus family, the membrane protein pUL34 and the phosphoprotein pUL31 form the nuclear egress complex that is critical for primary envelopment. We show here that pUL31 and pUL34 enter the nucleus independently of each other. pUL31 is targeted to the nucleoplasm where it binds to nucleocapsids via the conserved C-terminal domain, while its N-terminal domain is important for capsid translocation to the nuclear envelope and for a coordinated interaction with pUL34. Our data suggest a mechanism that is apparently conserved among all herpesviruses with pUL31 escorting nucleocapsids to the nuclear envelope in order to couple capsid maturation with primary envelopment.
Collapse
Affiliation(s)
- Christina Funk
- Institute for Interfacial Engineering and Plasma Technology (IGVP), University of Stuttgart, Stuttgart, Germany
| | - Melanie Ott
- Max von Pettenkofer-Institut, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Verena Raschbichler
- Max von Pettenkofer-Institut, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Anne Binz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Rudolf Bauerfeind
- Institute of Cell Biology, Hannover Medical School, Hannover, Germany
| | - Susanne M. Bailer
- Institute for Interfacial Engineering and Plasma Technology (IGVP), University of Stuttgart, Stuttgart, Germany
- Max von Pettenkofer-Institut, Ludwig-Maximilians-University Munich, Munich, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
- * E-mail:
| |
Collapse
|
9
|
The putative herpes simplex virus 1 chaperone protein UL32 modulates disulfide bond formation during infection. J Virol 2014; 89:443-53. [PMID: 25320327 DOI: 10.1128/jvi.01913-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED During DNA encapsidation, herpes simplex virus 1 (HSV-1) procapsids are converted to DNA-containing capsids by a process involving activation of the viral protease, expulsion of the scaffold proteins, and the uptake of viral DNA. Encapsidation requires six minor capsid proteins (UL6, UL15, UL17, UL25, UL28, and UL33) and one viral protein, UL32, not found to be associated with capsids. Although functions have been assigned to each of the minor capsid proteins, the role of UL32 in encapsidation has remained a mystery. Using an HSV-1 variant containing a functional hemagglutinin-tagged UL32, we demonstrated that UL32 was synthesized with true late kinetics and that it exhibited a previously unrecognized localization pattern. At 6 to 9 h postinfection (hpi), UL32 accumulated in viral replication compartments in the nucleus of the host cell, while at 24 hpi, it was additionally found in the cytoplasm. A newly generated UL32-null mutant was used to confirm that although B capsids containing wild-type levels of capsid proteins were synthesized, these procapsids were unable to initiate the encapsidation process. Furthermore, we showed that UL32 is redox sensitive and identified two highly conserved oxidoreductase-like C-X-X-C motifs that are essential for protein function. In addition, the disulfide bond profiles of the viral proteins UL6, UL25, and VP19C and the viral protease, VP24, were altered in the absence of UL32, suggesting that UL32 may act to modulate disulfide bond formation during procapsid assembly and maturation. IMPORTANCE Although functions have been assigned to six of the seven required packaging proteins of HSV, the role of UL32 in encapsidation has remained a mystery. UL32 is a cysteine-rich viral protein that contains C-X-X-C motifs reminiscent of those in proteins that participate in the regulation of disulfide bond formation. We have previously demonstrated that disulfide bonds are required for the formation and stability of the viral capsids and are also important for the formation and stability of the UL6 portal ring. In this report, we demonstrate that the disulfide bond profiles of the viral proteins UL6, UL25, and VP19C and the viral protease, VP24, are altered in cells infected with a newly isolated UL32-null mutant virus, suggesting that UL32 acts as a chaperone capable of modulating disulfide bond formation. Furthermore, these results suggest that proper regulation of disulfide bonds is essential for initiating encapsidation.
Collapse
|
10
|
Identification of a varicella-zoster virus replication inhibitor that blocks capsid assembly by interacting with the floor domain of the major capsid protein. J Virol 2012; 86:12198-207. [PMID: 22933294 DOI: 10.1128/jvi.01280-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel anti-varicella-zoster virus compound, a derivative of pyrazolo[1,5-c]1,3,5-triazin-4-one (coded as 35B2), was identified from a library of 9,600 random compounds. This compound inhibited both acyclovir (ACV)-resistant and -sensitive strains. In a plaque reduction assay under conditions in which the 50% effective concentration of ACV against the vaccine Oka strain (V-Oka) in human fibroblasts was 4.25 μM, the 50% effective concentration of 35B2 was 0.75 μM. The selective index of the compound was more than 200. Treatment with 35B2 inhibited neither immediate-early gene expression nor viral DNA synthesis. Twenty-four virus clones resistant to 35B2 were isolated, all of which had a mutation(s) in the amino acid sequence of open reading frame 40 (ORF40), which encodes the major capsid protein (MCP). Most of the mutations were located in the regions corresponding to the "floor" domain of the MCP of herpes simplex virus 1. Treatment with 35B2 changed the localization of MCP in the fibroblasts infected with V-Oka but not in the fibroblasts infected with the resistant clones, although it did not affect steady-state levels of MCP. Overexpression of the scaffold proteins restored the normal MCP localization in the 35B2-treated infected cells. The compound did not inhibit the scaffold protein-mediated translocation of MCP from the cytoplasm to the nucleus. Electron microscopic analysis demonstrated the lack of capsid formation in the 35B2-treated infected cells. These data indicate the feasibility of developing a new class of antivirals that target the herpesvirus MCPs and inhibit normal capsid formation by a mechanism that differs from those of the known protease and encapsidation inhibitors. Further biochemical studies are required to clarify the precise antiviral mechanism.
Collapse
|
11
|
Baines JD. Herpes simplex virus capsid assembly and DNA packaging: a present and future antiviral drug target. Trends Microbiol 2011; 19:606-13. [DOI: 10.1016/j.tim.2011.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/30/2011] [Accepted: 09/13/2011] [Indexed: 10/16/2022]
|
12
|
Selection of HSV capsids for envelopment involves interaction between capsid surface components pUL31, pUL17, and pUL25. Proc Natl Acad Sci U S A 2011; 108:14276-81. [PMID: 21821792 DOI: 10.1073/pnas.1108564108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During egress from the nucleus, HSV capsids that contain DNA (termed C capsids) are preferentially enveloped at the inner nuclear membrane over capsid types lacking DNA. Using coimmunoprecipitation and biochemical analyses of wild-type and mutant capsids, we identify an interaction between a complex of pU(L)17/pU(L)25, termed the C capsid-specific complex (CCSC), and pU(L)31, a component of the nuclear egress complex (NEC). We also show that the interactions between these components are dependent on expression of all three proteins but occur independently of the pU(L)31 interacting protein and NEC component pU(L)34, as well as a kinase encoded by U(S)3 that phosphorylates both pU(L)31 and pU(L)34. The interaction between the CCSC and pU(L)31 in the NEC suggests a mechanism to conserve viral resources by promoting assembly of only those viral particles with the potential to become infectious.
Collapse
|
13
|
The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention. J Virol 2011; 85:7513-22. [PMID: 21632758 DOI: 10.1128/jvi.00837-11] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus (HSV) UL17 and UL25 minor capsid proteins are essential for DNA packaging. They are thought to comprise a molecule arrayed in five copies around each of the capsid vertices. This molecule was initially termed the "C-capsid-specific component" (CCSC) (B. L. Trus et al., Mol. Cell 26:479-489, 2007), but as we have subsequently observed this feature on reconstructions of A, B, and C capsids, we now refer to it more generally as the "capsid vertex-specific component" (CVSC) (S. K. Cockrell et al., J. Virol. 85:4875-4887, 2011). We previously confirmed that UL25 occupies the vertex-distal region of the CVSC density by visualizing a large UL25-specific tag in reconstructions calculated from cryo-electron microscopy (cryo-EM) images. We have pursued the same strategy to determine the capsid location of the UL17 protein. Recombinant viruses were generated that contained either a small tandem affinity purification (TAP) tag or the green fluorescent protein (GFP) attached to the C terminus of UL17. Purification of the TAP-tagged UL17 or a similarly TAP-tagged UL25 protein clearly demonstrated that the two proteins interact. A cryo-EM reconstruction of capsids containing the UL17-GFP protein reveals that UL17 is the second component of the CVSC and suggests that UL17 interfaces with the other CVSC component, UL25, through its C terminus. The portion of UL17 nearest the vertex appears to be poorly constrained, which may provide flexibility in interacting with tegument proteins or the DNA-packaging machinery at the portal vertex. The exposed locations of the UL17 and UL25 proteins on the HSV-1 capsid exterior suggest that they may be attractive targets for highly specific antivirals.
Collapse
|
14
|
Uncoupling uncoating of herpes simplex virus genomes from their nuclear import and gene expression. J Virol 2011; 85:4271-83. [PMID: 21345968 DOI: 10.1128/jvi.02067-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Incoming capsids of herpes simplex virus type 1 (HSV-1) enter the cytosol by fusion of the viral envelopes with host cell membranes and use microtubules and microtubule motors for transport to the nucleus. Upon docking to the nuclear pores, capsids release their genomes into the nucleoplasm. Progeny genomes are replicated in the nucleoplasm and subsequently packaged into newly assembled capsids. The minor capsid protein pUL25 of alphaherpesviruses is required for capsid stabilization after genome packaging and for nuclear targeting of incoming genomes. Here, we show that HSV-1 pUL25 bound to mature capsids within the nucleus and remained capsid associated during assembly and nuclear targeting. Furthermore, we tested potential interactions between parental pUL25 bound to incoming HSV-1 capsids and host factors by competing for such interactions with an experimental excess of cytosolic pUL25. Overexpression of pUL25, GFPUL25, or UL25GFP prior to infection reduced gene expression of HSV-1. Electron microscopy and in situ hybridization studies revealed that an excess of GFPUL25 or UL25GFP prevented efficient nuclear import and/or transcription of parental HSV-1 genomes, but not nuclear targeting of capsids or the uncoating of the incoming genomes at the nuclear pore. Thus, the uncoating of HSV-1 genomes could be uncoupled from their nuclear import and gene expression. Most likely, surplus pUL25 competed with important interactions between the parental capsids, and possibly between authentic capsid-associated pUL25, and cytosolic or nuclear host factors required for functional interaction of the incoming genomes with the nuclear machinery.
Collapse
|
15
|
The capsid protein encoded by U(L)17 of herpes simplex virus 1 interacts with tegument protein VP13/14. J Virol 2010; 84:7642-50. [PMID: 20504930 DOI: 10.1128/jvi.00277-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The U(L)17 protein (pU(L)17) of herpes simplex virus 1 (HSV-1) likely associates with the surfaces of DNA-containing capsids in a heterodimer with pU(L)25. pU(L)17 is also associated with viral light particles that lack capsid proteins, suggesting its presence in the tegument of the HSV-1 virion. To help determine how pU(L)17 becomes incorporated into virions and its functions therein, we identified pU(L)17-interacting proteins by immunoprecipitation with pU(L)17-specific IgY at 16 h postinfection, followed by mass spectrometry. Coimmunoprecipitated proteins included cellular histone proteins H2A, H3, and H4; the intermediate filament protein vimentin; the major HSV-1 capsid protein VP5; and the HSV tegument proteins VP11/12 (pU(L)46) and VP13/14 (pU(L)47). The pU(L)17-VP13/14 interaction was confirmed by coimmunoprecipitation in the presence and absence of intact capsids and by affinity copurification of pU(L)17 and VP13/14 from lysates of cells infected with a recombinant virus encoding His-tagged pU(L)17. pU(L)17 and VP13/14-HA colocalized in the nuclear replication compartment, in the cytoplasm, and at the plasma membrane between 9 and 18 h postinfection. One possible explanation of these data is that pU(L)17 links the external face of the capsid to VP13/14 and associated tegument components.
Collapse
|
16
|
Mutational analysis of the herpes simplex virus type 1 UL25 DNA packaging protein reveals regions that are important after the viral DNA has been packaged. J Virol 2010; 84:4252-63. [PMID: 20181717 DOI: 10.1128/jvi.02442-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) UL25 gene encodes a minor capsid protein, pUL25, that is essential for packaging the full-length viral genome. Six regions which contain disordered residues have been identified in the high-resolution structure of pUL25. To investigate the significance of these flexible regions, a panel of plasmids was generated encoding mutant proteins, with each member lacking the disordered residues in one of the six regions. In addition, UL25 constructs were produced, which specified proteins that contained missense mutations individually affecting two of the four regions on the surface of pUL25 predicted from evolutionary trace analysis to be important in protein-protein interactions. The impacts of these mutations on viral DNA packaging, virus assembly, and growth were examined. Of the nine mutant proteins analyzed, five failed to complement the growth of a UL25 deletion mutant in Vero cells. These noncomplementing proteins fell into three classes. Proteins in one class did not alter the DNA packaging phenotype of an HSV-1 UL25 deletion mutant, whereas proteins from the other two classes allowed the UL25 null mutant to package full-length viral DNA. Subsequent analysis of the latter classes of mutant proteins demonstrated that one class enabled the null virus to release enveloped virus particles from U2OS cells, whereas the other class prevented egress of mature HSV-1 capsids from the nucleus. These findings reveal a new role for pUL25 in virion assembly, consistent with its flexible structure and location on the capsid.
Collapse
|