1
|
Zhang X, Wang X, Yin L, Wang D, Jiao H, Liu X, Zheng J. HACE1 exerts a neuroprotective role against oxidative stress in cerebral ischemia-reperfusion injury by activating the PI3K/AKT/Nrf2 pathway. Neuroscience 2024; 559:249-262. [PMID: 39244008 DOI: 10.1016/j.neuroscience.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
HECT domain and Ankyrin repeat-containing E3 ubiquitin protein ligase 1 (HACE1) is an E3 ubiquitin ligase involving oxidative stress, an important contributor in cerebral ischemia-reperfusion injury (CIRI). It was proposed to be associated with the PI3K/AKT pathway and Nrf2 nuclear translocation, which are important players of oxidative stress. Therefore, we supposed that HACE1 might affect CIRI by regulating the PI3K/AKT/Nrf2 pathway. Here, we used the transient middle cerebral artery occlusion-reperfusion (tMCAO/R) model to induce CIRI in rats and found lower HACE1 expression in ischemic rats compared with the control. To explore the exact role of HACE1, the lentivirus vector carrying the HACE1 sequence was administrated to rats by intracerebroventricular injection (1 × 109 TU/mL, 9 μL) one week before tMCAO/R operation. HACE1 overexpression alleviated tMCAO/R-induced brain damage in rats. Further studies revealed that it reduced oxidative stress via activating the PI3K/AKT/Nrf2 pathway, thereby inhibiting neuronal apoptosis in the ischemic penumbra of rats with CIRI. Then, differentiated PC12 cells were cultured in oxygen-glucose deprivation-reoxygenation (OGD/R) conditions (OGD: 1 % O2, 94 % N2, and 5 % CO2; R: normal atmosphere) to simulate CIRI in vitro. Similarly, HACE1 overexpression inhibited neuronal apoptosis caused by OGD/R treatment. The PI3K inhibitor LY294002 reversed the inhibitory effects of HACE1 overexpression on oxidative stress in OGD/R-injured cells, accompanied by the inactivated AKT/Nrf2 pathway. Altogether, our results suggest that HACE1 protects against oxidative stress-induced neuronal apoptosis in CIRI by activating the PI3K/AKT/Nrf2 pathway, providing a new insight into the CIRI treatment.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xiao Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Le Yin
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Dan Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Hong Jiao
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xiaodan Liu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Jiaolin Zheng
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
2
|
Tao L, Yang K, Wang K, Yang Y. NOX1-mediated oxidative stress induces chondrocyte ferroptosis by inhibiting the Nrf2/HO-1 pathway. Sci Rep 2024; 14:19877. [PMID: 39191890 DOI: 10.1038/s41598-024-70991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
Osteoarthritis (OA) is a common joint disease associated with the aging of the population, and it reduces the quality of life of patients. It is characterized by the destruction of articular cartilage and the secretion of inflammatory cytokines. Owing to the unclear pathogenesis of OA, current treatment methods have significant limitations. Oxidative stress has been revealed to play an important role in the development of OA. Our experiments indicated that the levels of GSH decreased and the level of MDA increased in chondrocytes, which induced ferroptosis in chondrocytes in OA. We also revealed that ferroptosis was the main mechanism of cartilage destruction caused by the addition of the ferroptosis activator erastin and the ferroptosis inhibitor ferrostatin-1. NOX1 is the main modulator of oxidative stress by increasing the generation of reactive oxidative species (ROS). We suppressed the expression of NOX1 in chondrocytes through cell transfection. The expression of collagen II and MMP13, and the secretion of IL-1β and TNF-α were reversed. An increase in the mitochondrial membrane potential and a decrease in the level of intracellular ROS indicate an improvement in oxidative damage. Additionally, we determined the effect of the Nrf2/HO-1 pathway on NOX1-mediated chondrocyte injury. We found that NOX1 inhibited the expression of Nrf2/HO-1, but the activation of Nrf2 improved the oxidative damage to chondrocytes in vivo and vitro. This study revealed that NOX1-mediated oxidative stress induces chondrocyte ferroptosis by inhibiting the Nrf2/HO-1 pathway. Our findings contribute to revealing the pathogenesis of OA, providing targets for drug design and optimizing the clinical treatment of OA.
Collapse
Affiliation(s)
- Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Ke Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yan Yang
- Department of Sports Medicine and Joint Surgury/Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| |
Collapse
|
3
|
Zang C, Liu H, Ning J, Chen Q, Jiang Y, Shang M, Yang Y, Ma J, Dong Y, Wang J, Li F, Bao X, Zhang D. Emerging role and mechanism of HACE1 in the pathogenesis of neurodegenerative diseases: A promising target. Biomed Pharmacother 2024; 172:116204. [PMID: 38364733 DOI: 10.1016/j.biopha.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
HACE1 is a member of the HECT domain-containing E3 ligases with 909 amino acid residues, containing N-terminal ankyrin-repeats (ANK) and C-terminal HECT domain. Previously, it was shown that HACE1 is inactive in human tumors and plays a crucial role in the initiation, progression, and invasion of malignant tumors. Recent studies indicated that HACE1 might be closely involved in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. HACE1 interacts with its substrates, including Ras-related C3 botulinum toxin substrate 1 (Rac1), nuclear factor erythroid 2-related factor 2 (Nrf2), tumor necrosis factor receptor (TNFR), and optineurin (OPTN), through which participates in several pathophysiological processes, such as oxidative stress, autophagy and inflammation. Therefore, in this review, we elaborately describe the essential substrates of HACE1 and illuminate the pathophysiological processes by which HACE1 is involved in neurodegenerative diseases. We provide a new molecular target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Caixia Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Hui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Qiuzhu Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Yueqi Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Yang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Jingwei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Yirong Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Jinrong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Fangfang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
4
|
Oswald J, Constantine M, Adegbuyi A, Omorogbe E, Dellomo AJ, Ehrlich ES. E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation. Viruses 2023; 15:1935. [PMID: 37766341 PMCID: PMC10535929 DOI: 10.3390/v15091935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
For productive infection and replication to occur, viruses must control cellular machinery and counteract restriction factors and antiviral proteins. Viruses can accomplish this, in part, via the regulation of cellular gene expression and post-transcriptional and post-translational control. Many viruses co-opt and counteract cellular processes via modulation of the host post-translational modification machinery and encoding or hijacking kinases, SUMO ligases, deubiquitinases, and ubiquitin ligases, in addition to other modifiers. In this review, we focus on three oncoviruses, Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human immunodeficiency virus (HIV) and their interactions with the ubiquitin-proteasome system via viral-encoded or cellular E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
5
|
Silver S, Schmelz M. The AIDS and Cancer Specimen Resource (ACSR): HIV malignancy specimens and data available at no cost. AIDS Res Ther 2023; 20:61. [PMID: 37641153 PMCID: PMC10464020 DOI: 10.1186/s12981-023-00558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
The goal of the AIDS and Cancer Specimen Resource (ACSR) is to play a major role in the advancement of HIV/AIDS cancer-related research/treatment by providing richly annotated biospecimens and data to researchers at no cost. The ACSR acquires, stores, and equitably distributes these samples and associated clinical data to investigators conducting HIV/AIDS-related research, at no costs. Currently, it is the only biorepository of human biospecimens from people with HIV and cancer available to eligible researchers globally who are studying HIV associated malignancies.This review describes the history and organizational structure of the ACSR, its types of specimens in its inventory, and the process of requesting specimens. In addition, the review provides an overview of research that was performed over the last 5 years with its support and gives a summary of important new findings acquired by this research into the development of cancers in people with HIV, including both Aids-related and non-Aids-related malignancies.
Collapse
Affiliation(s)
- Sylvia Silver
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Monika Schmelz
- Department of Pathology, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ, 85724, USA.
| |
Collapse
|
6
|
Wang J, He Y, Zhou D. The role of ubiquitination in microbial infection induced endothelial dysfunction: potential therapeutic targets for sepsis. Expert Opin Ther Targets 2023; 27:827-839. [PMID: 37688775 DOI: 10.1080/14728222.2023.2257888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
INTRODUCTION The ubiquitin system is an evolutionarily conserved and universal means of protein modification that regulates many essential cellular processes. Endothelial dysfunction plays a critical role in the pathophysiology of sepsis and organ failure. However, the mechanisms underlying the ubiquitination-mediated regulation on endothelial dysfunction are not fully understood. AREAS COVERED Here we review the advances in basic and clinical research for relevant papers in PubMed database. We attempt to provide an updated overview of diverse ubiquitination events in endothelial cells, discussing the fundamental role of ubiquitination mediated regulations involving in endothelial dysfunction to provide potential therapeutic targets for sepsis. EXPERT OPINION The central event underlying sepsis syndrome is the overwhelming host inflammatory response to the pathogen infection, leading to endothelial dysfunction. As the key components of the ubiquitin system, E3 ligases are at the center stage of the battle between host and microbial pathogens. Such a variety of ubiquitination regulates a multitude of cellular regulatory processes, including signal transduction, autophagy, inflammasome activation, redox reaction and immune response and so forth. In this review, we discuss the many mechanisms of ubiquitination-mediated regulation with a focus on those that modulate endothelial function to provide potential therapeutic targets for the management of sepsis.
Collapse
Affiliation(s)
- Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
7
|
Hace1 overexpression mitigates myocardial hypoxia/reoxygenation injury via the effects on Keap1/Nrf2 pathway. In Vitro Cell Dev Biol Anim 2022; 58:830-839. [PMID: 36251153 DOI: 10.1007/s11626-022-00725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (Hace1) is a crucial mediator of multiple pathological disorders. However, there are few studies regarding the role of Hace1 in myocardial ischemia/reperfusion injury. Here, we studied the functional role of Hace1 on myocardial ischemia/reperfusion injury using hypoxia/reoxygenation (H/R)-injured cardiac cells in vitro. Reduced levels of Hace1 were observed in H/R-exposed cardiac cells. Hace1-overexpressed cardiac cells were resistant to H/R injuries with reduced apoptosis, lowered oxidative stress, and a suppressed inflammatory response. Subsequent analysis revealed that Hace1 overexpression enhanced the activation of nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and increased the transcriptional activity of Nrf2 in H/R-exposed cardiac cells. The knockout of kelch-like ECH-associated protein 1 (Keap1) diminished the regulatory role of Hace1 on Nrf2 activation. Additionally, inhibiting Nrf2 reversed Hace1-elicited cardioprotective effects in H/R-injured cardiac cells. In short, these data demonstrated that Hace1 overexpression mitigated myocardial H/R injury by enhancing the Nrf2 pathway via Keap1. This work underlines a possible role of Hace1 in myocardial ischemia/reperfusion injury and suggests Hace1 as a candidate target for exploiting cardioprotective therapy.
Collapse
|
8
|
Zang CX, Wang L, Yang HY, Shang JM, Liu H, Zhang ZH, Ju C, Yuan FY, Li FY, Bao XQ, Zhang D. HACE1 negatively regulates neuroinflammation through ubiquitylating and degrading Rac1 in Parkinson's disease models. Acta Pharmacol Sin 2022; 43:285-294. [PMID: 34593974 PMCID: PMC8792019 DOI: 10.1038/s41401-021-00778-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 02/03/2023] Open
Abstract
Neuroinflammation plays an important role in neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease. HACE1 (HECT domain and Ankyrin repeat Containing E3 ubiquitin-protein ligase 1) is a tumor suppressor. Recent evidence suggests that HACE1 may be involved in oxidative stress responses. Due to the critical role of ROS in neuroinflammation, we speculated that HACE1 might participate in neuroinflammation and related neurodegenerative diseases, such as PD. In this study, we investigated the role of HACE1 in neuroinflammation of PD models. We showed that HACE1 knockdown exacerbated LPS-induced neuroinflammation in BV2 microglial cells in vitro through suppressing ubiquitination and degradation of activated Rac1, an NADPH oxidase subunit. Furthermore, we showed that HACE1 exerted vital neuronal protection through increasing Rac1 activity and stability in LPS-treated SH-SY5Y cells, as HACE1 knockdown leading to lower tolerance to LPS challenge. In MPTP-induced acute PD mouse model, HACE1 knockdown exacerbated motor deficits by activating Rac1. Finally, mutant α-synuclein (A53T)-overexpressing mice, a chronic PD mouse model, exhibited age-dependent reduction of HACE1 levels in the midbrain and striatum, implicating that HACE1 participated in PD pathological progression. This study for the first time demonstrates that HACE1 is a negative regulator of neuroinflammation and involved in the PD pathogenesis by regulating Rac1 activity. The data support HACE1 as a potential target for PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Cai-xia Zang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Lu Wang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Han-yu Yang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Jun-mei Shang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Hui Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Zi-hong Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Cheng Ju
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Fang-yu Yuan
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Fang-yuan Li
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Xiu-qi Bao
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Dan Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| |
Collapse
|
9
|
Singh S, Ng J, Sivaraman J. Exploring the "Other" subfamily of HECT E3-ligases for therapeutic intervention. Pharmacol Ther 2021; 224:107809. [PMID: 33607149 DOI: 10.1016/j.pharmthera.2021.107809] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
The HECT E3 ligase family regulates key cellular signaling pathways, with its 28 members divided into three subfamilies: NEDD4 subfamily (9 members), HERC subfamily (6 members) and "Other" subfamily (13 members). Here, we focus on the less-explored "Other" subfamily and discuss the recent findings pertaining to their biological roles. The N-terminal regions preceding the conserved HECT domains are significantly diverse in length and sequence composition, and are mostly unstructured, except for short regions that incorporate known substrate-binding domains. In some of the better-characterized "Other" members (e.g., HUWE1, AREL1 and UBE3C), structure analysis shows that the extended region (~ aa 50) adjacent to the HECT domain affects the stability and activity of the protein. The enzymatic activity is also influenced by interactions with different adaptor proteins and inter/intramolecular interactions. Primarily, the "Other" subfamily members assemble atypical ubiquitin linkages, with some cooperating with E3 ligases from the other subfamilies to form branched ubiquitin chains on substrates. Viruses and pathogenic bacteria target and hijack the activities of "Other" subfamily members to evade host immune responses and cause diseases. As such, these HECT E3 ligases have emerged as potential candidates for therapeutic drug development.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - Joel Ng
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - J Sivaraman
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.
| |
Collapse
|
10
|
Abstract
Ubiquitination is a modification after protein transcription that plays a vital role in maintaining the homeostasis of the cellular environment. The Homologous to E6AP C-terminus (HECT) family E3 ubiquitin ligases are a kind of E3 ubiquitin ligases with a C-terminal HECT domain that mediates the binding of ubiquitin to substrate proteins and a variable-length N-terminal extension. HECT-ubiquitinated ligases can be divided into three categories: NEDD4 superfamily, HERC superfamily, and other HECT superfamilies. HECT ubiquitin ligase plays an essential role in the development of many human diseases. In this review, we focus on the physiological and pathological processes involved in oxidative stress and the role of E3 ubiquitin ligase of the HECT family.
Collapse
|
11
|
Moyo T, Kitchin D, Moore PL. Targeting the N332-supersite of the HIV-1 envelope for vaccine design. Expert Opin Ther Targets 2020; 24:499-509. [PMID: 32340497 DOI: 10.1080/14728222.2020.1752183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Broadly neutralizing antibodies (bNAbs) that are able to target diverse global viruses are widely believed to be crucial for an HIV-1 vaccine. Several conserved targets recognized by these antibodies have been identified on the HIV-1 envelope glycoprotein. One such target that shows particular promise for vaccination is the N332-supersite.Areas covered: This review describes the potential of the N332-supersite epitope as an immunogen design platform. We discuss the structure of the epitope and the bNAbs that target it, emphasizing their diverse modes of binding. Furthermore, the successes and limitations of recent N332-supersite immunization studies are discussed.Expert opinion: During HIV-1 infection, some of the broadest and most potent bNAbs target the N332-supersite. Furthermore, some of these antibodies require less affinity maturation than the high levels typical of many bNAbs, making these potentially more achievable vaccine targets. In addition, bNAbs bind this epitope with multiple angles of approach and glycan dependencies, perhaps increasing the probability of eliciting such responses by vaccination. Animal studies have shown that N332-supersite bNAb precursors can be activated by novel immunogens. While follow-up studies must establish whether boosting strategies can drive the maturation of bNAbs from these precursors, the development of targeted N332-supersite immunogens expands our arsenal of potential HIV-1 vaccine candidates.
Collapse
Affiliation(s)
- Thandeka Moyo
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dale Kitchin
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
12
|
Mayer KA, Stöckl J, Zlabinger GJ, Gualdoni GA. Hijacking the Supplies: Metabolism as a Novel Facet of Virus-Host Interaction. Front Immunol 2019; 10:1533. [PMID: 31333664 PMCID: PMC6617997 DOI: 10.3389/fimmu.2019.01533] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022] Open
Abstract
Viral replication is a process that involves an extremely high turnover of cellular molecules. Since viruses depend on the host cell to obtain the macromolecules needed for their proper replication, they have evolved numerous strategies to shape cellular metabolism and the biosynthesis machinery of the host according to their specific needs. Technologies for the rigorous analysis of metabolic alterations in cells have recently become widely available and have greatly expanded our knowledge of these crucial host–pathogen interactions. We have learned that most viruses enhance specific anabolic pathways and are highly dependent on these alterations. Since uninfected cells are far more plastic in their metabolism, targeting of the virus-induced metabolic alterations is a promising strategy for specific antiviral therapy and has gained great interest recently. In this review, we summarize the current advances in our understanding of metabolic adaptations during viral infections, with a particular focus on the utilization of this information for therapeutic application.
Collapse
Affiliation(s)
- Katharina A Mayer
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes Stöckl
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerhard J Zlabinger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Guido A Gualdoni
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Wang L, Howell MEA, Sparks-Wallace A, Hawkins C, Nicksic CA, Kohne C, Hall KH, Moorman JP, Yao ZQ, Ning S. p62-mediated Selective autophagy endows virus-transformed cells with insusceptibility to DNA damage under oxidative stress. PLoS Pathog 2019; 15:e1007541. [PMID: 31017975 PMCID: PMC6502431 DOI: 10.1371/journal.ppat.1007541] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/06/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022] Open
Abstract
DNA damage response (DDR) and selective autophagy both can be activated by reactive oxygen/nitrogen species (ROS/RNS), and both are of paramount importance in cancer development. The selective autophagy receptor and ubiquitin (Ub) sensor p62 plays a key role in their crosstalk. ROS production has been well documented in latent infection of oncogenic viruses including Epstein-Barr Virus (EBV). However, p62-mediated selective autophagy and its interplay with DDR have not been investigated in these settings. In this study, we provide evidence that considerable levels of p62-mediated selective autophagy are spontaneously induced, and correlate with ROS-Keap1-NRF2 pathway activity, in virus-transformed cells. Inhibition of autophagy results in p62 accumulation in the nucleus, and promotes ROS-induced DNA damage and cell death, as well as downregulates the DNA repair proteins CHK1 and RAD51. In contrast, MG132-mediated proteasome inhibition, which induces rigorous autophagy, promotes p62 degradation but accumulation of the DNA repair proteins CHK1 and RAD51. However, pretreatment with an autophagy inhibitor offsets the effects of MG132 on CHK1 and RAD51 levels. These findings imply that p62 accumulation in the nucleus in response to autophagy inhibition promotes proteasome-mediated CHK1 and RAD51 protein instability. This claim is further supported by the findings that transient expression of a p62 mutant, which is constitutively localized in the nucleus, in B cell lines with low endogenous p62 levels recaptures the effects of autophagy inhibition on CHK1 and RAD51 protein stability. These results indicate that proteasomal degradation of RAD51 and CHK1 is dependent on p62 accumulation in the nucleus. However, small hairpin RNA (shRNA)-mediated p62 depletion in EBV-transformed lymphoblastic cell lines (LCLs) had no apparent effects on the protein levels of CHK1 and RAD51, likely due to the constitutive localization of p62 in the cytoplasm and incomplete knockdown is insufficient to manifest its nuclear effects on these proteins. Rather, shRNA-mediated p62 depletion in EBV-transformed LCLs results in significant increases of endogenous RNF168-γH2AX damage foci and chromatin ubiquitination, indicative of activation of RNF168-mediated DNA repair mechanisms. Our results have unveiled a pivotal role for p62-mediated selective autophagy that governs DDR in the setting of oncogenic virus latent infection, and provide a novel insight into virus-mediated oncogenesis.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Mary E. A. Howell
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Ayrianna Sparks-Wallace
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Caroline Hawkins
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Camri A. Nicksic
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Carissa Kohne
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Kenton H. Hall
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Jonathan P. Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- The HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, TN, United States of America
| | - Zhi Q. Yao
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- The HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, TN, United States of America
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| |
Collapse
|