1
|
Neil SJ, Campbell EM. Fake Science: XMRV, COVID-19, and the Toxic Legacy of Dr. Judy Mikovits. AIDS Res Hum Retroviruses 2020; 36:545-549. [PMID: 32414291 PMCID: PMC7398426 DOI: 10.1089/aid.2020.0095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
One cannot spend >5 min on social media at the moment without finding a link to some conspiracy theory or other regarding the origin of SARS-CoV2, the coronavirus responsible for the COVID-19 pandemic. From the virus being deliberately released as a bioweapon to pharmaceutical companies blocking the trials of natural remedies to boost their dangerous drugs and vaccines, the Internet is rife with far-fetched rumors. And predictably, now that the first immunization trials have started, the antivaccine lobby has latched on to most of them. In the last week, the trailer for a new "bombshell documentary" Plandemic has been doing the rounds, gaining notoriety for being repeatedly removed from YouTube and Facebook. We usually would not pay much heed to such things, but for retrovirologists like us, the name associated with these claims is unfortunately too familiar: Dr. Judy Mikovits.
Collapse
Affiliation(s)
- Stuart J.D. Neil
- Department of Infectious Disease, School of Immunobiology and Microbial Sciences, King's College London, London, United Kingdom
| | - Edward M. Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Imada K, Shiota M, Kuroiwa K, Sugimoto M, Abe T, Kohashi K, Yokomizo A, Eto M, Naito S, Oda Y. FOXO3a Expression Regulated by ERK Signaling is Inversely Correlated With Y-Box Binding Protein-1 Expression in Prostate Cancer. Prostate 2017; 77:145-153. [PMID: 27699813 DOI: 10.1002/pros.23254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/29/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND FOXO3a is a member of the forkhead O transcription factors. FOXO3a induces the factors that contribute to cell cycle arrest and is considered a tumor suppressor in several malignant tumors. Y-box binding protein-1 (YB-1) is a multifunctional protein whose high expression is correlated with poor prognoses in various malignant tumors. In the current study, we investigated the relationship between FOXO3a and YB-1 to validate their functional roles in prostate cancer. METHODS Western blotting and cytotoxicity assays were conducted in prostate cancer cells, LNCaP, and 22Rv1 cells. We also evaluated the protein expressions of FOXO3a and YB-1 in human prostate cancer tissues, using radical prostatectomy specimens. Then, we investigated the correlations between protein expressions and clinicopathologic parameters. RESULTS We found that both FOXO3a and YB-1 proteins were phosphorylated by ERK signaling, resulting in FOXO3a inactivation and YB-1 activation in LNCaP and 22Rv1 cells. Inversely, inhibition of MEK or treatment with metformin activated FOXO3a through inactivation of ERK signaling and suppressed the viability of LNCaP and 22Rv1 cells in a dose-dependent manner. In immunohistochemical analysis, FOXO3a nuclear expression was inversely correlated with YB-1 nuclear expression (P < 0.0001). Furthermore, high FOXO3a nuclear expression was inversely correlated with a higher Gleason grade (P < 0.0001) and higher preoperative PSA (P = 0.0437). CONCLUSIONS These results showed that in prostate cancer, FOXO3a, and YB-1 play inverse reciprocal roles as a tumor-suppressor gene and oncogene, respectively, through their master regulator ERK. Prostate 77:145-153, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kenjiro Imada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Kuroiwa
- Department of Urology, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan
| | - Masaaki Sugimoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Abe
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Yokomizo
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Naito
- Division of Urology, Harasanshin General Hospital, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Laurent F, Tchénio T, Buckle M, Hazan U, Bury-Moné S. XMRV low level of expression in human cells delays superinfection interference and allows proviral copies to accumulate. Virology 2014; 456-457:28-38. [PMID: 24889222 DOI: 10.1016/j.virol.2014.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/19/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
Abstract
Xenotropic Murine leukemia virus-Related Virus (XMRV) directly arose from genetic recombinations between two endogenous murine retroviruses that occurred during human xenografts in laboratory mice. Studies on XMRV could thus bring clues on how a new retrovirus could circumvent barrier species. We observed that XMRV exhibits a weak promoter activity in human cells, similar to the transcription level of a Tat-defective HIV-1. Despite this low fitness, XMRV can efficiently propagate through the huge accumulation of viral copies (≈40 copies per cell) that compensates for the low expression level of individual proviruses. We further demonstrate that there is an inverse relationship between the maximum number of viral copies per infected cell and the level of viral expression, which is explained by viral envelope interference mechanisms. Low viral expression compensation by viral copy accumulation through delayed interference could a priori contribute to the propagation of others viruses following species jumps.
Collapse
Affiliation(s)
- Fanny Laurent
- LBPA, UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | - Thierry Tchénio
- LBPA, UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan, France.
| | - Malcolm Buckle
- LBPA, UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan, France.
| | - Uriel Hazan
- LBPA, UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan, France.
| | - Stéphanie Bury-Moné
- LBPA, UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan, France.
| |
Collapse
|
4
|
Kakoki K, Kamiyama H, Izumida M, Yashima Y, Hayashi H, Yamamoto N, Matsuyama T, Igawa T, Sakai H, Kubo Y. Androgen-independent proliferation of LNCaP prostate cancer cells infected by xenotropic murine leukemia virus-related virus. Biochem Biophys Res Commun 2014; 447:216-22. [DOI: 10.1016/j.bbrc.2014.03.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/31/2014] [Indexed: 12/19/2022]
|
5
|
Prevention of contamination by xenotropic murine leukemia virus-related virus: susceptibility to alcohol-based disinfectants and environmental stability. Appl Environ Microbiol 2014; 80:2617-22. [PMID: 24532072 DOI: 10.1128/aem.04064-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) represents a novel γ-retrovirus that is capable of infecting human cells and has been classified as a biosafety level 2 (BSL-2) organism. Hence, XMRV represents a potential risk for personnel in laboratories worldwide. Here, we measured the stability of XMRV and its susceptibility to alcohol-based disinfectants. To this end, we exposed an infectious XMRV reporter virus encoding a secretable luciferase to different temperatures, pH values, and disinfectants and infected XMRV-permissive Raji B cells to measure residual viral infectivity. We found that 1 min treatment of XMRV particles at 60°C is sufficient to reduce infectivity by 99.9%. XMRV infectivity was maximal at a neutral pH but was reduced by 86% at pH 4 and 99.9% at pH 10. The common hand and surface disinfectants ethanol and isopropanol as well as the cell fixation reagent paraformaldehyde abrogated XMRV infectivity entirely, as indicated by a reduction of infectivity exceeding 99.99%. Our findings provide evidence of specific means to inactivate XMRV. Their application will help to prevent unintended XMRV contamination of cell cultures in laboratories and minimize the risk for laboratory personnel and health care workers to become infected with this biosafety level 2 organism.
Collapse
|
6
|
Stürzel CM, Palesch D, Khalid M, Wissing S, Fischer N, Münch J. Utilization of replication-competent XMRV reporter-viruses reveals severe viral restriction in primary human cells. PLoS One 2013; 8:e74427. [PMID: 24058563 PMCID: PMC3772927 DOI: 10.1371/journal.pone.0074427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 08/01/2013] [Indexed: 11/20/2022] Open
Abstract
The gammaretrovirus termed xenotropic murine leukemia virus-related virus (XMRV) was described to be isolated from prostate cancer tissue biopsies and from blood of patients suffering from chronic fatigue syndrome. However, many studies failed to detect XMRV and to verify these disease associations. Data suggesting the contamination of specimens in particular by PCR-based methods and recent reports demonstrating XMRV generation via recombination of two murine leukemia virus precursors raised serious doubts about XMRV being a genuine human pathogen. To elucidate cell tropism of XMRV, we generated replication competent XMRV reporter viruses encoding a green fluorescent protein or a secretable luciferase as tools to analyze virus infection of human cell lines or primary human cells. Transfection of proviral DNAs into LNCaP prostate cancer cells resulted in readily detectably reporter gene expression and production of progeny virus. Inoculation of known XMRV susceptible target cells revealed that these virions were infectious and expressed the reporter gene, allowing for a fast and highly sensitive quantification of XMRV infection. Both reporter viruses were capable of establishing a spreading infection in LNCaP and Raji B cells and could be easily passaged. However, after inoculation of primary human blood cells such as CD4 T cells, macrophages or dendritic cells, infection rates were very low, and a spreading infection was never established. In line with these results we found that supernatants derived from these XMRV infected primary cell types did not contain infectious virus. Thus, although XMRV efficiently replicated in some human cell lines, all tested primary cells were largely refractory to XMRV infection and did not support viral spread. Our results provide further evidence that XMRV is not a human pathogen.
Collapse
Affiliation(s)
| | - David Palesch
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany
| | - Mohammad Khalid
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany
| | - Silke Wissing
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany
- * E-mail:
| |
Collapse
|
7
|
Lee D, Das Gupta J, Gaughan C, Steffen I, Tang N, Luk KC, Qiu X, Urisman A, Fischer N, Molinaro R, Broz M, Schochetman G, Klein EA, Ganem D, DeRisi JL, Simmons G, Hackett J, Silverman RH, Chiu CY. In-depth investigation of archival and prospectively collected samples reveals no evidence for XMRV infection in prostate cancer. PLoS One 2012; 7:e44954. [PMID: 23028701 PMCID: PMC3445615 DOI: 10.1371/journal.pone.0044954] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/10/2012] [Indexed: 12/31/2022] Open
Abstract
XMRV, or xenotropic murine leukemia virus (MLV)-related virus, is a novel gammaretrovirus originally identified in studies that analyzed tissue from prostate cancer patients in 2006 and blood from patients with chronic fatigue syndrome (CFS) in 2009. However, a large number of subsequent studies failed to confirm a link between XMRV infection and CFS or prostate cancer. On the contrary, recent evidence indicates that XMRV is a contaminant originating from the recombination of two mouse endogenous retroviruses during passaging of a prostate tumor xenograft (CWR22) in mice, generating laboratory-derived cell lines that are XMRV-infected. To confirm or refute an association between XMRV and prostate cancer, we analyzed prostate cancer tissues and plasma from a prospectively collected cohort of 39 patients as well as archival RNA and prostate tissue from the original 2006 study. Despite comprehensive microarray, PCR, FISH, and serological testing, XMRV was not detected in any of the newly collected samples or in archival tissue, although archival RNA remained XMRV-positive. Notably, archival VP62 prostate tissue, from which the prototype XMRV strain was derived, tested negative for XMRV on re-analysis. Analysis of viral genomic and human mitochondrial sequences revealed that all previously characterized XMRV strains are identical and that the archival RNA had been contaminated by an XMRV-infected laboratory cell line. These findings reveal no association between XMRV and prostate cancer, and underscore the conclusion that XMRV is not a naturally acquired human infection.
Collapse
Affiliation(s)
- Deanna Lee
- Department of Laboratory Medicine, University of San Francisco, San Francisco, California, United States of America
- University of California San Francisco-Abbott Viral Diagnostics and Discovery Center, University of California San Francisco, San Francisco, California, United States of America
| | | | | | - Imke Steffen
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Ning Tang
- Abbott Laboratories, Abbott Park, Illinois, United States of America
| | - Ka-Cheung Luk
- Abbott Laboratories, Abbott Park, Illinois, United States of America
| | - Xiaoxing Qiu
- Abbott Laboratories, Abbott Park, Illinois, United States of America
| | - Anatoly Urisman
- Department of Laboratory Medicine, University of San Francisco, San Francisco, California, United States of America
| | - Nicole Fischer
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ross Molinaro
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Miranda Broz
- Department of Laboratory Medicine, University of San Francisco, San Francisco, California, United States of America
| | | | - Eric A. Klein
- Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Don Ganem
- Novartis Institutes for Biomedical Research, Emeryville, California, United States of America
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Graham Simmons
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - John Hackett
- Abbott Laboratories, Abbott Park, Illinois, United States of America
| | | | - Charles Y. Chiu
- Department of Laboratory Medicine, University of San Francisco, San Francisco, California, United States of America
- University of California San Francisco-Abbott Viral Diagnostics and Discovery Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
8
|
Hanke K, Chudak C, Kurth R, Bannert N. The Rec protein of HERV-K(HML-2) upregulates androgen receptor activity by binding to the human small glutamine-rich tetratricopeptide repeat protein (hSGT). Int J Cancer 2012; 132:556-67. [PMID: 22733359 DOI: 10.1002/ijc.27693] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/04/2012] [Accepted: 05/31/2012] [Indexed: 11/06/2022]
Abstract
The expression of endogenous retroviruses of the HERV-K(HML-2) family is strongly upregulated in germ cell tumors and several other cancers. Although the accessory Rec protein of HERV-K(HML-2) has been shown to induce carcinoma in situ in transgenic mice, to increase the activity of c-myc and to interact with the androgen receptor (AR), whether or not Rec expression is indeed implicated causally in the initiation or progression of any human malignancies remains unclear. We used the yeast two-hybrid system involving the Rec protein of a recently integrated HERV-K(HML-2) element in an effort to identify potential Rec-related oncogenic mechanisms. This revealed the human small glutamine-rich tetratricopeptide repeat (TPR)-containing protein (hSGT) to be a cellular binding partner. The interaction of Rec with this known negative regulator of the AR was confirmed by coimmunoprecipitation, pull-down assays and colocalization studies. The interaction involves the TPR motif of hSGT and takes place in the cytoplasm and in the nucleoli. Using an AR-responsive promoter and gene we could demonstrate that Rec interference with hSGT resulted in an up to five-fold increase in the activity of AR. Furthermore, in AR positive cells, Rec was shown to act as transactivator by enhancing AR-mediated activation of the HERV-K(HML-2) LTR promoter. This is in line with previous observations of elevated HERV-K(HML-2) expression in steroid-regulated tissues. On the basis of our findings we propose a "vicious cycle" model of Rec-driven hyperactivation of the AR leading to increased cell proliferation, inhibition of apoptosis and eventually to tumor induction or promotion.
Collapse
Affiliation(s)
- Kirsten Hanke
- Center for HIV and Retrovirology, Robert Koch Institute, Berlin
| | | | | | | |
Collapse
|
9
|
Lawrence MG, Stephens CR, Need EF, Lai J, Buchanan G, Clements JA. Long terminal repeats act as androgen-responsive enhancers for the PSA-kallikrein locus. Endocrinology 2012; 153:3199-210. [PMID: 22597536 DOI: 10.1210/en.2012-1267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The androgen receptor (AR) signaling pathway is a common therapeutic target for prostate cancer, because it is critical for the survival of both hormone-responsive and castrate-resistant tumor cells. Most of the detailed understanding that we have of AR transcriptional activation has been gained by studying classical target genes. For more than two decades, Kallikrein 3 (KLK3) (prostate-specific antigen) has been used as a prototypical AR target gene, because it is highly androgen responsive in prostate cancer cells. Three regions upstream of the KLK3 gene, including the distal enhancer, are known to contain consensus androgen-responsive elements required for AR-mediated transcriptional activation. Here, we show that KLK3 is one of a specific cluster of androgen-regulated genes at the centromeric end of the kallikrein locus with enhancers that evolved from the long terminal repeat (LTR) (LTR40a) of an endogenous retrovirus. Ligand-dependent recruitment of the AR to individual LTR-derived enhancers results in concurrent up-regulation of endogenous KLK2, KLK3, and KLKP1 expression in LNCaP prostate cancer cells. At the molecular level, a kallikrein-specific duplication within the LTR is required for maximal androgen responsiveness. Therefore, KLK3 represents a subset of target genes regulated by repetitive elements but is not typical of the whole spectrum of androgen-responsive transcripts. These data provide a novel and more detailed understanding of AR transcriptional activation and emphasize the importance of repetitive elements as functional regulatory units.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Molecular and enzymatic characterization of XMRV protease by a cell-free proteolytic analysis. J Proteomics 2012; 75:4863-73. [PMID: 22687250 DOI: 10.1016/j.jprot.2012.05.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/24/2012] [Accepted: 05/31/2012] [Indexed: 12/11/2022]
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) is a virus generated under artificial conditions by the recombination of 2 murine leukemia virus (MLV) proviruses, PreXMRV-1 and PreXMRV-2, during the in vivo passage of human prostate cancer cells in athymic nude mice. The molecular etiology of XMRV infection has not been characterized and its implication in human prostate cancer progression remains equivocal. As a step toward resolving this issue we developed an in vitro enzymatic assay system to characterize XMRV protease (PR)-mediated cleavage of host-cell proteins. Enzymatically-active XMRV PR protein was synthesized using a wheat-germ cell-free system. By monitoring cleavage activity of XMRV PR by AlphaScreen and 2-color immunoblot analyses, we revealed that the catalytic activity of XMRV PR is selectively blocked by the HIV PR inhibitor, Amprenavir, and identified several human tumor suppressor proteins, including PTEN and BAX, to be substrates of XMRV PR. This system may provide an attractive means for analyzing the function of retrovirus proteases and provide a technology platform for drug screening.
Collapse
|
11
|
Pandhare J, Mantri C, Gong Y, Chen Z, Dash C. XMRV accelerates cellular proliferation, transformational activity, and invasiveness of prostate cancer cells by downregulating p27(Kip1). Prostate 2012; 72:886-97. [PMID: 21932423 PMCID: PMC3275676 DOI: 10.1002/pros.21491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 08/24/2011] [Indexed: 12/29/2022]
Abstract
BACKGROUND Xenotropic murine leukemia virus-related retrovirus (XMRV) is a recently discovered gammaretrovirus that was originally detected in prostate tumors. However, a causal relationship between XMRV and prostate cancer remains controversial due to conflicting reports on its etiologic occurrence. Even though gammaretroviruses are known to induce cancer in animals, a mechanism for XMRV-induced carcinogenesis remains unknown. Several mechanisms including insertional mutagenesis, proinflammatory effects, oncogenic viral proteins, immune suppression, and altered epithelial/stromal interactions have been proposed for a role of XMRV in prostate cancer. However, biochemical data supporting any of these mechanisms are lacking. Therefore, our aim was to evaluate a potential role of XMRV in prostate carcinogenesis. METHODS Growth kinetics of prostate cancer cells are conducted by MTT assay. In vitro transformation and invasion was carried out by soft agar colony formation, and Matrigel cell invasion assay, respectively. p27(Kip1) expression was determined by Western blot and MMP activation was evaluated by gelatin-zymography. Up-regulation of miR221 and miR222 expression was examined by real-time PCR. RESULTS We demonstrate that XMRV infection can accelerate cellular proliferation, enhance transformation, and increase invasiveness of slow growing prostate cancer cells. The molecular basis of these viral induced activities is mediated by the downregulation of cyclin/cyclin dependent kinase inhibitor p27(Kip1) . Downstream analyses illustrated that XMRV infection upregulates miR221 and miR222 expression that target p27(Kip1) mRNA. CONCLUSIONS We propose that downregulation of p27(Kip1) by XMRV infection facilitates transition of G1 to S, thereby accelerates growth of prostate cancer cells. Our findings implicate that if XMRV is present in humans, then under appropriate cellular microenvironment it may serve as a cofactor to promote cancer progression in the prostate.
Collapse
Affiliation(s)
- Jui Pandhare
- Laboratory of Retrovirology and Epigenetics, Center for AIDS Health Disparities Research, Vanderbilt-Meharry Center For AIDS Research (CFAR), Meharry Medical College School of Medicine, 1005 Dr. DB Todd Jr Blvd., Nashville, TN 37208, USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College School of Medicine, 1005 Dr. DB Todd Jr Blvd., Nashville, TN 37208, USA
| | - Chinmay Mantri
- Laboratory of Retrovirology and Epigenetics, Center for AIDS Health Disparities Research, Vanderbilt-Meharry Center For AIDS Research (CFAR), Meharry Medical College School of Medicine, 1005 Dr. DB Todd Jr Blvd., Nashville, TN 37208, USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College School of Medicine, 1005 Dr. DB Todd Jr Blvd., Nashville, TN 37208, USA
| | - Yuanying Gong
- Department of Biochemistry and Cancer Biology, Meharry Medical College School of Medicine, 1005 Dr. DB Todd Jr Blvd., Nashville, TN 37208, USA
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College School of Medicine, 1005 Dr. DB Todd Jr Blvd., Nashville, TN 37208, USA
| | - Chandravanu Dash
- Laboratory of Retrovirology and Epigenetics, Center for AIDS Health Disparities Research, Vanderbilt-Meharry Center For AIDS Research (CFAR), Meharry Medical College School of Medicine, 1005 Dr. DB Todd Jr Blvd., Nashville, TN 37208, USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College School of Medicine, 1005 Dr. DB Todd Jr Blvd., Nashville, TN 37208, USA
- Corresponding Author: Tel: 615-327-6996, Fax: 615-327-6929,
| |
Collapse
|
12
|
Das Gupta J, Luk KC, Tang N, Gaughan C, Klein EA, Kandel ES, Hackett J, Silverman RH. Absence of XMRV and closely related viruses in primary prostate cancer tissues used to derive the XMRV-infected cell line 22Rv1. PLoS One 2012; 7:e36072. [PMID: 22615748 PMCID: PMC3353988 DOI: 10.1371/journal.pone.0036072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/25/2012] [Indexed: 12/21/2022] Open
Abstract
The 22Rv1 cell line is widely used for prostate cancer research and other studies throughout the world. These cells were established from a human prostate tumor, CWR22, that was serially passaged in nude mice and selected for androgen independence. The 22Rv1 cells are known to produce high titers of xenotropic murine leukemia virus-related virus (XMRV). Recent studies suggested that XMRV was inadvertently created in the 1990's when two murine leukemia virus (MLV) genomes (pre-XMRV1 and pre-XMRV-2) recombined during passaging of the CWR22 tumor in mice. The conclusion that XMRV originated from mice and not the patient was based partly on the failure to detect XMRV in early CWR22 xenografts. While that deduction is certainly justified, we examined the possibility that a closely related virus could have been present in primary tumor tissue. Here we report that we have located the original prostate tumor tissue excised from patient CWR22 and have assayed the corresponding DNA by PCR and the tissue sections by fluorescence in situ hybridization for the presence of XMRV or a similar virus. The primary tumor tissues lacked mouse DNA as determined by PCR for intracisternal A type particle DNA, thus avoiding one of the limitations of studying xenografts. We show that neither XMRV nor a closely related virus was present in primary prostate tissue of patient CWR22. Our findings confirm and reinforce the conclusion that XMRV is a recombinant laboratory-generated mouse virus that is highly adapted for human prostate cancer cells.
Collapse
Affiliation(s)
- Jaydip Das Gupta
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ka-Cheung Luk
- Abbott Diagnostics, Emerging Pathogens and Virus Discovery, Abbott Park, Illinois, United States of America
| | - Ning Tang
- Abbott Molecular, Des Plaines, Illinois, United States of America
| | - Christina Gaughan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Eric A. Klein
- Glickman Urologic and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Eugene S. Kandel
- Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - John Hackett
- Abbott Diagnostics, Emerging Pathogens and Virus Discovery, Abbott Park, Illinois, United States of America
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
13
|
Abstract
In 2006, a new retrovirus was isolated from prostate cancer patient tissue. Named xenotropic murine leukemia virus-related virus (XMRV), this was potentially the third class of retrovirus to be pathogenic in humans. XMRV made a more dramatic impact on the wider scientific community, and indeed the media, in 2009 when it was reported to be present in a remarkably high proportion of patients with chronic fatigue syndrome as well as a significant, albeit smaller, proportion of healthy controls. The apparent strong link to disease and the fear of a previously unknown retrovirus circulating in the general population lead to a surge in XMRV research. Subsequent studies failed to find an association of XMRV with disease and, in most cases, failed to find the virus in human samples. In 2011, the case against XMRV and human disease strengthened, ending with several decisive publications revealing the origin of the virus and demonstrating contamination of samples. In this review, we outline the passage of research on XMRV and its potential association with disease from its isolation to the present day, where we find ourselves at the end of a turbulent story.
Collapse
Affiliation(s)
- Harriet C T Groom
- Division of Virology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | - Kate N Bishop
- Division of Virology, MRC National Institute for Medical Research, London NW7 1AA, UK
| |
Collapse
|
14
|
Wright JL, Lin DW, Stanford JL. Circumcision and the risk of prostate cancer. Cancer 2012; 118:4437-43. [PMID: 22411189 DOI: 10.1002/cncr.26653] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 08/05/2011] [Accepted: 09/26/2011] [Indexed: 11/08/2022]
Abstract
BACKGROUND Several lines of evidence support a role for infectious agents in the development of prostate cancer (PCa). In particular, sexually transmitted infections (STIs) have been implicated in PCa etiology, and studies have found that the risk of acquiring a STI can be reduced with circumcision. Therefore, circumcision may reduce PCa risk. METHODS Participant data collected as part of 2 population-based case-control studies of PCa were analyzed. Self-reported circumcision status, age at circumcision, and age at first sexual intercourse were recorded along with a history of STIs or prostatitis. Multivariate logistic regression was used to estimate the relative risk of PCa by circumcision status. RESULTS Data from 1754 cases and 1645 controls were available. Circumcision before first sexual intercourse was associated with a 15% reduction in risk of PCa compared to that of uncircumcised men (95% confidence interval [CI], 0.73-0.99). This risk reduction was observed for cases with both less aggressive (odds ratio, 0.88; 95% CI, 0.74-1.04) and more aggressive (odds ratio, 0.82; 95% CI, 0.66-1.00) PCa features. CONCLUSIONS Circumcision before first sexual intercourse is associated with a reduction in the relative risk of PCa in this study population. These findings are consistent with research supporting the infectious/inflammation pathway in prostate carcinogenesis.
Collapse
Affiliation(s)
- Jonathan L Wright
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA.
| | | | | |
Collapse
|
15
|
Ezelle HJ, Hassel BA. Pathologic effects of RNase-L dysregulation in immunity and proliferative control. Front Biosci (Schol Ed) 2012; 4:767-86. [PMID: 22202089 DOI: 10.2741/s298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The endoribonuclease RNase-L is the terminal component of an RNA cleavage pathway that mediates antiviral, antiproliferative and immunomodulatory activities. Inactivation or dysregulation of RNase-L is associated with a compromised immune response and increased risk of cancer, accordingly its activity is tightly controlled and requires an allosteric activator, 2',5'-linked oligoadenylates, for enzymatic activity. The biological activities of RNase-L are a result of direct and indirect effects of RNA cleavage and microarray analyses have revealed that RNase-L impacts the gene expression program at multiple levels. The identification of RNase-L-regulated RNAs has provided insights into potential mechanisms by which it exerts antiproliferative, proapoptotic, senescence-inducing and innate immune activities. RNase-L protein interactors have been identified that serve regulatory functions and are implicated as alternate mechanisms of its biologic functions. Thus, while the molecular details are understood for only a subset of RNase-L activities, its regulation by small molecules and critical roles in host defense and as a candidate tumor suppressor make it a promising therapeutic target.
Collapse
Affiliation(s)
- Heather J Ezelle
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
16
|
Zhang A, Bogerd H, Villinger F, Das Gupta J, Dong B, Klein EA, Hackett J, Schochetman G, Cullen BR, Silverman RH. In vivo hypermutation of xenotropic murine leukemia virus-related virus DNA in peripheral blood mononuclear cells of rhesus macaque by APOBEC3 proteins. Virology 2011; 421:28-33. [PMID: 21982221 DOI: 10.1016/j.virol.2011.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 07/26/2011] [Accepted: 08/17/2011] [Indexed: 10/16/2022]
Abstract
The gammaretrovirus, xenotropic murine leukemia virus-related virus (XMRV), replicates to high titers in some human cell lines and is able to infect non-human primates. To determine whether APOBEC3 (A3) proteins restrict XMRV infections in a non-human primate model, we sequenced proviral DNA from peripheral blood mononuclear cells of XMRV-infected rhesus macaques. Hypermutation characteristic of A3DE, A3F and A3G activities was observed in the XMRV proviral sequences in vivo. Furthermore, expression of rhesus A3DE, A3F, or A3G in human cells inhibited XMRV infection and caused hypermutation of XMRV DNA. These studies show that some rhesus A3 isoforms are highly effective against XMRV in the blood of a non-human primate model of infection and in cultured human cells.
Collapse
Affiliation(s)
- Ao Zhang
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang J, Battacharya P, Singhal R, Kandel ES. Xenotropic murine leukemia virus-related virus (XMRV) in prostate cancer cells likely represents a laboratory artifact. Oncotarget 2011; 2:358-62. [PMID: 21642749 PMCID: PMC3248192 DOI: 10.18632/oncotarget.287] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The prevalence of xenotropic murine leukemia virus-related virus (XMRV) in human population and its involvement in prostate cancer are subjects of ongoing research and debate. 22Rv1, which is a human cell line that serves as a common model of androgen-independent prostate cancer, was recently reported to carry infectious copies of XMRV. 22Rv1 was derived from a prostate cancer xenograft CWR22 that was serially passaged in immunodeficient mice. Based on the analysis of the DNA from CWR22 and 22Rv1, we present evidence against the presence of XMRV in CWR22 and, by inference, the tumor, from which CWR22 and 22Rv1 were established. While the presence of XMRV in 22Rv1 is likely to be an artifact, it may be a significant factor in determining the biological properties of this cell line. This consideration warrants additional caution for the interpretation of the relevance of the studies, which utilize this popular cell line as a model. It also invites a closer look at the sources of viral contamination in xenografts and cultured cells, as well as in the experiments that allege the presence of this virus in human cells and populations.
Collapse
Affiliation(s)
- Jiawen Yang
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton St., Buffalo, NY 142263, USA
| | | | | | | |
Collapse
|
18
|
XMRV Discovery and Prostate Cancer-Related Research. Adv Virol 2011; 2011:432837. [PMID: 22312343 PMCID: PMC3265305 DOI: 10.1155/2011/432837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/25/2011] [Indexed: 11/21/2022] Open
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) was first reported in 2006 in a study of human prostate cancer patients with genetic variants of the antiviral enzyme, RNase L. Subsequent investigations in North America, Europe, Asia, and Africa have either observed or failed to detect XMRV in patients (prostate cancer, chronic fatigue syndrome-myalgic encephalomyelitis (CFS-ME), and immunosuppressed with respiratory tract infections) or normal, healthy, control individuals. The principal confounding factors are the near ubiquitous presence of mouse-derived reagents, antibodies and cells, and often XMRV itself, in laboratories. XMRV infects and replicates well in many human cell lines, but especially in certain prostate cancer cell lines. XMRV also traffics to prostate in a nonhuman primate model of infection. Here, we will review the discovery of XMRV and then focus on prostate cancer-related research involving this intriguing virus.
Collapse
|
19
|
Rusmevichientong A, Chow SA. Biology and pathophysiology of the new human retrovirus XMRV and its association with human disease. Immunol Res 2011; 48:27-39. [PMID: 20717743 DOI: 10.1007/s12026-010-8165-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) is a new human retrovirus originally identified in prostate cancer patients with a deficiency in the antiviral enzyme RNase L. XMRV has been detected with varying frequencies in cases of prostate cancer and chronic fatigue syndrome (CFS), as well as in a small proportion of healthy individuals. An etiologic link between XMRV infection and human disease, however, has yet to be established. Here, we summarize existing knowledge regarding the characteristics of XMRV replication, association of XMRV with prostate cancer and CFS, and potential mechanisms of XMRV pathophysiology. We also highlight several areas, such as the establishment of standardized assays and the development of animal models, as future directions to advance our current understanding of XMRV and its relevance to human disease.
Collapse
Affiliation(s)
- Alice Rusmevichientong
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute, 650 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | | |
Collapse
|
20
|
Morris BJ, Gray RH, Castellsague X, Bosch FX, Halperin DT, Waskett JH, Hankins CA. The Strong Protective Effect of Circumcision against Cancer of the Penis. Adv Urol 2011; 2011:812368. [PMID: 21687572 PMCID: PMC3113366 DOI: 10.1155/2011/812368] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/09/2011] [Indexed: 01/30/2023] Open
Abstract
Male circumcision protects against cancer of the penis, the invasive form of which is a devastating disease confined almost exclusively to uncircumcised men. Major etiological factors are phimosis, balanitis, and high-risk types of human papillomavirus (HPV), which are more prevalent in the glans penis and coronal sulcus covered by the foreskin, as well as on the penile shaft, of uncircumcised men. Circumcised men clear HPV infections more quickly. Phimosis (a constricted foreskin opening impeding the passage of urine) is confined to uncircumcised men, in whom balanitis (affecting 10%) is more common than in circumcised men. Each is strongly associated with risk of penile cancer. These findings have led to calls for promotion of male circumcision, especially in infancy, to help reduce the global burden of penile cancer. Even more relevant globally is protection from cervical cancer, which is 10-times more common, being much higher in women with uncircumcised male partners. Male circumcision also provides indirect protection against various other infections in women, along with direct protection for men from a number of genital tract infections, including HIV. Given that adverse consequences of medical male circumcision, especially when performed in infancy, are rare, this simple prophylactic procedure should be promoted.
Collapse
Affiliation(s)
- Brian J. Morris
- School of Medical Sciences and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ronald H. Gray
- Population and Family Planning, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xavier Castellsague
- Institut Català d'Oncologia (ICO), IDIBELL, CIBERESP, RTICC, 08908 L'Hospitalet de Llobregat, Catalonia, Spain
| | - F. Xavier Bosch
- Institut Català d'Oncologia (ICO), IDIBELL, CIBERESP, RTICC, 08908 L'Hospitalet de Llobregat, Catalonia, Spain
| | - Daniel T. Halperin
- Department of Global Health and Population, Harvard School of Public Health, Boston, MA 02115, USA
| | - Jake H. Waskett
- Circumcision Independent Reference and Commentary Service, Radcliffe, Manchester M261JR, UK
| | | |
Collapse
|
21
|
Infection, viral dissemination, and antibody responses of rhesus macaques exposed to the human gammaretrovirus XMRV. J Virol 2011; 85:4547-57. [PMID: 21325416 DOI: 10.1128/jvi.02411-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenotropic murine leukemia-related virus (XMRV) was identified in association with human prostate cancer and chronic fatigue syndrome. To examine the infection potential, kinetics, and tissue distribution of XMRV in an animal model, we inoculated five macaques with XMRV intravenously. XMRV established a persistent, chronic disseminated infection, with low transient viremia and provirus in blood lymphocytes during acute infection. Although undetectable in blood after about a month, XMRV viremia was reactivated at 9 months, confirming the chronicity of the infection. Furthermore, XMRV Gag was detected in tissues throughout, with wide dissemination throughout the period of monitoring. Surprisingly, XMRV infection showed organ-specific cell tropism, infecting CD4 T cells in lymphoid organs including the gastrointestinal lamina propria, alveolar macrophages in lung, and epithelial/interstitial cells in other organs, including the reproductive tract. Of note, in spite of the intravenous inoculation, extensive XMRV replication was noted in prostate during acute but not chronic infection even though infected cells were still detectable by fluorescence in situ hybridization (FISH) in prostate at 5 and 9 months postinfection. Marked lymphocyte activation occurred immediately postinfection, but antigen-specific cellular responses were undetectable. Antibody responses were elicited and boosted upon reexposure, but titers decreased rapidly, suggesting low antigen stimulation over time. Our findings establish a nonhuman primate model to study XMRV replication/dissemination, transmission, pathogenesis, immune responses, and potential future therapies.
Collapse
|
22
|
NF-kappaB activation stimulates transcription and replication of retrovirus XMRV in human B-lineage and prostate carcinoma cells. J Virol 2011; 85:3179-86. [PMID: 21270144 DOI: 10.1128/jvi.02333-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) is a gammaretrovirus linked to prostate carcinoma and chronic fatigue syndrome. Here we report that NF-κB activation can markedly increase XMRV production. The inflammatory cytokine tumor necrosis factor alpha (TNF-α), which activates NF-κB, significantly augmented viral Gag protein production in XMRV-infected cells. Reporter assays showed that TNF-α and Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1), an intrinsic NF-κB activator, increased long terminal repeat (LTR)-dependent XMRV transcription. We identified two NF-κB binding sites (designated κB-1 and κB-2) in the LTR U3 region of XMRV and demonstrated that both sites bind to the NF-κB component p65/RelA. Mutation of the κB-1 site, but not the κB-2 site, impaired responsiveness to TNF-α and LMP1 in reporter assays. A mutant XMRV with a mutation at the κB-1 site replicated significantly less efficiently than the wild-type XMRV in the prostate carcinoma LNCaP, DU145, and PC-3 cell lines, HEK293 cells, the EBV-immortalized cell line IB4, and the Burkitt's lymphoma cell line BJAB. These results demonstrate that TNF-α and EBV LMP1 enhance XMRV replication in prostate carcinoma and B-lineage cells through the κB-1 site in the XMRV LTR, suggesting that inflammation, EBV infection, and other conditions leading to NF-κB activation may promote XMRV spread in humans.
Collapse
|
23
|
Abstract
BACKGROUND A new retrovirus, xenotropic murine leukaemia virus-related virus (XMRV), was identified in 2006 and an association was claimed between it and a genetic polymorphism predisposing to cancer of the prostate. In 2009 the same virus was identified in a cohort of patients with chronic fatigue syndrome (CFS). In 2010 a second related virus was identified in a separate group of CFS patients. A series of studies from disparate geographical areas have failed to substantiate this work. Most recently several papers have suggested that the detection of these viruses was explained by laboratory contamination. SOURCES OF DATA All papers including the wording XMRV were abstracted from the NIH library of medicine database and included in the analysis. AREAS OF AGREEMENT XMRV is a newly described retrovirus whose nucleic acid has been identified in samples from patients with both prostate cancer and CFS. AREAS OF CONTROVERSY Opinions differ as to whether the detected nucleic acid indicates infection with this virus in this disease or whether laboratory contamination of samples accounts for its presence. GROWING POINTS An increasing number of papers now refute the association of XMRV with human disease in humans although there is some evidence of serological reactivity to the virus. While it is unlikely that XMRV is a major cause of either prostate cancer or CFS, it can infect human cells and might yet have a role in human disease. AREAS TIMELY FOR DEVELOPING RESEARCH Further studies to either prove or disprove the disease association of the virus are ongoing.
Collapse
Affiliation(s)
- Julia C Kenyon
- Department of Medicine, University of Cambridge, Addenbrooke’s hospital, Cambridge, UK
| | | |
Collapse
|
24
|
Stoye JP, Silverman RH, Boucher CA, Le Grice SFJ. The xenotropic murine leukemia virus-related retrovirus debate continues at first international workshop. Retrovirology 2010; 7:113. [PMID: 21176195 PMCID: PMC3022689 DOI: 10.1186/1742-4690-7-113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 12/22/2010] [Indexed: 12/12/2022] Open
Abstract
The 1st International Workshop on Xenotropic Murine Leukemia Virus-Related Retrovirus (XMRV), co-sponsored by the National Institutes of Health, The Department of Health and Human Services and Abbott Diagnostics, was convened on September 7/8, 2010 on the NIH campus, Bethesda, MD. Attracting an international audience of over 200 participants, the 2-day event combined a series of plenary talks with updates on different aspects of XMRV research, addressing basic gammaretrovirus biology, host response, association of XMRV with chronic fatigue syndrome and prostate cancer, assay development and epidemiology. The current status of XMRV research, concerns among the scientific community and suggestions for future actions are summarized in this meeting report.
Collapse
Affiliation(s)
- Jonathan P Stoye
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK
| | | | | | | |
Collapse
|
25
|
Kozak CA. The mouse "xenotropic" gammaretroviruses and their XPR1 receptor. Retrovirology 2010; 7:101. [PMID: 21118532 PMCID: PMC3009702 DOI: 10.1186/1742-4690-7-101] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/30/2010] [Indexed: 11/29/2022] Open
Abstract
The xenotropic/polytropic subgroup of mouse leukemia viruses (MLVs) all rely on the XPR1 receptor for entry, but these viruses vary in tropism, distribution among wild and laboratory mice, pathogenicity, strategies used for transmission, and sensitivity to host restriction factors. Most, but not all, isolates have typical xenotropic or polytropic host range, and these two MLV tropism types have now been detected in humans as viral sequences or as infectious virus, termed XMRV, or xenotropic murine leukemia virus-related virus. The mouse xenotropic MLVs (X-MLVs) were originally defined by their inability to infect cells of their natural mouse hosts. It is now clear, however, that X-MLVs actually have the broadest host range of the MLVs. Nearly all nonrodent mammals are susceptible to X-MLVs, and all species of wild mice and several common strains of laboratory mice are X-MLV susceptible. The polytropic MLVs, named for their apparent broad host range, show a more limited host range than the X-MLVs in that they fail to infect cells of many mouse species as well as many nonrodent mammals. The co-evolution of these viruses with their receptor and other host factors that affect their replication has produced a heterogeneous group of viruses capable of inducing various diseases, as well as endogenized viral genomes, some of which have been domesticated by their hosts to serve in antiviral defense.
Collapse
Affiliation(s)
- Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
26
|
Menéndez-Arias L. Evidence and controversies on the role of XMRV in prostate cancer and chronic fatigue syndrome. Rev Med Virol 2010; 21:3-17. [PMID: 21294212 DOI: 10.1002/rmv.673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 12/11/2022]
Abstract
The recent discovery of xenotropic murine leukaemia virus-related virus (XMRV) in prostate cancer tissues and in the blood of individuals suffering from chronic fatigue syndrome has attracted considerable interest. However, the relevance and significance of XMRV to human disease remain unclear, since the association has not been confirmed in other studies. XMRV is the first gammaretrovirus to be found in humans. XMRV and murine leukaemia viruses share similar structures and genomic organisation. Human restriction factors such as APOBEC3 or tetherin inhibit XMRV replication. Although XMRV induces low rates of transformation in cell culture, it might be able to induce cancer by low-frequency insertional activation of oncogenes or through the generation of highly active transforming viruses. A preference for regulatory regions of transcriptional active genes has been observed after a genomic-wide analysis of XMRV integration sites. Genes related to carcinogenesis and androgen signalling have been identified in the vicinity of integration sites. The XMRV genome contains a glucocorticoid responsive element, and androgens could modulate viral replication in the prostate. Evidence supporting the involvement of XMRV in chronic fatigue syndrome is still very weak, and needs further confirmation and validation. Currently approved anti-retroviral drugs such as zidovudine, tenofovir and raltegravir are efficient inhibitors of XMRV replication in vitro. These drugs might be useful to treat XMRV infection in humans. The identification of XMRV has potentially serious health implications for the implementation of novel techniques including gene therapy or xenotransplantation, while raising concerns on the need for screening donated blood to prevent transmission through transfusion.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
27
|
Xenotropic murine leukemia virus-related virus in chronic fatigue syndrome and prostate cancer. Curr Allergy Asthma Rep 2010; 10:210-4. [PMID: 20425007 DOI: 10.1007/s11882-010-0106-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) is a gamma retrovirus that has been associated with chronic fatigue syndrome (CFS) and prostate cancer. The search for viral causes of these syndromes was reignited by the finding that RNase L activity was low in hereditary prostate cancer and some CFS patients. The six strains of XMRV that have been sequenced have greater than 99% identity, indicating a new human infection rather than laboratory contamination. DNA, RNA, and proteins from XMRV have been detected in 50% to 67% of CFS patients and in about 3.7% of healthy controls. XMRV infections could be transmitted to permissive cell lines from CFS plasma, suggesting the potential for communicable and blood-borne spread of the virus and potentially CFS. This troubling concept is currently under intense evaluation. The most important steps now are to independently confirm the initial findings; develop reliable assays of biomarkers; and to move on to investigations of XMRV pathophysiology and treatment in CFS, prostate cancer, and potentially other virus-related syndromes, if they exist.
Collapse
|
28
|
|
29
|
Payton S. XMRV in prostate cancer. Nat Rev Urol 2010. [DOI: 10.1038/nrurol.2009.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Xenotropic murine leukemia virus-related virus establishes an efficient spreading infection and exhibits enhanced transcriptional activity in prostate carcinoma cells. J Virol 2009; 84:2556-62. [PMID: 20015990 DOI: 10.1128/jvi.01969-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) is a novel human gammaretrovirus discovered in association with human prostate tumors. XMRV was first identified in prostate stromal cells surrounding the tumors of patients carrying a mutation in the HPC1 gene locus. To determine the tropism of XMRV in cell culture, we tested the ability of XMRV to spread and replicate in various prostate and nonprostate cell lines. We found that although the expression of XMRV viral proteins and the spread of infectious virus were minimal in a variety of cell lines, XMRV displayed robust expression and infection in LNCaP prostate tumor cells. The transcriptional activity of the XMRV long terminal repeat (LTR) was found to be higher than the Moloney murine leukemia virus LTRs in both LNCaP and WPMY-1 (simian virus 40-transformed prostate stromal cells). The U3 promoter of XMRV and a glucocorticoid response element (GRE) within the U3 were required for the transcriptional activity in LNCaP cells. Coexpression of the androgen receptor and stimulation with dihydrotestosterone stimulated XMRV-LTR-dependent transcription in 293T cells, and the GRE was required for this activity. These data suggest that XMRV may replicate more efficiently in LNCaP cells in part due to the transcriptional environment in LNCaP cells.
Collapse
|