1
|
Cui Y, Wang M, Cheng A, Zhang W, Yang Q, Tian B, Ou X, Huang J, Wu Y, Zhang S, Sun D, He Y, Zhao X, Wu Z, Zhu D, Jia R, Chen S, Liu M. The precise function of alphaherpesvirus tegument proteins and their interactions during the viral life cycle. Front Microbiol 2024; 15:1431672. [PMID: 39015737 PMCID: PMC11250606 DOI: 10.3389/fmicb.2024.1431672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
Alphaherpesvirus is a widespread pathogen that causes diverse diseases in humans and animals and can severely damage host health. Alphaherpesvirus particles comprise a DNA core, capsid, tegument and envelope; the tegument is located between the nuclear capsid and envelope. According to biochemical and proteomic analyses of alphaherpesvirus particles, the tegument contains at least 24 viral proteins and plays an important role in the alphaherpesvirus life cycle. This article reviews the important role of tegument proteins and their interactions during the viral life cycle to provide a reference and inspiration for understanding alphaherpesvirus infection pathogenesis and identifying new antiviral strategies.
Collapse
Affiliation(s)
- Yuxi Cui
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Wu L, Wang M, Cheng A, Tian B, Huang J, Wu Y, Yang Q, Ou X, Sun D, Zhang S, Zhao X, Gao Q, He Y, Zhu D, Chen S, Liu M, Jia R. Duck plague virus tegument protein vp22 plays a key role in the secondary envelopment and cell-to-cell spread. Vet Res 2023; 54:60. [PMID: 37461115 DOI: 10.1186/s13567-023-01191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Duck plague virus (DPV) is one of the major infectious and fatal diseases of geese, ducks, and other wild waterfowl. The DPV UL49 gene product VP22 is one of the most abundant tegument proteins. However, the role of the DPV VP22 is enigmatic to be clarified. In this study, we found deletion of the UL49 gene resulted in reduced viral growth curve and smaller plaque size in duck embryo fibroblast (DEF) cells, confirming that DPV VP22 is required for efficient viral growth in vitro. In addition, deletion of the UL49 gene inhibited the secondary envelopment of the virus, the release of viral particles, and the spread of viruses between cells. Our study signified the importance of VP22 for DPV secondary envelopment, release, cell-to-cell spread, and accumulation of viral RNA. These findings provide a basis for further study of the function of VP22 in DPV or other herpesviruses.
Collapse
Affiliation(s)
- Liping Wu
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
| | - Bin Tian
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Juan Huang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Ying Wu
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Qiao Yang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Xumin Ou
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Di Sun
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Shaqiu Zhang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Xinxin Zhao
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Qun Gao
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Mafeng Liu
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Renyong Jia
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| |
Collapse
|
3
|
Zhou T, Wang M, Cheng A, Yang Q, Tian B, Wu Y, Jia R, Chen S, Liu M, Zhao XX, Ou X, Mao S, Sun D, Zhang S, Zhu D, Huang J, Gao Q, Yu Y, Zhang L. Regulation of alphaherpesvirus protein via post-translational phosphorylation. Vet Res 2022; 53:93. [PMID: 36397147 PMCID: PMC9670612 DOI: 10.1186/s13567-022-01115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
An alphaherpesvirus carries dozens of viral proteins in the envelope, tegument and capsid structure, and each protein plays an indispensable role in virus adsorption, invasion, uncoating and release. After infecting the host, a virus eliminates unfavourable factors via multiple mechanisms to escape or suppress the attack of the host immune system. Post-translational modification of proteins, especially phosphorylation, regulates changes in protein conformation and biological activity through a series of complex mechanisms. Many viruses have evolved mechanisms to leverage host phosphorylation systems to regulate viral protein activity and establish a suitable cellular environment for efficient viral replication and virulence. In this paper, viral protein kinases and the regulation of viral protein function mediated via the phosphorylation of alphaherpesvirus proteins are described. In addition, this paper provides new ideas for further research into the role played by the post-translational modification of viral proteins in the virus life cycle, which will be helpful for understanding the mechanisms of viral infection of a host and may lead to new directions of antiviral treatment.
Collapse
Affiliation(s)
- Tong Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| |
Collapse
|
4
|
Bovine Herpesvirus-1 Glycoprotein M Mediates the Translocation to the Golgi Apparatus and Packaging of VP8. Viruses 2022; 14:v14091985. [PMID: 36146791 PMCID: PMC9501410 DOI: 10.3390/v14091985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/26/2022] Open
Abstract
VP8, the most abundant tegument protein of bovine herpesvirus-1 (BoHV-1), plays an important role in viral replication. According to our previous studies, VP8 localizes to the Golgi apparatus of BoHV-1-infected cells where it can be packaged into the virus; however, Golgi localization of VP8 does not occur outside of the context of infection. The goal of this study was to identify the viral factor(s) involved in the tropism of VP8 towards the Golgi. VP8 was found to interact with glycoprotein M (gM), and the VP8 and gM domains that are essential for this interaction were identified. VP8 and gM colocalized to the Golgi apparatus in BoHV-1-infected cells. In cells co-transfected with VP8- and gM-encoding plasmids, VP8 was also found to be localized to the Golgi, suggesting gM to be sufficient. The localization of VP8 to the Golgi was lost in cells infected with a gM deletion mutant, and the amount of VP8 incorporated into mature virus was significantly reduced. However, with the restoration of gM in a revertant virus, the localization to the Golgi and the amount of VP8 incorporated in the virions were restored. These results indicate that gM plays a critical role in VP8 subcellular localization to the Golgi and packaging into mature virions.
Collapse
|
5
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) inhibitor of cyclic GMP-AMP synthase (cGAS) (KicGAS) encoded by ORF52 is a conserved major tegument protein of KSHV and the first reported viral inhibitor of cGAS. In our previous study, we found that KicGAS is highly oligomerized in solution and that oligomerization is required for its cooperative DNA binding and for inhibiting DNA-induced phase separation and activation of cGAS. However, how KicGAS oligomerizes remained unclear. Here, we present the crystal structure of KicGAS at 2.5 Å resolution, which reveals an "L"-shaped molecule with each arm of the L essentially formed by a single α helix (α1 and α2). Antiparallel dimerization of α2 helices from two KicGAS molecules leads to a unique "Z"-shaped dimer. Surprisingly, α1 is also a dimerization domain. It forms a parallel dimeric leucine zipper with the α1 from a neighboring dimer, leading to the formation of an infinite chain of KicGAS dimers. Residues involved in leucine zipper dimer formation are among the most conserved residues across ORF52 homologs of gammaherpesviruses. The self-oligomerization increases the valence and cooperativity of interaction with DNA. The resultant multivalent interaction is critical for the formation of liquid condensates with DNA and consequent sequestration of DNA from being sensed by cGAS, explaining its role in restricting cGAS activation. The structure presented here not only provides a mechanistic understanding of the function of KicGAS but also informs a molecular target for rational design of antivirals against KSHV and related viruses.
Collapse
|
6
|
Ning Y, Huang Y, Wang M, Cheng A, Yang Q, Wu Y, Tian B, Ou X, Huang J, Mao S, Sun D, Zhao X, Zhang S, Gao Q, Chen S, Liu M, Zhu D, Jia R. Alphaherpesvirus glycoprotein E: A review of its interactions with other proteins of the virus and its application in vaccinology. Front Microbiol 2022; 13:970545. [PMID: 35992696 PMCID: PMC9386159 DOI: 10.3389/fmicb.2022.970545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The viral envelope glycoprotein E (gE) is required for cell-to-cell transmission, anterograde and retrograde neurotransmission, and immune evasion of alphaherpesviruses. gE can also interact with other proteins of the virus and perform various functions in the virus life cycle. In addition, the gE gene is often the target gene for the construction of gene-deleted attenuated marker vaccines. In recent years, new progress has been made in the research and vaccine application of gE with other proteins of the virus. This article reviews the structure of gE, the relationship between gE and other proteins of the virus, and the application of gE in vaccinology, which provides useful information for further research on gE.
Collapse
Affiliation(s)
- Yaru Ning
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Yalin Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- *Correspondence: Anchun Cheng,
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Hernandez-Gonzalez M, Larocque G, Way M. Viral use and subversion of membrane organization and trafficking. J Cell Sci 2021; 134:jcs252676. [PMID: 33664154 PMCID: PMC7610647 DOI: 10.1242/jcs.252676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Membrane trafficking is an essential cellular process conserved across all eukaryotes, which regulates the uptake or release of macromolecules from cells, the composition of cellular membranes and organelle biogenesis. It influences numerous aspects of cellular organisation, dynamics and homeostasis, including nutrition, signalling and cell architecture. Not surprisingly, malfunction of membrane trafficking is linked to many serious genetic, metabolic and neurological disorders. It is also often hijacked during viral infection, enabling viruses to accomplish many of the main stages of their replication cycle, including entry into and egress from cells. The appropriation of membrane trafficking by viruses has been studied since the birth of cell biology and has helped elucidate how this integral cellular process functions. In this Review, we discuss some of the different strategies viruses use to manipulate and take over the membrane compartments of their hosts to promote their replication, assembly and egress.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gabrielle Larocque
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
8
|
DuRaine G, Johnson DC. Anterograde transport of α-herpesviruses in neuronal axons. Virology 2021; 559:65-73. [PMID: 33836340 DOI: 10.1016/j.virol.2021.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 02/04/2023]
Abstract
α-herpesviruses have been very successful, principally because they establish lifelong latency in sensory ganglia. An essential piece of the lifecycle of α-herpesviruses involves the capacity to travel from sensory neurons to epithelial tissues following virus reactivation from latency, a process known as anterograde transport. Virus particles formed in neuron cell bodies hitchhike on kinesin motors that run along microtubules, the length of axons. Herpes simplex virus (HSV) and pseudorabies virus (PRV) have been intensely studied to elucidate anterograde axonal transport. Both viruses use similar strategies for anterograde transport, although there are significant differences in the form of virus particles transported in axons, the identity of the kinesins that transport viruses, and how certain viral membrane proteins, gE/gI and US9, participate in this process. This review compares the older models for HSV and PRV anterograde transport with recent results, which are casting a new light on several aspects of this process.
Collapse
Affiliation(s)
- Grayson DuRaine
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - David C Johnson
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
9
|
Li C, Wang M, Cheng A, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Ou X, Mao S, Gao Q, Sun D, Wen X, Tian B. The Roles of Envelope Glycoprotein M in the Life Cycle of Some Alphaherpesviruses. Front Microbiol 2021; 12:631523. [PMID: 33679658 PMCID: PMC7933518 DOI: 10.3389/fmicb.2021.631523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The envelope glycoprotein M (gM), a surface virion component conserved among alphaherpesviruses, is a multiple-transmembrane domain-containing glycoprotein with a complex N-linked oligosaccharide. The gM mediates a diverse range of functions during the viral life cycle. In this review, we summarize the biological features of gM, including its characterization and function in some specicial alphaherpesviruses. gM modulates the virus-induced membrane fusion during virus invasion, transports other proteins to the appropriate intracellular membranes for primary and secondary envelopment during virion assembly, and promotes egress of the virus. The gM can interact with various viral and cellular components, and the focus of recent research has also been on interactions related to gM. And we will discuss how gM participates in the life cycle of alphaherpesviruses.
Collapse
Affiliation(s)
- Chunmei Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
11
|
Characterization of the Herpes Simplex Virus (HSV) Tegument Proteins That Bind to gE/gI and US9, Which Promote Assembly of HSV and Transport into Neuronal Axons. J Virol 2020; 94:JVI.01113-20. [PMID: 32938770 DOI: 10.1128/jvi.01113-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/11/2020] [Indexed: 01/14/2023] Open
Abstract
The herpes simplex virus (HSV) heterodimer gE/gI and another membrane protein, US9, which has neuron-specific effects, promote the anterograde transport of virus particles in neuronal axons. Deletion of both HSV gE and US9 blocks the assembly of enveloped particles in the neuronal cytoplasm, which explains why HSV virions do not enter axons. Cytoplasmic envelopment depends upon interactions between viral membrane proteins and tegument proteins that encrust capsids. We report that tegument protein UL16 is unstable, i.e., rapidly degraded, in neurons infected with a gE-/US9- double mutant. Immunoprecipitation experiments with lysates of HSV-infected neurons showed that UL16 and three other tegument proteins, namely, VP22, UL11, and UL21, bound either to gE or gI. All four of these tegument proteins were also pulled down with US9. In neurons transfected with tegument proteins and gE/gI or US9, there was good evidence that VP22 and UL16 bound directly to US9 and gE/gI. However, there were lower quantities of these tegument proteins that coprecipitated with gE/gI and US9 from transfected cells than those of infected cells. This apparently relates to a matrix of several different tegument proteins formed in infected cells that bind to gE/gI and US9. In cells transfected with individual tegument proteins, this matrix is less prevalent. Similarly, coprecipitation of gE/gI and US9 was observed in HSV-infected cells but not in transfected cells, which argued against direct US9-gE/gI interactions. These studies suggest that gE/gI and US9 binding to these tegument proteins has neuron-specific effects on virus HSV assembly, a process required for axonal transport of enveloped particles.IMPORTANCE Herpes simplex viruses 1 and 2 and varicella-zoster virus cause significant morbidity and mortality. One basic property of these viruses is the capacity to establish latency in the sensory neurons and to reactivate from latency and then cause disease in peripheral tissues, such as skin and mucosal epithelia. The transport of nascent HSV particles from neuron cell bodies into axons and along axons to axon tips in the periphery is an important component of this reactivation and reinfection. Two HSV membrane proteins, gE/gI and US9, play an essential role in these processes. Our studies help elucidate how HSV gE/gI and US9 promote the assembly of virus particles and sorting of these virions into neuronal axons.
Collapse
|
12
|
Wu L, Cheng A, Wang M, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Ou X, Mao S, Gao Q, Sun D, Wen X, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Alphaherpesvirus Major Tegument Protein VP22: Its Precise Function in the Viral Life Cycle. Front Microbiol 2020; 11:1908. [PMID: 32849477 PMCID: PMC7427429 DOI: 10.3389/fmicb.2020.01908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Alphaherpesviruses are zoonotic pathogens that can cause a variety of diseases in humans and animals and severely damage health. Alphaherpesvirus infection is a slow and orderly process that can lie dormant for the lifetime of the host but may be reactivated when the immune system is compromised. All alphaherpesviruses feature a protein layer called the tegument that lies between the capsid and the envelope. Virus protein (VP) 22 is one of the most highly expressed tegument proteins; there are more than 2,000 copies of this protein in each viral particle. VP22 can interact with viral proteins, cellular proteins, and chromatin, and these interactions play important roles. This review summarizes the latest literature and discusses the roles of VP22 in viral gene transcription, protein synthesis, virion assembly, and viral cell-to-cell spread with the purpose of enhancing understanding of the life cycle of herpesviruses and other pathogens in host cells. The molecular interaction information herein provides important reference data.
Collapse
Affiliation(s)
- Liping Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Abstract
Herpes simplex virus type 1 (HSV-1) is a prevalent and important human pathogen that has been studied in a wide variety of contexts. This book provides protocols currently in use in leading laboratories in many fields of HSV-1 research. This introductory chapter gives a brief overview of HSV-1 biology and life cycle, covering basic aspects of virus structure, the prevalence of and diseases caused by the virus, replication in cultured cells, viral latency, antiviral defenses, and the mechanisms that the virus uses to counteract these defenses.
Collapse
|
14
|
Beilstein F, Cohen GH, Eisenberg RJ, Nicolas V, Esclatine A, Pasdeloup D. Dynamic organization of Herpesvirus glycoproteins on the viral envelope revealed by super-resolution microscopy. PLoS Pathog 2019; 15:e1008209. [PMID: 31790506 PMCID: PMC6907858 DOI: 10.1371/journal.ppat.1008209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/12/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
The processes of cell attachment and membrane fusion of Herpes Simplex Virus 1 involve many different envelope glycoproteins. Viral proteins gC and gD bind to cellular receptors. Upon binding, gD activates the gH/gL complex which in turn activates gB to trigger membrane fusion. Thus, these proteins must be located at the point of contact between cellular and viral envelopes to interact and allow fusion. Using super-resolution microscopy, we show that gB, gH/gL and most of gC are distributed evenly round purified virions. In contrast, gD localizes essentially as clusters which are distinct from gB and gH/gL. Upon cell binding, we observe that all glycoproteins, including gD, have a similar ring-like pattern, but the diameter of these rings was significantly smaller than those observed on cell-free viruses. We also observe that contrary to cell-free particles, gD mostly colocalizes with other glycoproteins on cell-bound particles. The differing patterns of localization of gD between cell-free and cell-bound viruses indicates that gD can be reorganized on the viral envelope following either a possible maturation of the viral particle or its adsorption to the cell. This redistribution of glycoproteins upon cell attachment could contribute to initiate the cascade of activations leading to membrane fusion. The envelopes of Herpesvirus particles contain a variety of different proteins that allow them to infect specific cell types. An essential core set of these proteins is designed to allow viral entry into the cell after adsorption by binding to specific receptors and ultimately inducing fusion between the viral and cellular membranes in a regulated way through a succession of interactions between receptor-binding and fusion-triggering viral proteins. We have identified here for the first time the localization patterns of these essential proteins at the surface of purified virions and we describe how their localization changes after cell attachment. These results illustrate how the dynamics of viral proteins at the surface of the viral particle could participate in optimizing the all-important process of cell binding and membrane fusion.
Collapse
Affiliation(s)
- Frauke Beilstein
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette cedex, France
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Roselyn J. Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Valérie Nicolas
- IPSIT, Microscopy facility, University of Paris-Sud, Châtenay-Malabry, France
| | - Audrey Esclatine
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette cedex, France
| | - David Pasdeloup
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette cedex, France
- Laboratory of Biology of Avian Viruses, UMR1282 ISP, INRA Centre Val-de-Loire, Nouzilly, France
- * E-mail:
| |
Collapse
|
15
|
Xu JJ, Wu JQ, Cheng XF, Tong W, Zheng H, Zhu HJ, Liu YT, Jiang YF, Gao F, Yu H, Shan TL, Li GX, Tong GZ. Identification of two novel epitopes targeting glycoprotein E of pseudorabies virus using monoclonal antibodies. Biochem Biophys Res Commun 2019; 519:330-336. [PMID: 31514997 DOI: 10.1016/j.bbrc.2019.08.168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/31/2019] [Indexed: 11/26/2022]
Abstract
Pseudorabies virus (PRV), the agent of pseudorabies, has raised considerable attention since 2011 due to the outbreak of emerging PRV variants in China. In the present study, we obtained two monoclonal antibodies (mAbs) known as 2E5 and 5C3 against the glycoprotein E (gE) of a PRV variant (JS-2012 strain). The two mAbs reacted with wild PRV but not the vaccine strain (gE-deleted virus). The 2E5 was located in 161RLRRE165, which was conserved in almost of all PRV strains, while 5C3 in 148EMGIGDY154 was different from almost of all genotype I PRV, in which the 149th amino acid is methionine (M) instead of arginine (R). The two epitopes peptides located in the hydrophilic region and reacted with positive sera against genotype II PRV (JS-2012), which suggests they were likely dominant B-cell epitopes. Furthermore, the mutant peptide 148ERGIGDY154 (genotype I) did not react with the mAb 5C3 or positive sera against genotype II PRV (JS-2012). In conclusion, both mAb 2E5 and 5C3 could be used to identify wild PRV strains from vaccine strains, and mAb 5C3 and the epitope peptide of 5C3 might be used for epidemiological investigation to distinguish genotype II from genotype I PRV.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ji-Qiang Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xue-Fei Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Hao-Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yu-Ting Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yi-Feng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Tong-Ling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Guo-Xin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China.
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
16
|
Feutz E, McLeland-Wieser H, Ma J, Roller RJ. Functional interactions between herpes simplex virus pUL51, pUL7 and gE reveal cell-specific mechanisms for epithelial cell-to-cell spread. Virology 2019; 537:84-96. [PMID: 31493658 DOI: 10.1016/j.virol.2019.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Herpes simplex virus spread between epithelial cells is mediated by virus tegument and envelope protein complexes including gE/gI and pUL51/pUL7. pUL51 interacts with both pUL7 and gE/gI in infected cells. We show that amino acids 30-90 of pUL51 mediate interaction with pUL7. We also show that deletion of amino acids 167-244 of pUL51, or ablation of pUL7 expression both result in failure of gE to concentrate at junctional surfaces of Vero cells. We also tested the hypothesis that gE and pUL51 function on the same pathway for cell-to-cell spread by analyzing the phenotype of a double gE/UL51 mutant. In HaCaT cells, pUL51 and gE function on the same spread pathway, whereas in Vero cells they function on different pathways. Deletion of the gE gene strongly enhanced virus release to the medium in Vero cells, suggesting that the gE-dependent spread pathway may compete with virion release to the medium.
Collapse
Affiliation(s)
- Erika Feutz
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Hilary McLeland-Wieser
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Junlan Ma
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Richard J Roller
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
17
|
Identification of Marek's Disease Virus VP22 Tegument Protein Domains Essential for Virus Cell-to-Cell Spread, Nuclear Localization, Histone Association and Cell-Cycle Arrest. Viruses 2019; 11:v11060537. [PMID: 31181775 PMCID: PMC6631903 DOI: 10.3390/v11060537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022] Open
Abstract
VP22 is a major tegument protein of alphaherpesviruses encoded by the UL49 gene. Two properties of VP22 were discovered by studying Marek's disease virus (MDV), the Mardivirus prototype; it has a major role in virus cell-to-cell spread and in cell cycle modulation. This 249 AA-long protein contains three regions including a conserved central domain. To decipher the functional VP22 domains and their relationships, we generated three series of recombinant MDV genomes harboring a modified UL49 gene and assessed their effect on virus spread. Mutated VP22 were also tested for their ability to arrest the cell cycle, subcellular location and histones copurification after overexpression in cells. We demonstrated that the N-terminus of VP22 associated with its central domain is essential for virus spread and cell cycle modulation. Strikingly, we demonstrated that AAs 174-190 of MDV VP22 containing the end of a putative extended alpha-3 helix are essential for both functions and that AAs 159-162 located in the putative beta-strand of the central domain are mandatory for cell cycle modulation. Despite being non-essential, the 59 C-terminal AAs play a role in virus spread efficiency. Interestingly, a positive correlation was observed between cell cycle modulation and VP22 histones association, but none with MDV spread.
Collapse
|
18
|
Funk C, Raschbichler V, Lieber D, Wetschky J, Arnold EK, Leimser J, Biggel M, Friedel CC, Ruzsics Z, Bailer SM. Comprehensive analysis of nuclear export of herpes simplex virus type 1 tegument proteins and their Epstein-Barr virus orthologs. Traffic 2019; 20:152-167. [PMID: 30548142 PMCID: PMC6590417 DOI: 10.1111/tra.12627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 01/21/2023]
Abstract
Morphogenesis of herpesviral virions is initiated in the nucleus but completed in the cytoplasm. Mature virions contain more than 25 tegument proteins many of which perform both nuclear and cytoplasmic functions suggesting they shuttle between these compartments. While nuclear import of herpesviral proteins was shown to be crucial for viral propagation, active nuclear export and its functional impact are still poorly understood. To systematically analyze nuclear export of tegument proteins present in virions of Herpes simplex virus type 1 (HSV1) and Epstein-Barr virus (EBV), the Nuclear EXport Trapped by RAPamycin (NEX-TRAP) was applied. Nine of the 22 investigated HSV1 tegument proteins including pUL4, pUL7, pUL11, pUL13, pUL21, pUL37d11, pUL47, pUL48 and pUS2 as well as 2 out of 6 EBV orthologs harbor nuclear export activity. A functional leucine-rich nuclear export sequence (NES) recognized by the export factor CRM1/Xpo1 was identified in six of them. The comparison between experimental and bioinformatic data indicates that experimental validation of predicted NESs is required. Mutational analysis of the pUL48/VP16 NES revealed its importance for herpesviral propagation. Together our data suggest that nuclear export is an important feature of the herpesviral life cycle required to co-ordinate nuclear and cytoplasmic processes.
Collapse
Affiliation(s)
- Christina Funk
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Verena Raschbichler
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Diana Lieber
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Jens Wetschky
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Eileen K Arnold
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | - Jacqueline Leimser
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | - Michael Biggel
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center-University of Freiburg, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Susanne M Bailer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
19
|
Pheasant K, Möller-Levet CS, Jones J, Depledge D, Breuer J, Elliott G. Nuclear-cytoplasmic compartmentalization of the herpes simplex virus 1 infected cell transcriptome is co-ordinated by the viral endoribonuclease vhs and cofactors to facilitate the translation of late proteins. PLoS Pathog 2018; 14:e1007331. [PMID: 30475899 PMCID: PMC6283614 DOI: 10.1371/journal.ppat.1007331] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/06/2018] [Accepted: 11/02/2018] [Indexed: 11/19/2022] Open
Abstract
HSV1 encodes an endoribonuclease termed virion host shutoff (vhs) that is produced late in infection and packaged into virions. Paradoxically, vhs is active against not only host but also virus transcripts, and is involved in host shutoff and the temporal expression of the virus transcriptome. Two other virus proteins-VP22 and VP16 -are proposed to regulate vhs to prevent uncontrolled and lethal mRNA degradation but their mechanism of action is unknown. We have performed dual transcriptomic analysis and single-cell mRNA FISH of human fibroblasts, a cell type where in the absence of VP22, HSV1 infection results in extreme translational shutoff. In Wt infection, host mRNAs exhibited a wide range of susceptibility to vhs ranging from resistance to 1000-fold reduction, a variation that was independent of their relative abundance or transcription rate. However, vhs endoribonuclease activity was not found to be overactive against any of the cell transcriptome in Δ22-infected cells but rather was delayed, while its activity against the virus transcriptome and in particular late mRNA was minimally enhanced. Intriguingly, immediate-early and early transcripts exhibited vhs-dependent nuclear retention later in Wt infection but late transcripts were cytoplasmic. However, in the absence of VP22, not only early but also late transcripts were retained in the nucleus by a vhs-dependent mechanism, a characteristic that extended to cellular transcripts that were not efficiently degraded by vhs. Moreover, the ability of VP22 to bind VP16 enhanced but was not fundamental to the rescue of vhs-induced nuclear retention of late transcripts. Hence, translational shutoff in HSV1 infection is primarily a result of vhs-induced nuclear retention and not degradation of infected cell mRNA. We have therefore revealed a new mechanism whereby vhs and its co-factors including VP22 elicit a temporal and spatial regulation of the infected cell transcriptome, thus co-ordinating efficient late protein production.
Collapse
Affiliation(s)
- Kathleen Pheasant
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Carla Sofia Möller-Levet
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Juliet Jones
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Daniel Depledge
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Judith Breuer
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
20
|
Qualitative Differences in Capsidless L-Particles Released as a By-Product of Bovine Herpesvirus 1 and Herpes Simplex Virus 1 Infections. J Virol 2018; 92:JVI.01259-18. [PMID: 30185590 PMCID: PMC6206470 DOI: 10.1128/jvi.01259-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/23/2018] [Indexed: 01/25/2023] Open
Abstract
The alphaherpesvirus family includes viruses that infect humans and animals. Hence, not only do they have a significant impact on human health, but they also have a substantial economic impact on the farming industry. While the pathogenic manifestations of the individual viruses differ from host to host, their relative genetic compositions suggest similarity at the molecular level. This study provides a side-by-side comparison of the particle outputs from the major human pathogen HSV-1 and the veterinary pathogen BoHV-1. Ultrastructural and proteomic analyses have revealed that both viruses have broadly similar morphogenesis profiles and infectious virus compositions. However, the demonstration that BoHV-1 has the capacity to generate vast numbers of capsidless enveloped particles that differ from those produced by HSV-1 in composition implies a divergence in the cell biology of these viruses that impacts our general understanding of alphaherpesvirus morphogenesis. Despite differences in the pathogenesis and host range of alphaherpesviruses, many stages of their morphogenesis are thought to be conserved. Here, an ultrastructural study of bovine herpesvirus 1 (BoHV-1) envelopment revealed profiles similar to those previously found for herpes simplex virus 1 (HSV-1), with BoHV-1 capsids associating with endocytic tubules. Consistent with the similarity of their genomes and envelopment strategies, the proteomic compositions of BoHV-1 and HSV-1 virions were also comparable. However, BoHV-1 morphogenesis exhibited a diversity in envelopment events. First, heterogeneous primary envelopment profiles were readily detectable at the inner nuclear membrane of BoHV-1-infected cells. Second, the BoHV-1 progeny comprised not just full virions but also an abundance of capsidless, noninfectious light particles (L-particles) that were released from the infected cells in numbers similar to those of virions and in the absence of DNA replication. Proteomic analysis of BoHV-1 L-particles and the much less abundant HSV-1 L-particles revealed that they contained the same complement of envelope proteins as virions but showed variations in tegument content. In the case of HSV-1, the UL46 tegument protein was reproducibly found to be >6-fold enriched in HSV-1 L-particles. More strikingly, the tegument proteins UL36, UL37, UL21, and UL16 were depleted in BoHV-1 but not HSV-1 L-particles. We propose that these combined differences reflect the presence of truly segregated “inner” and “outer” teguments in BoHV-1, making it a critical system for studying the structure and process of tegumentation and envelopment. IMPORTANCE The alphaherpesvirus family includes viruses that infect humans and animals. Hence, not only do they have a significant impact on human health, but they also have a substantial economic impact on the farming industry. While the pathogenic manifestations of the individual viruses differ from host to host, their relative genetic compositions suggest similarity at the molecular level. This study provides a side-by-side comparison of the particle outputs from the major human pathogen HSV-1 and the veterinary pathogen BoHV-1. Ultrastructural and proteomic analyses have revealed that both viruses have broadly similar morphogenesis profiles and infectious virus compositions. However, the demonstration that BoHV-1 has the capacity to generate vast numbers of capsidless enveloped particles that differ from those produced by HSV-1 in composition implies a divergence in the cell biology of these viruses that impacts our general understanding of alphaherpesvirus morphogenesis.
Collapse
|
21
|
Multiple Posttranscriptional Strategies To Regulate the Herpes Simplex Virus 1 vhs Endoribonuclease. J Virol 2018; 92:JVI.00818-18. [PMID: 29925667 PMCID: PMC6096803 DOI: 10.1128/jvi.00818-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
The herpes simplex virus 1 (HSV-1) virion host shutoff (vhs) protein is an endoribonuclease that binds to the cellular translation initiation machinery and degrades associated mRNAs, resulting in the shutoff of host protein synthesis. Hence, its unrestrained activity is considered lethal, and it has been proposed that vhs is regulated by two other virus proteins, VP22 and VP16. We have found that during infection, translation of vhs requires VP22 but not the VP22-VP16 complex. Moreover, in the absence of VP22, vhs is not overactive against cellular or viral transcripts. In transfected cells, vhs was also poorly translated, correlating with the aberrant localization of its mRNA. Counterintuitively, vhs mRNA was predominantly nuclear in cells where vhs protein was detected. Likewise, transcripts from cotransfected plasmids were also retained in the same nuclei where vhs mRNA was located, while poly(A) binding protein (PABP) was relocalized to the nucleus in a vhs-dependent manner, implying a general block to mRNA export. Coexpression of VP16 and VP22 rescued the cytoplasmic localization of vhs mRNA but failed to rescue vhs translation. We identified a 230-nucleotide sequence in the 5' region of vhs that blocked its translation and, when transferred to a heterologous green fluorescent protein transcript, reduced translation without altering mRNA levels or localization. We propose that expression of vhs is tightly regulated by a combination of inherent untranslatability and autoinduced nuclear retention of its mRNA that results in a negative feedback loop, with nuclear retention but not translation of vhs mRNA being the target of rescue by the vhs-VP16-VP22 complex.IMPORTANCE A myriad of gene expression strategies has been discovered through studies carried out on viruses. This report concerns the regulation of the HSV-1 vhs endoribonuclease, a virus factor that is important for counteracting host antiviral responses by degrading their mRNAs but that must be regulated during infection to ensure that it does not act against and inhibit the virus itself. We show that regulation of vhs involves multifaceted posttranscriptional cellular and viral processes, including aberrant mRNA localization and a novel, autoregulated negative feedback loop to target its own and coexpressed mRNAs for nuclear retention, an activity that is relieved by coexpression of two other virus proteins, VP22 and VP16. These studies reveal the interplay of strategies by which multiple virus-encoded factors coordinate gene expression at the time that they are needed. These findings are broadly relevant to both virus and cellular gene expression.
Collapse
|
22
|
Varicella-Zoster Virus ORF9p Binding to Cellular Adaptor Protein Complex 1 Is Important for Viral Infectivity. J Virol 2018; 92:JVI.00295-18. [PMID: 29793951 DOI: 10.1128/jvi.00295-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022] Open
Abstract
ORF9p (homologous to herpes simplex virus 1 [HSV-1] VP22) is a varicella-zoster virus (VZV) tegument protein essential for viral replication. Even though its precise functions are far from being fully described, a role in the secondary envelopment of the virus has long been suggested. We performed a yeast two-hybrid screen to identify cellular proteins interacting with ORF9p that might be important for this function. We found 31 ORF9p interaction partners, among which was AP1M1, the μ subunit of the adaptor protein complex 1 (AP-1). AP-1 is a heterotetramer involved in intracellular vesicle-mediated transport and regulates the shuttling of cargo proteins between endosomes and the trans-Golgi network via clathrin-coated vesicles. We confirmed that AP-1 interacts with ORF9p in infected cells and mapped potential interaction motifs within ORF9p. We generated VZV mutants in which each of these motifs was individually impaired and identified leucine 231 in ORF9p to be critical for the interaction with AP-1. Disrupting ORF9p binding to AP-1 by mutating leucine 231 to alanine in ORF9p strongly impaired viral growth, most likely by preventing efficient secondary envelopment of the virus. Leucine 231 is part of a dileucine motif conserved among alphaherpesviruses, and we showed that VP22 of Marek's disease virus and HSV-2 also interacts with AP-1. This indicates that the function of this interaction in secondary envelopment might be conserved as well.IMPORTANCE Herpesviruses are responsible for infections that, especially in immunocompromised patients, can lead to severe complications, including neurological symptoms and strokes. The constant emergence of viral strains resistant to classical antivirals (mainly acyclovir and its derivatives) pleads for the identification of new targets for future antiviral treatments. Cellular adaptor protein (AP) complexes have been implicated in the correct addressing of herpesvirus glycoproteins in infected cells, and the discovery that a major constituent of the varicella-zoster virus tegument interacts with AP-1 reveals a previously unsuspected role of this tegument protein. Unraveling the complex mechanisms leading to virion production will certainly be an important step in the discovery of future therapeutic targets.
Collapse
|
23
|
Bovine Herpesvirus 1 U L49.5 Interacts with gM and VP22 To Ensure Virus Cell-to-Cell Spread and Virion Incorporation: Novel Role for VP22 in gM-Independent U L49.5 Virion Incorporation. J Virol 2018; 92:JVI.00240-18. [PMID: 29669828 PMCID: PMC6002714 DOI: 10.1128/jvi.00240-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
Alphaherpesvirus envelope glycoprotein N (gN) and gM form a covalently linked complex. Bovine herpesvirus type 1 (BHV-1) UL49.5 (a gN homolog) contains two predicted cysteine residues, C42 and C78. The C42 is highly conserved among the alphaherpesvirus gN homologs (e.g., herpes simplex virus 1 and pseudorabies virus). To identify which cysteine residue is required for the formation of the UL49.5/gM complex and to characterize the functional significance of the UL49.5/gM complex, we constructed and analyzed C42S and C78S substitution mutants in either a BHV-1 wild type (wt) or BHV-1 UL49.5 cytoplasmic tail-null (CT-null) virus background. The results demonstrated that BHV-1 UL49.5 residue C42 but not C78 was essential for the formation of the covalently linked functional UL49.5/gM complex, gM maturation in the Golgi compartment, and efficient cell-to-cell spread of the virus. Interestingly, the C42S and CT-null mutations separately did not affect mutant UL49.5 virion incorporation. However, when both of the mutations were introduced simultaneously, the UL49.5 C42S/CT-null protein virion incorporation was severely reduced. Incidentally, the anti-VP22 antibody coimmunoprecipitated the UL49.5 C42S/CT-null mutant protein at a noticeably reduced level compared to that of the individual UL49.5 C42S and CT-null mutant proteins. As expected, in a dual UL49.5 C42S/VP22Δ virus with deletion of VP22 (VP22Δ), the UL49.5 C42S virion incorporation was also severely reduced while in a gMΔ virus, UL49.5 virion incorporation was affected only slightly. Together, these results suggested that UL49.5 virion incorporation is mediated redundantly, by both UL49.5/gM functional complex and VP22, through a putative gM-independent novel UL49.5 and VP22 interaction.IMPORTANCE Bovine herpesvirus 1 (BHV-1) envelope protein UL49.5 is an important virulence determinant because it downregulates major histocompatibility complex class I (MHC-I). UL49.5 also forms a covalently linked complex with gM. The results of this study demonstrate that UL49.5 regulates gM maturation and virus cell-to-cell spread since gM maturation in the Golgi compartment depends on covalently linked UL49.5/gM complex. The results also show that the UL49.5 residue cysteine 42 (C42) mediates the formation of the covalently linked UL49.5-gM interaction. Furthermore, a C42S mutant virus in which UL49.5 cannot interact with gM has defective cell-to-cell spread. Interestingly, UL49.5 also interacts with the tegument protein VP22 via its cytoplasmic tail (CT). The putative UL49.5 CT-VP22 interaction is essential for a gM-independent UL49.5 virion incorporation and is revealed when UL49.5 and gM are not linked. Therefore, UL49.5 virion incorporation is mediated by UL49.5-gM complex interaction and through a gM-independent interaction between UL49.5 and VP22.
Collapse
|
24
|
Raza S, Alvisi G, Shahin F, Husain U, Rabbani M, Yaqub T, Anjum AA, Sheikh AA, Nawaz M, Ali MA. Role of Rab GTPases in HSV-1 infection: Molecular understanding of viral maturation and egress. Microb Pathog 2018; 118:146-153. [PMID: 29551438 DOI: 10.1016/j.micpath.2018.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Most enveloped viruses exploit complex cellular pathways for assembly and egress from the host cell, and the large DNA virus Herpes simplex virus 1 (HSV-1) makes no exception, hijacking several cellular transport pathways for its glycoprotein trafficking and maturation, as well as for viral morphogenesis and egress according to the envelopment, de-envelopment and re-envelopment model. Importantly Rab GTPases, widely distributed master regulators of intracellular membrane trafficking pathways, have recently being tightly implicated in such process. Indeed, siRNA-mediated genetic ablation of specific Rab proteins differently affected HSV-1 production, suggesting a complex role of different Rab proteins in HSV-1 life cycle. In this review, we discuss how different Rabs can regulate HSV-1 assembly/egress and the potential therapeutic applications of such findings for the management of HSV-1 infections.
Collapse
Affiliation(s)
- Sohail Raza
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan.
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, 35121, Italy
| | - Farzana Shahin
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Urooj Husain
- Postgraduate Medical Institute Lahore 54000, Pakistan
| | - Masood Rabbani
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Tahir Yaqub
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Aftab Ahmad Anjum
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Ali Ahmad Sheikh
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Muhammad Nawaz
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Muhammad Asad Ali
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| |
Collapse
|
25
|
Abstract
The assembly and egress of herpes simplex virus (HSV) is a complicated multistage process that involves several different cellular compartments and the activity of many viral and cellular proteins. The process begins in the nucleus, with capsid assembly followed by genome packaging into the preformed capsids. The DNA-filled capsids (nucleocapsids) then exit the nucleus by a process of envelopment at the inner nuclear membrane followed by fusion with the outer nuclear membrane. In the cytoplasm nucleocapsids associate with tegument proteins, which form a complicated protein network that links the nucleocapsid to the cytoplasmic domains of viral envelope proteins. Nucleocapsids and associated tegument then undergo secondary envelopment at intracellular membranes originating from late secretory pathway and endosomal compartments. This leads to assembled virions in the lumen of large cytoplasmic vesicles, which are then transported to the cell periphery to fuse with the plasma membrane and release virus particles from the cell. The details of this multifaceted process are described in this chapter.
Collapse
|
26
|
A Conserved Leucine Zipper Motif in Gammaherpesvirus ORF52 Is Critical for Distinct Microtubule Rearrangements. J Virol 2017; 91:JVI.00304-17. [PMID: 28615210 PMCID: PMC5553167 DOI: 10.1128/jvi.00304-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/12/2017] [Indexed: 11/20/2022] Open
Abstract
Productive viral infection often depends on the manipulation of the cytoskeleton. Herpesviruses, including rhesus monkey rhadinovirus (RRV) and its close homolog, the oncogenic human gammaherpesvirus Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV8), exploit microtubule (MT)-based retrograde transport to deliver their genomes to the nucleus. Subsequently, during the lytic phase of the life cycle, the maturing viral particles undergo orchestrated translocation to specialized regions within the cytoplasm, leading to tegumentation, secondary envelopment, and then egress. As a result, we hypothesized that RRV might induce changes in the cytoskeleton at both early and late stages of infection. Using confocal imaging, we found that RRV infection led to the thickening and acetylation of MTs emanating from the MT-organizing center (MTOC) shortly after viral entry and more pronounced and diffuse MT reorganization during peak stages of lytic gene expression and virion production. We subsequently identified open reading frame 52 (ORF52), a multifunctional and abundant tegument protein, as being the only virally encoded component responsible for these cytoskeletal changes. Mutational and modeling analyses indicated that an evolutionarily conserved, truncated leucine zipper motif near the N terminus as well as a strictly conserved arginine residue toward the C terminus of ORF52 play critical roles in its ability to rearrange the architecture of the MT cytoskeleton. Taken together, our findings combined with data from previous studies describing diverse roles for ORF52 suggest that it likely binds to different cellular components, thereby allowing context-dependent modulation of function. IMPORTANCE A thorough understanding of the processes governing viral infection includes knowledge of how viruses manipulate their intracellular milieu, including the cytoskeleton. Altering the dynamics of actin or MT polymerization, for example, is a common strategy employed by viruses to ensure efficient entry, maturation, and egress as well as the avoidance of antiviral defenses through the sequestration of key cellular factors. We found that infection with RRV, a homolog of the human pathogen KSHV, led to perinuclear wrapping by acetylated MT bundles and identified ORF52 as the viral protein underlying these changes. Remarkably, incoming virions were able to supply sufficient ORF52 to induce MT thickening and acetylation near the MTOC, potentially aiding in the delivery viral genomes to the nucleus. Although the function of MT alterations during late stages of infection requires further study, ORF52 shares functional and structural similarities with alphaherpesvirus VP22, underscoring the evolutionary importance of MT cytoskeletal manipulations for this virus family.
Collapse
|
27
|
Domain Interaction Studies of Herpes Simplex Virus 1 Tegument Protein UL16 Reveal Its Interaction with Mitochondria. J Virol 2017; 91:JVI.01995-16. [PMID: 27847362 DOI: 10.1128/jvi.01995-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022] Open
Abstract
The UL16 tegument protein of herpes simplex virus 1 (HSV-1) is conserved among all herpesviruses and plays many roles during replication. This protein has an N-terminal domain (NTD) that has been shown to bind to several viral proteins, including UL11, VP22, and glycoprotein E, and these interactions are negatively regulated by a C-terminal domain (CTD). Thus, in pairwise transfections, UL16 binding is enabled only when the CTD is absent or altered. Based on these results, we hypothesized that direct interactions occur between the NTD and the CTD. Here we report that the separated and coexpressed functional domains of UL16 are mutually responsive to each other in transfected cells and form complexes that are stable enough to be captured in coimmunoprecipitation assays. Moreover, we found that the CTD can associate with itself. To our surprise, the CTD was also found to contain a novel and intrinsic ability to localize to specific spots on mitochondria in transfected cells. Subsequent analyses of HSV-infected cells by immunogold electron microscopy and live-cell confocal imaging revealed a population of UL16 that does not merely accumulate on mitochondria but in fact makes dynamic contacts with these organelles in a time-dependent manner. These findings suggest that the domain interactions of UL16 serve to regulate not just the interaction of this tegument protein with its viral binding partners but also its interactions with mitochondria. The purpose of this novel interaction remains to be determined. IMPORTANCE The HSV-1-encoded tegument protein UL16 is involved in multiple events of the virus replication cycle, ranging from virus assembly to cell-cell spread of the virus, and hence it can serve as an important drug target. Unfortunately, a lack of both structural and functional information limits our understanding of this protein. The discovery of domain interactions within UL16 and the novel ability of UL16 to interact with mitochondria in HSV-infected cells lays a foundational framework for future investigations aimed at deciphering the structure and function of not just UL16 of HSV-1 but also its homologs in other herpesviruses.
Collapse
|
28
|
Dual Function of the pUL7-pUL51 Tegument Protein Complex in Herpes Simplex Virus 1 Infection. J Virol 2017; 91:JVI.02196-16. [PMID: 27852850 PMCID: PMC5215335 DOI: 10.1128/jvi.02196-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022] Open
Abstract
The tegument of herpesviruses is a highly complex structural layer between the nucleocapsid and the envelope of virions. Tegument proteins play both structural and regulatory functions during replication and spread, but the interactions and functions of many of these proteins are poorly understood. Here we focus on two tegument proteins from herpes simplex virus 1 (HSV-1), pUL7 and pUL51, which have homologues in all other herpesviruses. We have now identified that HSV-1 pUL7 and pUL51 form a stable and direct protein-protein interaction, their expression levels rely on the presence of each other, and they function as a complex in infected cells. We demonstrate that expression of the pUL7-pUL51 complex is important for efficient HSV-1 assembly and plaque formation. Furthermore, we also discovered that the pUL7-pUL51 complex localizes to focal adhesions at the plasma membrane in both infected cells and in the absence of other viral proteins. The expression of pUL7-pUL51 is important to stabilize focal adhesions and maintain cell morphology in infected cells and cells infected with viruses lacking pUL7 and/or pUL51 round up more rapidly than cells infected with wild-type HSV-1. Our data suggest that, in addition to the previously reported functions in virus assembly and spread for pUL51, the pUL7-pUL51 complex is important for maintaining the attachment of infected cells to their surroundings through modulating the activity of focal adhesion complexes. IMPORTANCEHerpesviridae is a large family of highly successful human and animal pathogens. Virions of these viruses are composed of many different proteins, most of which are contained within the tegument, a complex structural layer between the nucleocapsid and the envelope within virus particles. Tegument proteins have important roles in assembling virus particles as well as modifying host cells to promote virus replication and spread. However, little is known about the function of many tegument proteins during virus replication. Our study focuses on two tegument proteins from herpes simplex virus 1 that are conserved in all herpesviruses: pUL7 and pUL51. We demonstrate that these proteins directly interact and form a functional complex that is important for both virus assembly and modulation of host cell morphology. Further, we identify for the first time that these conserved herpesvirus tegument proteins localize to focal adhesions in addition to cytoplasmic juxtanuclear membranes within infected cells.
Collapse
|
29
|
Sawtell NM, Thompson RL. De Novo Herpes Simplex Virus VP16 Expression Gates a Dynamic Programmatic Transition and Sets the Latent/Lytic Balance during Acute Infection in Trigeminal Ganglia. PLoS Pathog 2016; 12:e1005877. [PMID: 27607440 PMCID: PMC5015900 DOI: 10.1371/journal.ppat.1005877] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/17/2016] [Indexed: 11/19/2022] Open
Abstract
The life long relationship between herpes simplex virus and its host hinges on the ability of the virus to aggressively replicate in epithelial cells at the site of infection and transport into the nervous system through axons innervating the infection site. Interaction between the virus and the sensory neuron represents a pivot point where largely unknown mechanisms lead to a latent or a lytic infection in the neuron. Regulation at this pivot point is critical for balancing two objectives, efficient widespread seeding of the nervous system and host survival. By combining genetic and in vivo in approaches, our studies reveal that the balance between latent and lytic programs is a process occurring early in the trigeminal ganglion. Unexpectedly, activation of the latent program precedes entry into the lytic program by 12 -14hrs. Importantly, at the individual neuronal level, the lytic program begins as a transition out of this acute stage latent program and this escape from the default latent program is regulated by de novo VP16 expression. Our findings support a model in which regulated de novo VP16 expression in the neuron mediates entry into the lytic cycle during the earliest stages of virus infection in vivo. These findings support the hypothesis that the loose association of VP16 with the viral tegument combined with sensory axon length and transport mechanisms serve to limit arrival of virion associated VP16 into neuronal nuclei favoring latency. Further, our findings point to specialized features of the VP16 promoter that control the de novo expression of VP16 in neurons and this regulation is a key component in setting the balance between lytic and latent infections in the nervous system. Herpes simplex virus remains a significant human pathogen associated with extensive acute and chronic disease in humans worldwide. The virus invades the peripheral and central nervous systems where it replicates but also establishes life-long latent infections in neurons. Two distinct viral transcriptional programs support these distinct lifestyles, but how entry into either the lytic or latent programs is regulated in the neuron is not understood. This process is fundamentally important to a virus with the capacity to be extremely virulent, in balancing two objectives, efficient widespread seeding of the nervous system and host survival. In this report, we provide new insight into this regulation and data that support a novel model in which virus transported into the neuron from the body surface enters the latent program by default. In a subset of these, there is a transition into the lytic cycle, which requires VP16 transactivation and is gated by a region in the VP16 promoter. Thus, HSV takes advantage of the anatomy and axonal transport systems in sensory neurons so that VP16 is left behind and latency is favored, while features of the VP16 promoter insure adequate virus spread in the nervous system and maximized latent infections.
Collapse
Affiliation(s)
- Nancy M. Sawtell
- Department of Pediatrics, Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (NMS); (RLT)
| | - Richard L. Thompson
- Department of Molecular Genetics, Microbiology, and Biochemistry, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (NMS); (RLT)
| |
Collapse
|
30
|
Li W, Avey D, Fu B, Wu JJ, Ma S, Liu X, Zhu F. Kaposi's Sarcoma-Associated Herpesvirus Inhibitor of cGAS (KicGAS), Encoded by ORF52, Is an Abundant Tegument Protein and Is Required for Production of Infectious Progeny Viruses. J Virol 2016; 90:5329-5342. [PMID: 27009954 PMCID: PMC4934757 DOI: 10.1128/jvi.02675-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/08/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Although Kaposi's sarcoma-associated herpesvirus (KSHV) ORF52 (also known as KSHV inhibitor of cGAS [KicGAS]) has been detected in purified virions, the roles of this protein during KSHV replication have not been characterized. Using specific monoclonal antibodies, we revealed that ORF52 displays true late gene expression kinetics and confirmed its cytoplasmic localization in both transfected and KSHV-infected cells. We demonstrated that ORF52 comigrates with other known virion proteins following sucrose gradient centrifugation. We also determined that ORF52 resides inside the viral envelope and remains partially associated with capsid when extracellular virions are treated with various detergents and/or salts. There results indicate that ORF52 is a tegument protein abundantly present in extracellular virions. To characterize the roles of ORF52 in the KSHV life cycle, we engineered a recombinant KSHV ORF52-null mutant virus and found that loss of ORF52 results in reduced virion production and a further defect in infectivity. Upon analysis of the virion composition of ORF52-null viral particles, we observed a decrease in the incorporation of ORF45, as well as other tegument proteins, suggesting that ORF52 is important for the packaging of other virion proteins. In summary, our results indicate that, in addition to its immune evasion function, KSHV ORF52 is required for the optimal production of infectious virions, likely due to its roles in virion assembly as a tegument protein. IMPORTANCE The tegument proteins of herpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), play key roles in the viral life cycle. Each of the three subfamilies of herpesviruses (alpha, beta, and gamma) encode unique tegument proteins with specialized functions. We recently found that one such gammaherpesvirus-specific protein, ORF52, has an important role in immune evasion during KSHV primary infection, through inhibition of the host cytosolic DNA sensing pathway. In this report, we further characterize ORF52 as a tegument protein with vital roles during KSHV lytic replication. We found that ORF52 is important for the production of infectious viral particles, likely through its role in virus assembly, a critical process for KSHV replication and pathogenesis. More comprehensive investigation of the functions of tegument proteins and their roles in viral replication may reveal novel targets for therapeutic interventions against KSHV-associated diseases.
Collapse
Affiliation(s)
- Wenwei Li
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Denis Avey
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Bishi Fu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Jian-Jun Wu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Siming Ma
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Xia Liu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
31
|
Conserved Tryptophan Motifs in the Large Tegument Protein pUL36 Are Required for Efficient Secondary Envelopment of Herpes Simplex Virus Capsids. J Virol 2016; 90:5368-5383. [PMID: 27009950 DOI: 10.1128/jvi.03167-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/15/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Herpes simplex virus (HSV) replicates in the skin and mucous membranes, and initiates lytic or latent infections in sensory neurons. Assembly of progeny virions depends on the essential large tegument protein pUL36 of 3,164 amino acid residues that links the capsids to the tegument proteins pUL37 and VP16. Of the 32 tryptophans of HSV-1-pUL36, the tryptophan-acidic motifs (1766)WD(1767) and (1862)WE(1863) are conserved in all HSV-1 and HSV-2 isolates. Here, we characterized the role of these motifs in the HSV life cycle since the rare tryptophans often have unique roles in protein function due to their large hydrophobic surface. The infectivity of the mutants HSV-1(17(+))Lox-pUL36-WD/AA-WE/AA and HSV-1(17(+))Lox-CheVP26-pUL36-WD/AA-WE/AA, in which the capsid has been tagged with the fluorescent protein Cherry, was significantly reduced. Quantitative electron microscopy shows that there were a larger number of cytosolic capsids and fewer enveloped virions compared to their respective parental strains, indicating a severe impairment in secondary capsid envelopment. The capsids of the mutant viruses accumulated in the perinuclear region around the microtubule-organizing center and were not dispersed to the cell periphery but still acquired the inner tegument proteins pUL36 and pUL37. Furthermore, cytoplasmic capsids colocalized with tegument protein VP16 and, to some extent, with tegument protein VP22 but not with the envelope glycoprotein gD. These results indicate that the unique conserved tryptophan-acidic motifs in the central region of pUL36 are required for efficient targeting of progeny capsids to the membranes of secondary capsid envelopment and for efficient virion assembly. IMPORTANCE Herpesvirus infections give rise to severe animal and human diseases, especially in young, immunocompromised, and elderly individuals. The structural hallmark of herpesvirus virions is the tegument, which contains evolutionarily conserved proteins that are essential for several stages of the herpesvirus life cycle. Here we characterized two conserved tryptophan-acidic motifs in the central region of the large tegument protein pUL36 of herpes simplex virus. When we mutated these motifs, secondary envelopment of cytosolic capsids and the production of infectious particles were severely impaired. Our data suggest that pUL36 and its homologs in other herpesviruses, and in particular such tryptophan-acidic motifs, could provide attractive targets for the development of novel drugs to prevent herpesvirus assembly and spread.
Collapse
|
32
|
Roa-Linares VC, Brand YM, Agudelo-Gomez LS, Tangarife-Castaño V, Betancur-Galvis LA, Gallego-Gomez JC, González MA. Anti-herpetic and anti-dengue activity of abietane ferruginol analogues synthesized from (+)-dehydroabietylamine. Eur J Med Chem 2015; 108:79-88. [PMID: 26638041 PMCID: PMC7115619 DOI: 10.1016/j.ejmech.2015.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/23/2015] [Accepted: 11/05/2015] [Indexed: 01/12/2023]
Abstract
The abietane-type diterpenoid (+)-ferruginol (1), a bioactive compound isolated from several plants, has attracted much attention as consequence of its pharmacological properties, which includes antibacterial, antifungal, antimicrobial, cardioprotective, anti-oxidative, anti-plasmodial, leishmanicidal, anti-ulcerogenic, anti-inflammatory and antitumor actions. In this study, we report on the antiviral evaluation of ferruginol (1) and several analogues synthesized from commercial (+)-dehydroabietylamine. Thus, the activity against Human Herpesvirus type 1, Human Herpesvirus type 2 and Dengue Virus type 2, was studied. Two ferruginol analogues showed high antiviral selectivity index and reduced viral plaque-size in post-infection stages against both Herpes and Dengue viruses. A promising lead, compound 8, was ten-fold more potent (EC50 = 1.4 μM) than the control ribavirin against Dengue Virus type 2. Our findings suggest that the 12-hydroxyabieta-8,11,13-triene skeleton, which is characteristic of the diterpenoid ferruginol (1), is an interesting molecular scaffold for development of novel antivirals. In addition, the cytotoxic and antifungal activities of the synthesized ferruginol analogues have also been investigated. (©)20155 Elsevier Science. All rights reserved.
Collapse
Affiliation(s)
- Vicky C Roa-Linares
- Group of Investigative Dermatology, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, A.A1226, Antioquia, Colombia; Translational and Molecular Medicine Group, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, Colombia
| | - Yaneth M Brand
- Group of Investigative Dermatology, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, A.A1226, Antioquia, Colombia; Translational and Molecular Medicine Group, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, Colombia
| | - Lee S Agudelo-Gomez
- Group of Investigative Dermatology, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, A.A1226, Antioquia, Colombia
| | - Verónica Tangarife-Castaño
- Group of Investigative Dermatology, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, A.A1226, Antioquia, Colombia
| | - Liliana A Betancur-Galvis
- Group of Investigative Dermatology, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, A.A1226, Antioquia, Colombia; Translational and Molecular Medicine Group, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, Colombia
| | - Juan C Gallego-Gomez
- Translational and Molecular Medicine Group, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, Colombia
| | - Miguel A González
- Departamento de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain.
| |
Collapse
|
33
|
Striebinger H, Zhang J, Ott M, Funk C, Radtke K, Duron J, Ruzsics Z, Haas J, Lippé R, Bailer SM. Subcellular trafficking and functional importance of herpes simplex virus type 1 glycoprotein M domains. J Gen Virol 2015; 96:3313-3325. [DOI: 10.1099/jgv.0.000262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Hannah Striebinger
- Max Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9a, Munich, Germany
| | - Jie Zhang
- Université de Montréal, Département de Pathologie et biologie cellulaire, CP 6128, Succ. Montréal, Québec Centre-ville, Canada
| | - Melanie Ott
- Max Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9a, Munich, Germany
| | - Christina Funk
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Kerstin Radtke
- Université de Montréal, Département de Pathologie et biologie cellulaire, CP 6128, Succ. Montréal, Québec Centre-ville, Canada
| | - Johanne Duron
- Université de Montréal, Département de Pathologie et biologie cellulaire, CP 6128, Succ. Montréal, Québec Centre-ville, Canada
| | - Zsolt Ruzsics
- Max Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9a, Munich, Germany
- University Medical Centre Freiburg, Department for Medical Microbiology and Hygiene, Institute of Virology, Hermann-Herder-Straße 11, Freiburg, Germany
| | - Jürgen Haas
- Max Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9a, Munich, Germany
- Division of Pathway Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Roger Lippé
- Université de Montréal, Département de Pathologie et biologie cellulaire, CP 6128, Succ. Montréal, Québec Centre-ville, Canada
| | - Susanne M. Bailer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
- Max Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9a, Munich, Germany
| |
Collapse
|
34
|
Owen DJ, Crump CM, Graham SC. Tegument Assembly and Secondary Envelopment of Alphaherpesviruses. Viruses 2015; 7:5084-114. [PMID: 26393641 PMCID: PMC4584305 DOI: 10.3390/v7092861] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/22/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Alphaherpesviruses like herpes simplex virus are large DNA viruses characterized by their ability to establish lifelong latent infection in neurons. As for all herpesviruses, alphaherpesvirus virions contain a protein-rich layer called "tegument" that links the DNA-containing capsid to the glycoprotein-studded membrane envelope. Tegument proteins mediate a diverse range of functions during the virus lifecycle, including modulation of the host-cell environment immediately after entry, transport of virus capsids to the nucleus during infection, and wrapping of cytoplasmic capsids with membranes (secondary envelopment) during virion assembly. Eleven tegument proteins that are conserved across alphaherpesviruses have been implicated in the formation of the tegument layer or in secondary envelopment. Tegument is assembled via a dense network of interactions between tegument proteins, with the redundancy of these interactions making it challenging to determine the precise function of any specific tegument protein. However, recent studies have made great headway in defining the interactions between tegument proteins, conserved across alphaherpesviruses, which facilitate tegument assembly and secondary envelopment. We summarize these recent advances and review what remains to be learned about the molecular interactions required to assemble mature alphaherpesvirus virions following the release of capsids from infected cell nuclei.
Collapse
Affiliation(s)
- Danielle J Owen
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
35
|
Diefenbach RJ. Conserved tegument protein complexes: Essential components in the assembly of herpesviruses. Virus Res 2015; 210:308-17. [PMID: 26365681 DOI: 10.1016/j.virusres.2015.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
Abstract
One of the structural components of herpesviruses is a protein layer called the tegument. Several of the tegument proteins are highly conserved across the herpesvirus family and serve as a logical focus for defining critical interactions required for viral assembly. A number of studies have helped to elucidate a role for conserved tegument proteins in the process of secondary envelopment during the course of herpesviral assembly. This review highlights how these tegument proteins directly contribute to bridging the nucleocapsid and envelope of virions during secondary envelopment.
Collapse
Affiliation(s)
- Russell J Diefenbach
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
36
|
Suk H, Knipe DM. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells. Proteomics 2015; 15:1957-67. [PMID: 25809282 DOI: 10.1002/pmic.201500020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/13/2015] [Accepted: 03/18/2015] [Indexed: 01/06/2023]
Abstract
The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression.
Collapse
Affiliation(s)
- Hyung Suk
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - David M Knipe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
HSV-1 gM and the gK/pUL20 complex are important for the localization of gD and gH/L to viral assembly sites. Viruses 2015; 7:915-38. [PMID: 25746217 PMCID: PMC4379555 DOI: 10.3390/v7030915] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/06/2015] [Accepted: 02/22/2015] [Indexed: 11/30/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1), like all herpesviruses, is a large complex DNA virus containing up to 16 different viral membrane proteins in its envelope. The assembly of HSV-1 particles occurs by budding/wrapping at intracellular membranes producing infectious virions contained within the lumen of cytoplasmic membrane-bound compartments that are then released by secretion. To ensure incorporation of all viral membrane proteins into the envelope, they need to be localized to the appropriate intracellular membranes either via the endocytic pathway or by direct targeting to assembly sites from the biosynthetic secretory pathway. Many HSV-1 envelope proteins encode targeting motifs that direct their endocytosis and targeting, while others do not, including the essential entry proteins gD and the gH/gL complex, and so it has been unclear how these envelope proteins reach the appropriate assembly compartments. We now show that efficient endocytosis of gD and gH/gL and their incorporation into mature virions relies upon the presence of the HSV-1 envelope proteins gM and the gK/pUL20 complex. Our data demonstrate both redundant and synergistic roles for gM and gK/pUL20 in controlling the targeting of gD and gH/L to the appropriate intracellular virus assembly compartments.
Collapse
|
38
|
Hew K, Dahlroth SL, Pan LX, Cornvik T, Nordlund P. VP22 core domain from Herpes simplex virus 1 reveals a surprising structural conservation in both the Alpha- and Gammaherpesvirinae subfamilies. J Gen Virol 2015; 96:1436-1445. [PMID: 26068188 PMCID: PMC4635490 DOI: 10.1099/vir.0.000078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 02/01/2015] [Indexed: 12/11/2022] Open
Abstract
The viral tegument is a layer of proteins between the herpesvirus capsid and its outer envelope. According to phylogenetic studies, only a third of these proteins are conserved amongst the three subfamilies (Alpha-, Beta- and Gammaherpesvirinae) of the family Herpesviridae. Although some of these tegument proteins have been studied in more detail, the structure and function of the majority of them are still poorly characterized. VP22 from Herpes simplex virus 1 (subfamily Alphaherpesvirinae) is a highly interacting tegument protein that has been associated with tegument assembly. We have determined the crystal structure of the conserved core domain of VP22, which reveals an elongated dimer with several potential protein-protein interaction regions and a peptide-binding site. The structure provides us with the structural basics to understand the numerous functional mutagenesis studies of VP22 found in the literature. It also establishes an unexpected structural homology to the tegument protein ORF52 from Murid herpesvirus 68 (subfamily Gammaherpesvirinae). Homologues for both VP22 and ORF52 have been identified in their respective subfamilies. Although there is no obvious sequence overlap in the two subfamilies, this structural conservation provides compelling structural evidence for shared ancestry and functional conservation.
Collapse
Affiliation(s)
- Kelly Hew
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673, Singapore
| | - Sue-Li Dahlroth
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673, Singapore
| | - Lucy Xin Pan
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673, Singapore
| | - Tobias Cornvik
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673, Singapore
| | - Pär Nordlund
- Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 11, Sweden.,Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673, Singapore
| |
Collapse
|
39
|
Groß A, Rödel K, Kneidl B, Donhauser N, Mössl M, Lump E, Münch J, Schmidt B, Eichler J. Enhancement and induction of HIV-1 infection through an assembled peptide derived from the CD4 binding site of gp120. Chembiochem 2015; 16:446-54. [PMID: 25639621 DOI: 10.1002/cbic.201402545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Indexed: 11/07/2022]
Abstract
Contact between the human immunodeficiency virus (HIV-1) and its target cell is initiated by the interaction of viral gp120 with cellular CD4. An assembled peptide (CD4bs-M) that presents the CD4 binding site of gp120 was previously shown to inhibit the gp120-CD4 interaction. Here, we demonstrate that CD4bs-M selectively enhances infection of cells with HIV-1, whereas infection with herpes simplex virus remains largely unaffected. The effects of CD4bs-M variants containing D-amino acids, or prolines at selected positions, point to the importance of side chain orientation and spatial orientation of this fragment. Furthermore, CD4bs-M was shown to assemble into amyloid-like fibrils that capture HIV-1 particles, which likely contributes to the infection-enhancing effect. Beyond infection enhancement, CD4bs-M enabled HIV-1 infection of CD4-negative cells, suggesting that binding of the peptide to gp120 facilitates interaction of gp120 with coreceptors, which might in turn enhance HIV-1 entry.
Collapse
Affiliation(s)
- Andrea Groß
- Department of Chemistry and Pharmacy, University of Erlangen-Nurnberg, Schuhstrasse 19, 91052 Erlangen (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Okada A, Kodaira A, Hanyu S, Izume S, Ohya K, Fukushi H. Intracellular localization of Equine herpesvirus type 1 tegument protein VP22. Virus Res 2014; 192:103-13. [PMID: 25192624 DOI: 10.1016/j.virusres.2014.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/14/2014] [Accepted: 08/14/2014] [Indexed: 11/22/2022]
Abstract
Intracellular localization of Equine herpesvirus type 1 (EHV-1) tegument protein VP22 was examined by using a plasmid that expressed VP22 fused with an enhanced green fluorescent protein (EGFP). Also a recombinant EHV-1 expressing VP22 fused with a red fluorescent protein (mCherry) was constructed to observe the localization of VP22 in infected cells. When EGFP-fused VP22 was overexpressed in the cells, VP22 localized in the cytoplasm and nucleus. Live cell imaging suggested that the fluorescently tagged VP22 also localized in the cytoplasm and nucleus. These results show that VP22 localizes in the cytoplasm and nucleus independently of other viral proteins. Experiments with truncation mutants of pEGFP-VP22 suggested that 154-188 aa might be the nuclear localization signal of EHV-1 VP22.
Collapse
Affiliation(s)
- Ayaka Okada
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akari Kodaira
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sachiko Hanyu
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Satoko Izume
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kenji Ohya
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hideto Fukushi
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
41
|
Identification of TRIM27 as a novel degradation target of herpes simplex virus 1 ICP0. J Virol 2014; 89:220-9. [PMID: 25320289 DOI: 10.1128/jvi.02635-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The herpes simplex virus 1 (HSV-1) immediate early protein ICP0 performs many functions during infection, including transactivation of viral gene expression, suppression of innate immune responses, and modification and eviction of histones from viral chromatin. Although these functions of ICP0 have been characterized, the detailed mechanisms underlying ICP0's complex role during infection warrant further investigation. We thus undertook an unbiased proteomic approach to identifying viral and cellular proteins that interact with ICP0 in the infected cell. Cellular candidates resulting from our analysis included the ubiquitin-specific protease USP7, the transcriptional repressor TRIM27, DNA repair proteins NBN and MRE11A, regulators of apoptosis, including BIRC6, and the proteasome. We also identified two HSV-1 early proteins involved in nucleotide metabolism, UL39 and UL50, as novel candidate interactors of ICP0. Because TRIM27 was the most statistically significant cellular candidate, we investigated the relationship between TRIM27 and ICP0. We observed rapid, ICP0-dependent loss of TRIM27 during HSV-1 infection. TRIM27 protein levels were restored by disrupting the RING domain of ICP0 or by inhibiting the proteasome, arguing that TRIM27 is a novel degradation target of ICP0. A mutant ICP0 lacking E3 ligase activity interacted with endogenous TRIM27 during infection as demonstrated by reciprocal coimmunoprecipitation and supported by immunofluorescence data. Surprisingly, ICP0-null mutant virus yields decreased upon TRIM27 depletion, arguing that TRIM27 has a positive effect on infection despite being targeted for degradation. These results illustrate a complex interaction between TRIM27 and viral infection with potential positive or negative effects of TRIM27 on HSV under different infection conditions. IMPORTANCE During productive infection, a virus must simultaneously redirect multiple cellular pathways to replicate itself while evading detection by the host's defenses. To orchestrate such complex regulation, viruses, including herpes simplex virus 1 (HSV-1), rely on multifunctional proteins such as the E3 ubiquitin ligase ICP0. This protein regulates various cellular pathways concurrently by targeting a diverse set of cellular factors for degradation. While some of these targets have been previously identified and characterized, we undertook a proteomic screen to identify additional targets of this activity to further characterize ICP0's role during infection. We describe a set of candidate interacting proteins of ICP0 identified through this approach and our characterization of the most statistically significant result, the cellular transcriptional repressor TRIM27. We present TRIM27 as a novel degradation target of ICP0 and describe the relationship of these two proteins during infection.
Collapse
|
42
|
Trapp-Fragnet L, Bencherit D, Chabanne-Vautherot D, Le Vern Y, Remy S, Boutet-Robinet E, Mirey G, Vautherot JF, Denesvre C. Cell cycle modulation by Marek's disease virus: the tegument protein VP22 triggers S-phase arrest and DNA damage in proliferating cells. PLoS One 2014; 9:e100004. [PMID: 24945933 PMCID: PMC4063868 DOI: 10.1371/journal.pone.0100004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/21/2014] [Indexed: 01/22/2023] Open
Abstract
Marek's disease is one of the most common viral diseases of poultry affecting chicken flocks worldwide. The disease is caused by an alphaherpesvirus, the Marek's disease virus (MDV), and is characterized by the rapid onset of multifocal aggressive T-cell lymphoma in the chicken host. Although several viral oncogenes have been identified, the detailed mechanisms underlying MDV-induced lymphomagenesis are still poorly understood. Many viruses modulate cell cycle progression to enhance their replication and persistence in the host cell, in the case of some oncogenic viruses ultimately leading to cellular transformation and oncogenesis. In the present study, we found that MDV, like other viruses, is able to subvert the cell cycle progression by triggering the proliferation of low proliferating chicken cells and a subsequent delay of the cell cycle progression into S-phase. We further identified the tegument protein VP22 (pUL49) as a major MDV-encoded cell cycle regulator, as its vector-driven overexpression in cells lead to a dramatic cell cycle arrest in S-phase. This striking functional feature of VP22 appears to depend on its ability to associate with histones in the nucleus. Finally, we established that VP22 expression triggers the induction of massive and severe DNA damages in cells, which might cause the observed intra S-phase arrest. Taken together, our results provide the first evidence for a hitherto unknown function of the VP22 tegument protein in herpesviral reprogramming of the cell cycle of the host cell and its potential implication in the generation of DNA damages.
Collapse
Affiliation(s)
- Laëtitia Trapp-Fragnet
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
- * E-mail:
| | - Djihad Bencherit
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | | | - Yves Le Vern
- INRA, UMR1282 Infectiologie et Santé Publique, Laboratoire de Cytométrie, Nouzilly, France
| | - Sylvie Remy
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | - Elisa Boutet-Robinet
- INRA, UMR 1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- University of Toulouse, UPS, UMR1331, Toxalim, Toulouse, France
| | - Gladys Mirey
- INRA, UMR 1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- University of Toulouse, UPS, UMR1331, Toxalim, Toulouse, France
| | - Jean-François Vautherot
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| | - Caroline Denesvre
- INRA, UMR1282 Infectiologie et Santé Publique, Equipe Biologie des Virus Aviaires, Nouzilly, France
| |
Collapse
|
43
|
Herpes simplex virus 1 protein UL37 interacts with viral glycoprotein gK and membrane protein UL20 and functions in cytoplasmic virion envelopment. J Virol 2014; 88:5927-35. [PMID: 24600000 DOI: 10.1128/jvi.00278-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED We have shown that glycoprotein K (gK) and its interacting partner, the UL20 protein, play crucial roles in virion envelopment. Specifically, virions lacking either gK or UL20 fail to acquire an envelope, thus causing accumulation of capsids in the cytoplasm of infected cells. The herpes simplex virus 1 (HSV-1) UL37 protein has also been implicated in cytoplasmic virion envelopment. To further investigate the role of UL37 in virion envelopment, the recombinant virus DC480 was constructed by insertion of a 12-amino-acid protein C (protC) epitope tag within the UL37 amino acid sequence immediately after amino acid 480. The DC480 mutant virus expressed full-size UL37 as detected by the anti-protC antibody in Western immunoblots, accumulated unenveloped capsids in the cytoplasm of infected cells, and produced very small plaques on African green monkey kidney (Vero) cells that were similar in size to those produced by the UL20-null and UL37-null viruses. The DC480 virus replicated nearly 4 log less efficiently than the parental wild-type virus when grown on Vero cells. However, DC480 mutant virus titers increased nearly 20-fold when the virus was grown on FRT cells engineered to express the UL20 gene in comparison to the titers on Vero cells, while the UL37-null virus replicated approximately 20-fold less efficiently than the DC480 virus on FRT cells. Coimmunoprecipitation experiments and proximity ligation assays showed that gK and UL20 interact with the UL37 protein in infected cells. Collectively, these results indicate that UL37 interacts with the gK-UL20 protein complex to facilitate cytoplasmic virion envelopment. IMPORTANCE Herpes simplex viruses acquire their final envelopes by budding into cytoplasmic membranes derived from the trans-Golgi network (TGN). The tegument proteins UL36 and UL37 are known to be transported to the TGN sites of virus envelopment and to function in virion envelopment, since mutants lacking UL37 accumulate capsids in the cytoplasm that are unable to bud into TGN membranes. Viral glycoprotein K (gK) also functions in cytoplasmic envelopment, in a protein complex with the membrane-associated protein UL20 (UL20mp). This work shows for the first time that the UL37 protein functionally interacts with gK and UL20 to facilitate cytoplasmic virion envelopment. This work may lead to the design of specific drugs that can interrupt UL37 interactions with the gK-UL20 protein complex, providing new ways to combat herpesviral infections.
Collapse
|
44
|
Highly acidic C-terminal region of cytomegalovirus pUL96 determines its functions during virus maturation independently of a direct pp150 interaction. J Virol 2014; 88:4493-503. [PMID: 24501413 DOI: 10.1128/jvi.03784-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Tegument proteins pp150 and pUL96 function at a late step in cytomegalovirus (CMV) maturation. Here, we show that pp150 interacts directly with pUL96; however, the N-terminal region of pp150 and the C-terminal region of pUL96, which are critical for these proteins to function, are not required for this interaction. Moreover, the largely dispensable C-terminal region of pp150 is critical for pp150-pUL96 interaction. To further study the role of pUL96, several point and clustered mutations were engineered into the CMV Towne bacterial artificial chromosome (Towne-BAC) genome, replacing the conserved negatively charged C-terminal residues of pUL96. Although individual point mutations (E122A, D124A, and D125A) reduced virus growth slightly, the clustered mutations of 122EVDDAV127 significantly reduced virus growth, produced small syncytial plaque phenotypes, and impacted a late stage of virus maturation. When the UL96 C-terminal alanine conversion mutant (B6-BAC) virus was serially passaged in cell culture, it gained a plaque size comparable to that of Towne-BAC, displayed an altered restriction fragment length pattern, and replicated with increased growth kinetics. Whole-genome sequencing of this passaged virus (UL96P10) and the similarly passaged Towne-BAC virus revealed major differences only in the RNA4.9 and UL96 regions. When one of the mutations in the UL96 coding region was engineered into the B6-BAC virus, it significantly increased the plaque size and rescued the virus growth rate. Thus, accumulation of compensatory mutations only in UL96 in this revertant and the specific involvement of functionally dispensable regions of pp150 in the pUL96-pp150 interaction point toward a role for pUL96 in virus maturation that does not depend upon pp150. IMPORTANCE Human cytomegalovirus causes significant medical problems in newborns, as well as in people with low immunity. In this study, we investigated the functions of two essential virus proteins, pp150 and pUL96, and determined the impact of their mutual interaction on virus replication. These studies provide valuable information that is critical for the development of targeted antiviral therapies.
Collapse
|
45
|
Johns HL, Gonzalez-Lopez C, Sayers CL, Hollinshead M, Elliott G. Rab6 dependent post-Golgi trafficking of HSV1 envelope proteins to sites of virus envelopment. Traffic 2014; 15:157-78. [PMID: 24152084 PMCID: PMC4345966 DOI: 10.1111/tra.12134] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 12/19/2022]
Abstract
Herpes simplex virus 1 (HSV1) is an enveloped virus that uses undefined transport carriers for trafficking of its glycoproteins to envelopment sites. Screening of an siRNA library against 60 Rab GTPases revealed Rab6 as the principal Rab involved in HSV1 infection, with its depletion preventing Golgi-to-plasma membrane transport of HSV1 glycoproteins in a pathway used by several integral membrane proteins but not the luminal secreted protein Gaussia luciferase. Knockdown of Rab6 reduced virus yield to 1% and inhibited capsid envelopment, revealing glycoprotein exocytosis as a prerequisite for morphogenesis. Rab6-dependent virus production did not require the effectors myosin-II, bicaudal-D, dynactin-1 or rabkinesin-6, but was facilitated by ERC1, a factor involved in linking microtubules to the cell cortex. Tubulation and exocytosis of Rab6-positive, glycoprotein-containing membranes from the Golgi was substantially augmented by infection, resulting in enhanced and targeted delivery to cell tips. This reveals HSV1 morphogenesis as one of the first biological processes shown to be dependent on the exocytic activity of Rab6.
Collapse
Affiliation(s)
- Helen L Johns
- Section of Virology, Faculty of Medicine, Imperial College LondonLondon, W2 1PG, UK
| | | | - Charlotte L Sayers
- Section of Virology, Faculty of Medicine, Imperial College LondonLondon, W2 1PG, UK
| | - Michael Hollinshead
- Section of Virology, Faculty of Medicine, Imperial College LondonLondon, W2 1PG, UK
| | - Gillian Elliott
- Section of Virology, Faculty of Medicine, Imperial College LondonLondon, W2 1PG, UK
- Current address: Department of Microbial & Cellular Sciences, Faculty of Health & Medical Sciences, University of SurreyGuildford, GU2 7XH, UK
| |
Collapse
|
46
|
Abstract
Herpes simplex virus type 1 (HSV-1) is a common and important human pathogen that has been studied in a wide variety of contexts for several decades. This book presents chapters on protocols on many strands of HSV-1 research that are currently in use in leading laboratories. This chapter gives a brief overview of HSV-1 biology and life cycle, covering basic aspects of the virus and its replication in cultured cells, the diseases caused by the virus, viral latency, antiviral defenses, and the mechanisms that the virus uses to counteract these defenses.
Collapse
Affiliation(s)
- Roger D Everett
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow, G11 5JR, Scotland UK,
| |
Collapse
|
47
|
Elucidation of the block to herpes simplex virus egress in the absence of tegument protein UL16 reveals a novel interaction with VP22. J Virol 2013; 88:110-9. [PMID: 24131716 DOI: 10.1128/jvi.02555-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UL16 is a tegument protein of herpes simplex virus (HSV) that is conserved among all members of the Herpesviridae, but its function is poorly understood. Previous studies revealed that UL16 is associated with capsids in the cytoplasm and interacts with the membrane protein UL11, which suggested a "bridging" function during cytoplasmic envelopment, but this conjecture has not been tested. To gain further insight, cells infected with UL16-null mutants were examined by electron microscopy. No defects in the transport of capsids to cytoplasmic membranes were observed, but the wrapping of capsids with membranes was delayed. Moreover, clusters of cytoplasmic capsids were often observed, but only near membranes, where they were wrapped to produce multiple capsids within a single envelope. Normal virion production was restored when UL16 was expressed either by complementing cells or from a novel position in the HSV genome. When the composition of the UL16-null viruses was analyzed, a reduction in the packaging of glycoprotein E (gE) was observed, which was not surprising, since it has been reported that UL16 interacts with this glycoprotein. However, levels of the tegument protein VP22 were also dramatically reduced in virions, even though this gE-binding protein has been shown not to depend on its membrane partner for packaging. Cotransfection experiments revealed that UL16 and VP22 can interact in the absence of other viral proteins. These results extend the UL16 interaction network beyond its previously identified binding partners to include VP22 and provide evidence that UL16 plays an important function at the membrane during virion production.
Collapse
|
48
|
Hu S, Feng Y, Henson B, Wang B, Huang X, Li M, Desai P, Zhu H. VirD: a virion display array for profiling functional membrane proteins. Anal Chem 2013; 85:8046-54. [PMID: 23941274 DOI: 10.1021/ac401795y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To facilitate high-throughput biochemical analyses of membrane proteins, we have developed a novel display technology in a microarray format. Both single-pass (cluster of differentiation 4, CD4) and multiple-pass (G protein-coupled receptor 77, GPR77) human transmembrane proteins were engineered to be displayed in the membrane envelop of herpes simplex virions. These viruses produce large spherical virions displaying multiple copies of envelop proteins. Our aim was to engineer this virus to express these human proteins during the virus productive cycle and incorporate the human proteins into the virion during the assembly process. Another strategy presented includes engineering a fusion of glycoprotein C (gC), a major constituent of herpes simplex virus type 1 (HSV-1) virions, by hijacking the cis-acting signals to direct incorporation of the chimeric protein into the virion. The expression of the human proteins in infected cells, at the cell surface and in purified virions, is in the correct transmembrane orientation, and the proteins are biochemically functional. Purified virions printed on glass slides form a high-density Virion Display (VirD) Array, and the displayed proteins were demonstrated to retain their native conformations and interactions on the VirD Array judging by similar assays, such as antibody staining, as well as lectin and ligand binding. This method can be readily scaled or tailored for different modalities including a high-content, high-throughput platform for screening ligands and drugs of human membrane proteins.
Collapse
Affiliation(s)
- Shaohui Hu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Grélard A, Guichard P, Bonnafous P, Marco S, Lambert O, Manin C, Ronzon F, Dufourc EJ. Hepatitis B subvirus particles display both a fluid bilayer membrane and a strong resistance to freeze drying: a study by solid‐state NMR, light scattering, and cryo‐electron microscopy/tomography. FASEB J 2013; 27:4316-26. [DOI: 10.1096/fj.13-232843] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Axelle Grélard
- Institute of Chemistry and Biology of Membranes and NanoobjectsUniversity of BordeauxChemistry and Biology of Membranes and Nanoobjects (CBMN)Unité Mixte de Recherche (UMR) 5248PessacFrance
- Institute of Chemistry and Biology of Membranes and NanoobjectsCentre National de la Recherche Scientifique (CNRS)CBMNUMR5248PessacFrance
| | - Paul Guichard
- Institut CurieCentre de RechercheOrsayFrance
- Institut National de la Santé et de la Recherche Médicale (INSERM)U759OrsayFrance
| | - Pierre Bonnafous
- Institute of Chemistry and Biology of Membranes and NanoobjectsUniversity of BordeauxChemistry and Biology of Membranes and Nanoobjects (CBMN)Unité Mixte de Recherche (UMR) 5248PessacFrance
- Institute of Chemistry and Biology of Membranes and NanoobjectsCentre National de la Recherche Scientifique (CNRS)CBMNUMR5248PessacFrance
| | - Sergio Marco
- Institut CurieCentre de RechercheOrsayFrance
- Institut National de la Santé et de la Recherche Médicale (INSERM)U759OrsayFrance
| | - Olivier Lambert
- Institute of Chemistry and Biology of Membranes and NanoobjectsUniversity of BordeauxChemistry and Biology of Membranes and Nanoobjects (CBMN)Unité Mixte de Recherche (UMR) 5248PessacFrance
- Institute of Chemistry and Biology of Membranes and NanoobjectsCentre National de la Recherche Scientifique (CNRS)CBMNUMR5248PessacFrance
| | | | | | - Erick J. Dufourc
- Institute of Chemistry and Biology of Membranes and NanoobjectsUniversity of BordeauxChemistry and Biology of Membranes and Nanoobjects (CBMN)Unité Mixte de Recherche (UMR) 5248PessacFrance
- Institut CurieCentre de RechercheOrsayFrance
| |
Collapse
|
50
|
Herpes simplex virus 1 glycoprotein M and the membrane-associated protein UL11 are required for virus-induced cell fusion and efficient virus entry. J Virol 2013; 87:8029-37. [PMID: 23678175 DOI: 10.1128/jvi.01181-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) facilitates virus entry into cells and cell-to-cell spread by mediating fusion of the viral envelope with cellular membranes and fusion of adjacent cellular membranes. Although virus strains isolated from herpetic lesions cause limited cell fusion in cell culture, clinical herpetic lesions typically contain large syncytia, underscoring the importance of cell-to-cell fusion in virus spread in infected tissues. Certain mutations in glycoprotein B (gB), gK, UL20, and other viral genes drastically enhance virus-induced cell fusion in vitro and in vivo. Recent work has suggested that gB is the sole fusogenic glycoprotein, regulated by interactions with the viral glycoproteins gD, gH/gL, and gK, membrane protein UL20, and cellular receptors. Recombinant viruses were constructed to abolish either gM or UL11 expression in the presence of strong syncytial mutations in either gB or gK. Virus-induced cell fusion caused by deletion of the carboxyl-terminal 28 amino acids of gB or the dominant syncytial mutation in gK (Ala to Val at amino acid 40) was drastically reduced in the absence of gM. Similarly, syncytial mutations in either gB or gK did not cause cell fusion in the absence of UL11. Neither the gM nor UL11 gene deletion substantially affected gB, gC, gD, gE, and gH glycoprotein synthesis and expression on infected cell surfaces. Two-way immunoprecipitation experiments revealed that the membrane protein UL20, which is found as a protein complex with gK, interacted with gM while gM did not interact with other viral glycoproteins. Viruses produced in the absence of gM or UL11 entered into cells more slowly than their parental wild-type virus strain. Collectively, these results indicate that gM and UL11 are required for efficient membrane fusion events during virus entry and virus spread.
Collapse
|