1
|
Ali AA, Tabll AA. Unlocking potential: Virus-like particles as a promising strategy for effective HCV vaccine development. Virology 2025; 602:110307. [PMID: 39580887 DOI: 10.1016/j.virol.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. The development of prophylactic vaccine is essential for HCV global eradication. Despite over three decades of research, no effective vaccine for HCV has been developed, primarily due to the virus's genetic diversity, immune evasion mechanisms, and incomplete understanding of protective immunity. However, Virus-Like Particles (VLPs) offer a promising approach to overcoming these challenges. VLPs mimic the structure of native virus but without the infectious genome, making them safe and non-infectious vaccines candidates. The capability of VLPs to incorporate neutralizing and conformational epitopes, and engage humoral and cellular immune responses, positions them as a promising tool for overcoming challenges associated with the HCV vaccine development. This review examines the challenges and immunological considerations for HCV vaccine development and provides an overview of the VLPs-based vaccines development. It also discusses future directions and public health implications of HCV vaccine development.
Collapse
Affiliation(s)
- Ahmed A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, (NRC), 12622, Cairo, Egypt.
| | - Ashraf A Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, 12622, Cairo, Egypt; Egyptian Centre for Research and Regenerative Medicine (ECRRM), 11517, Cairo, Egypt.
| |
Collapse
|
2
|
Khudainazarova NS, Granovskiy DL, Kondakova OA, Ryabchevskaya EM, Kovalenko AO, Evtushenko EA, Arkhipenko MV, Nikitin NA, Karpova OV. Prokaryote- and Eukaryote-Based Expression Systems: Advances in Post-Pandemic Viral Antigen Production for Vaccines. Int J Mol Sci 2024; 25:11979. [PMID: 39596049 PMCID: PMC11594041 DOI: 10.3390/ijms252211979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
This review addresses the ongoing global challenge posed by emerging and evolving viral diseases, underscoring the need for innovative vaccine development strategies. It focuses on the modern approaches to creating vaccines based on recombinant proteins produced in different expression systems, including bacteria, yeast, plants, insects, and mammals. This review analyses the advantages, limitations, and applications of these expression systems for producing vaccine antigens, as well as strategies for designing safer, more effective, and potentially 'universal' antigens. The review discusses the development of vaccines for a range of viral diseases, excluding SARS-CoV-2, which has already been extensively studied. The authors present these findings with the aim of contributing to ongoing research and advancing the development of antiviral vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nikolai A. Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (D.L.G.); (O.A.K.); (E.M.R.); (A.O.K.); (E.A.E.); (M.V.A.); (O.V.K.)
| | | |
Collapse
|
3
|
Damodaran A, Zachariah SM, Nair SC. Novel therapeutic approaches for the management of hepatitis infections. Ther Deliv 2024; 15:211-232. [PMID: 38410933 DOI: 10.4155/tde-2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Hepatitis B virus (HBV) & hepatitis C virus (HCV) infection is a substantial reason for morbidity and mortality around the world. Chronic hepatitis B (CHB) infection is connected with an enhanced risk of liver cirrhosis, liver decompensation and hepatocellular carcinoma (HCC). Conventional therapy do face certain challenges, for example, poor tolerability and the growth of active resistance. Thus, novel treatment procedures are essential to accomplish the initiation of strong and stable antiviral immune reactions of the individuals. This review explores the current nanotechnology-based carriers for drug and vaccine delivery to treat HBV and HCV.
Collapse
Affiliation(s)
- Aswin Damodaran
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, 682041, India
| | - Subin Mary Zachariah
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, 682041, India
| | - Sreeja Chandrasekharan Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, 682041, India
| |
Collapse
|
4
|
Srivastava V, Nand KN, Ahmad A, Kumar R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines (Basel) 2023; 11:vaccines11020479. [PMID: 36851356 PMCID: PMC9965603 DOI: 10.3390/vaccines11020479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Virus-like particles (VLPs) are empty, nanoscale structures morphologically resembling viruses. Internal cavity, noninfectious, and particulate nature with a high density of repeating epitopes, make them an ideal platform for vaccine development and drug delivery. Commercial use of Gardasil-9 and Cervarix showed the usefulness of VLPs in vaccine formulation. Further, chimeric VLPs allow the raising of an immune response against different immunogens and thereby can help reduce the generation of medical or clinical waste. The economically viable production of VLPs significantly impacts their usage, application, and availability. To this end, several hosts have been used and tested. The present review will discuss VLPs produced using different yeasts as fermentation hosts. We also compile a list of studies highlighting the expression and purification of VLPs using a yeast-based platform. We also discuss the advantages of using yeast to generate VLPs over other available systems. Further, the issues or limitations of yeasts for producing VLPs are also summarized. The review also compiles a list of yeast-derived VLP-based vaccines that are presently in public use or in different phases of clinical trials.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Kripa N. Nand
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Ravinder Kumar
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence:
| |
Collapse
|
5
|
Gupta R, Arora K, Roy SS, Joseph A, Rastogi R, Arora NM, Kundu PK. Platforms, advances, and technical challenges in virus-like particles-based vaccines. Front Immunol 2023; 14:1123805. [PMID: 36845125 PMCID: PMC9947793 DOI: 10.3389/fimmu.2023.1123805] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Viral infectious diseases threaten human health and global stability. Several vaccine platforms, such as DNA, mRNA, recombinant viral vectors, and virus-like particle-based vaccines have been developed to counter these viral infectious diseases. Virus-like particles (VLP) are considered real, present, licensed and successful vaccines against prevalent and emergent diseases due to their non-infectious nature, structural similarity with viruses, and high immunogenicity. However, only a few VLP-based vaccines have been commercialized, and the others are either in the clinical or preclinical phases. Notably, despite success in the preclinical phase, many vaccines are still struggling with small-scale fundamental research owing to technical difficulties. Successful production of VLP-based vaccines on a commercial scale requires a suitable platform and culture mode for large-scale production, optimization of transduction-related parameters, upstream and downstream processing, and monitoring of product quality at each step. In this review article, we focus on the advantages and disadvantages of various VLP-producing platforms, recent advances and technical challenges in VLP production, and the current status of VLP-based vaccine candidates at commercial, preclinical, and clinical levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Prabuddha K. Kundu
- Department of Research and Development, Premas Biotech Pvt Ltd., Sector IV, Industrial Model Township (IMT), Manesar, Gurgaon, India
| |
Collapse
|
6
|
Shi W, Chen S, Chi F, Qiu Q, Zhong Y, Bian X, Zhang H, Xi J, Qian H. Advances in Tumor Antigen‐Based Anticancer Immunotherapy: Recent Progress, Prevailing Challenges, and Future Perspective. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wei Shi
- Center of Drug Discovery State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 P. R. China
| | - Shuang Chen
- Center of Drug Discovery State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 P. R. China
| | - Fanglian Chi
- Center of Drug Discovery State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 P. R. China
| | - Qianqian Qiu
- Center of Drug Discovery State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 P. R. China
| | - Yue Zhong
- Center of Drug Discovery State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 P. R. China
| | - Xiaojian Bian
- Center of Drug Discovery State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 P. R. China
| | - Hao Zhang
- School of Science China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 P. R. China
| | - Junting Xi
- School of Science China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 P. R. China
| | - Hai Qian
- Center of Drug Discovery State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 P. R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 P. R. China
| |
Collapse
|
7
|
Prentoe J, Janitzek CM, Velázquez-Moctezuma R, Soerensen A, Jørgensen T, Clemmensen S, Soroka V, Thrane S, Theander T, Nielsen MA, Salanti A, Bukh J, Sander AF. Two-component vaccine consisting of virus-like particles displaying hepatitis C virus envelope protein 2 oligomers. NPJ Vaccines 2022; 7:148. [DOI: 10.1038/s41541-022-00570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractDevelopment of B-cell-based hepatitis C virus (HCV) vaccines that induce broadly neutralizing antibodies (bNAbs) is hindered by extensive sequence diversity and low immunogenicity of envelope glycoprotein vaccine candidates, most notably soluble E2 (sE2). To overcome this, we employed two-component approaches using self-assembling virus-like particles (cVLPs; component 1), displaying monomeric or oligomeric forms of HCV sE2 (sE2mono or sE2oligo; component 2). Immunization studies were performed in BALB/c mice and the neutralizing capacity of vaccine-induced antibodies was tested in cultured-virus-neutralizations, using HCV of genotypes 1–6. sE2-cVLP vaccines induced significantly higher levels of NAbs (p = 0.0065) compared to corresponding sE2 vaccines. Additionally, sE2oligo-cVLP was superior to sE2mono-cVLP in inducing bNAbs. Interestingly, human monoclonal antibody AR2A had reduced binding in ELISA to sE2oligo-cVLP compared with sE2mono-cVLP and competition ELISA using mouse sera from vaccinated animals indicated that sE2oligo-cVLP induced significantly less non-bNAbs AR2A (p = 0.0043) and AR1B (p = 0.017). Thus, cVLP-displayed oligomeric sE2 shows promise as an HCV vaccine candidate.
Collapse
|
8
|
Feng T, Li M, Zhang L, Li S, Yang Z, Kang L, Guo Y, Kong L, Wang T. Immunity of two novel hepatitis C virus polyepitope vaccines. Vaccine 2022; 40:6277-6287. [PMID: 36150975 DOI: 10.1016/j.vaccine.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Hepatitis C virus (HCV) infection remains a serious public health burden around the world. So far there is no effective vaccine against this virus. Neutralizing antibody (NAb) responses to the epitopes within HCV E1 and E2 proteins are related to the resolution of hepatitis C infection. E. coli heat-labile enterotoxin B subunit (LTB) has been described as potent immunity adjuvants. In this study, we constructed recombinant pET vectors: pET-R9-Bp (B cell polyepitopes) expressing 7 epitopes from HCV E1 and E2 proteins including R9 (E2384-411aa)-Bp (E1313-327aa-E2396-424aa-E2436-447aa-E2523-540aa-E2610-627aa-E2631-648aa) and pET-LTB-R9-Bp expressing LTB adjuvant in combination with R9-Bp. Recombinant proteins R9-Bp and LTB-R9-Bp were expressed successfully in E. coli and purified by the Ni-NTA column. Both R9-Bp and LTB-R9-Bp in BALB/c mice induced robust humoral immune response in the context of intraperitoneal or intramuscular immunization but not oral immunization. Intraperitoneal administration of LTB-R9-Bp induced a higher antibody titer (peak titer: 1:341000) than that of R9-Bp (peak titer: 1:85000) after the second boost (P = 0.0036 or 0.0002). However, comparable antibody peak titers were elicited for both R9-Bp and LTB-R9-Bp in intramuscular immunization albeit with significant difference (P = 0.0032) a week after the second boost. In addition, both R9-Bp and LTB-R9-Bp induced the secretion of cytokines including IFN-γ and IL-4 at similar levels. anti-sera induced by both R9-Bp and LTB-R9-Bp recognized native HCV E1 and E2 proteins. Moreover, these HCV-specific antisera inhibited significantly the entry of HCV (P < 0.0001). Taken together, these findings showed that E. coli-based both R9-Bp and LTB-R9-Bp could become promising HCV vaccines.
Collapse
Affiliation(s)
- Tian Feng
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mingzhi Li
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lirong Zhang
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Sha Li
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zibing Yang
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lumei Kang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Center for Laboratory Animal Science, Nanchang University, Nanchang, Jiangxi, China
| | - Yunli Guo
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingbao Kong
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Ting Wang
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, Jiangxi, China; Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
9
|
Gasmi A, Srinath S, Dadar M, Pivina L, Menzel A, Benahmed AG, Chirumbolo S, Bjørklund G. A global survey in the developmental landscape of possible vaccination strategies for COVID-19. Clin Immunol 2022; 237:108958. [PMID: 35218966 PMCID: PMC8865932 DOI: 10.1016/j.clim.2022.108958] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 01/04/2023]
Abstract
The development of COVID-19 vaccines was promptly regulated to ensure the best possible approach. By January 2022, 75 candidates reached preclinical evaluation in various animal models, 114 vaccines were in clinical trials on humans, and 48 were in the final testing stages. Vaccine platforms range from whole virus vaccines to nucleic acid vaccines, which are the most promising in prompt availability and safety. The USA and Europe have approved vaccines developed by Pfizer-BioNTech (BNT162b2) and Moderna (mRNa1273). So far, Pfizer-BioNTech, Moderna, Johnson & Johnson, AstraZeneca-University of Oxford, Sinopharm, Sinovac Biotech Gamaleya, Bharat Biotech, and Novavax have documented effective vaccines. Even with technological advances and a fast-paced development approach, many limitations and problems need to be overcome before a large-scale production of new vaccines can start. The Key is to ensure equal and fair distribution globally through regulatory measures. Recent studies link Bacillus Calmette-Guérin (BCG) vaccination programs and lower disease severity.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Shvetha Srinath
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan; CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | | | - Asma Gasmi Benahmed
- Université Claude Bernard, Villeurbanne, France; Académie Internationale de Médecine Dentaire Intégrative, Paris, France
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| |
Collapse
|