1
|
Rong N, Liu J. Development of animal models for emerging infectious diseases by breaking the barrier of species susceptibility to human pathogens. Emerg Microbes Infect 2023; 12:2178242. [PMID: 36748729 PMCID: PMC9970229 DOI: 10.1080/22221751.2023.2178242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Outbreaks of emerging infectious diseases pose a serious threat to public health security, human health and economic development. After an outbreak, an animal model for an emerging infectious disease is urgently needed for studying the etiology, host immune mechanisms and pathology of the disease, evaluating the efficiency of vaccines or drugs against infection, and minimizing the time available for animal model development, which is usually hindered by the nonsusceptibility of common laboratory animals to human pathogens. Thus, we summarize the technologies and methods that induce animal susceptibility to human pathogens, which include viral receptor humanization, pathogen-targeted tissue humanization, immunodeficiency induction and screening for naturally susceptible animal species. Furthermore, the advantages and deficiencies of animal models developed using each method were analyzed, and these will guide the selection of susceptible animals and potentially reduce the time needed to develop animal models during epidemics.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China, Jiangning Liu
| |
Collapse
|
2
|
Tan XH, Chong WL, Lee VS, Abdullah S, Jasni K, Suarni SQ, Perera D, Sam IC, Chan YF. Substitution of Coxsackievirus A16 VP1 BC and EF Loop Altered the Protective Immune Responses in Chimera Enterovirus A71. Vaccines (Basel) 2023; 11:1363. [PMID: 37631931 PMCID: PMC10458053 DOI: 10.3390/vaccines11081363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a childhood disease caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Capsid loops are important epitopes for EV-A71 and CV-A16. Seven chimeric EV-A71 (ChiE71) involving VP1 BC (45.5% similarity), DE, EF, GH and HI loops, VP2 EF loop and VP3 GH loop (91.3% similarity) were substituted with corresponding CV-A16 loops. Only ChiE71-1-BC, ChiE71-1-EF, ChiE71-1-GH and ChiE71-3-GH were viable. EV-A71 and CV-A16 antiserum neutralized ChiE71-1-BC and ChiE71-1-EF. Mice immunized with inactivated ChiE71 elicited high IgG, IFN-γ, IL-2, IL-4 and IL-10. Neonatal mice receiving passive transfer of WT EV-A71, ChiE71-1-EF and ChiE71-1-BC immune sera had 100%, 80.0% and no survival, respectively, against lethal challenges with EV-A71, suggesting that the substituted CV-A16 loops disrupted EV-A71 immunogenicity. Passive transfer of CV-A16, ChiE71-1-EF and ChiE71-1-BC immune sera provided 40.0%, 20.0% and 42.9% survival, respectively, against CV-A16. One-day-old neonatal mice immunized with WT EV-A71, ChiE71-1-BC, ChiE71-1-EF and CV-A16 achieved 62.5%, 60.0%, 57.1%, and no survival, respectively, after the EV-A71 challenge. Active immunization using CV-A16 provided full protection while WT EV-A71, ChiE71-1-BC and ChiE71-1-EF immunization showed partial cross-protection in CV-A16 lethal challenge with survival rates of 50.0%, 20.0% and 40%, respectively. Disruption of a capsid loop could affect virus immunogenicity, and future vaccine design should include conservation of the enterovirus capsid loops.
Collapse
Affiliation(s)
- Xiu Hui Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| | - Wei Lim Chong
- Department of Chemistry, Center of Theoretical and Computational Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Center of Theoretical and Computational Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Syahril Abdullah
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kartini Jasni
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Saiful Qushairi Suarni
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - David Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia;
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| |
Collapse
|
3
|
Wang Y, Zou W, Niu Y, Wang S, Chen B, Xiong R, Zhang P, Luo Z, Wu Y, Fan C, Zhong Z, Xu P, Peng Y. Phosphorylation of enteroviral 2A pro at Ser/Thr125 benefits its proteolytic activity and viral pathogenesis. J Med Virol 2023; 95:e28400. [PMID: 36511115 PMCID: PMC10107306 DOI: 10.1002/jmv.28400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/19/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Enteroviral 2A proteinase (2Apro ), a well-established and important viral functional protein, plays a key role in shutting down cellular cap-dependent translation, mainly via its proteolytic activity, and creating optimal conditions for Enterovirus survival. Accumulated data show that viruses take advantage of various signaling cascades for their life cycle; studies performed by us and others have demonstrated that the extracellular signal-regulated kinase (ERK) pathway is essential for enterovirus A71 (EV-A71) and other viruses replication. We recently showed that ERK1/2 is required for the proteolytic activity of viral 2Apro ; however, the mechanism underlying the regulation of 2Apro remains unknown. Here, we demonstrated that the 125th residue Ser125 of EV-A71 2Apro or Thr125 of coxsackievirus B3 2Apro , which is highly conserved in the Enterovirus, was phosphorylated by ERK1/2. Importantly, 2Apro with phosphor-Ser/Thr125 had much stronger proteolytic activity toward eukaryotic initiation factor 4GI and rendered the virus more efficient for multiplication and pathogenesis in hSCARB2 knock-in mice than that in nonphospho-Ser/Thr125A (S/T125A) mutants. Notably, phosphorylation-mimic mutations caused deleterious changes in 2Apro catalytic function (S/T125D/E) and in viral propagation (S125D). Crystal structure simulation analysis showed that Ser125 phosphorylation in EV-A71 2Apro enabled catalytic Cys to adopt an optimal conformation in the catalytic triad His-Asp-Cys, which enhances 2Apro proteolysis. Therefore, we are the first to report Ser/Thr125 phosphorylation of 2Apro increases enteroviral adaptation to the host to ensure enteroviral multiplication, causing pathogenicity. Additionally, weakened viruses containing a S/T125A mutation could be a general strategy to develop attenuated Enterovirus vaccines.
Collapse
Affiliation(s)
- Yuya Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenjia Zou
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Sanyuan Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Bangtao Chen
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Rui Xiong
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Peng Zhang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Queen Mary School, Nanchang University Jiangxi Medical College, Nanchang, China
| | - Yong Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Yihong Peng
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
4
|
Mouse Scarb2 Modulates EV-A71 Pathogenicity in Neonatal Mice. J Virol 2022; 96:e0056122. [PMID: 35867561 PMCID: PMC9364792 DOI: 10.1128/jvi.00561-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Enterovirus A71 (EV-A71) is a human pathogen that causes hand, foot, and mouth disease, which can progress to severe neurological disease. EV-A71 infects humans via the human scavenger receptor B2 (hSCARB2). It can also infect neonatal mice experimentally. Wild-type (WT) EV-A71 strains replicate primarily in the muscle of neonatal mice; however, susceptibility lasts only for a week after birth. Mouse-adapted (MA) strains, which can be obtained by serial passages in neonatal mice, are capable of infecting both muscle and neurons of the central nervous system. It is not clear how the host range and tropism of EV-A71 are regulated and why neonatal mice lose their susceptibility during development. We hypothesized that EV-A71 infection in neonatal mice is mediated by mouse Scarb2 (mScarb2) protein. Rhabdomyosarcoma (RD) cells expressing mScarb2 were prepared. Both WT and MA strains infected mScarb2-expressing cells, but the infection efficiency of the WT strain was much lower than that of the MA strain. Infection by WT and MA strains in vivo was abolished completely in Scarb2-/- mice. Scarb2+/- mice, in which Scarb2 expression was approximately half of that in Scarb2+/+ mice, showed a milder pathology than Scarb2+/+ mice after infection with the WT strain. The Scarb2 expression level in muscle decreased with aging, which was consistent with the reduced susceptibility of aged mice to infection. These results indicated that EV-A71 infection is mediated by mScarb2 and that the severity of the disease, the spread of virus, and the susceptibility period are modulated by mScarb2 expression. IMPORTANCE EV-A71 infects humans naturally but can also infect neonatal mice. The tissue tropism and severity of EV-A71 disease are determined by several factors, among which the virus receptor is thought to be important. We show that EV-A71 can infect neonatal mice using mScarb2. However, the infection efficiency of WT strains via mScarb2 is so low that an elevated virus-receptor interaction associated with mouse adaptation mutation and decrease in mScarb2 expression level during development modulate the severity of the disease, the spread of virus, and the susceptibility period in the artificial neonatal mice model.
Collapse
|
5
|
Tamura K, Kohnoe M, Takashino A, Kobayashi K, Koike S, Karwal L, Fukuda S, Vang F, Das SC, Dean HJ. TAK − 021, an inactivated Enterovirus 71 vaccine candidate, provides cross-protection against heterologous sub-genogroups in human scavenger receptor B2 transgenic mice. Vaccine 2022; 40:3330-3337. [DOI: 10.1016/j.vaccine.2022.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
6
|
Wu Y, Qu Z, Xiong R, Yang Y, Liu S, Nie J, Liang C, Huang W, Wang Y, Fan C. A practical method for evaluating the in vivo efficacy of EVA-71 vaccine using a hSCARB2 knock-in mouse model. Emerg Microbes Infect 2021; 10:1180-1190. [PMID: 34044752 PMCID: PMC8205003 DOI: 10.1080/22221751.2021.1934558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/12/2023]
Abstract
Hand-foot-and-mouth disease is a contagious disease common among children under 5 years old worldwide. It is caused by strains of enterovirus, especially EV-A71, which can lead to severe disease. Vaccines are the only way to fight this disease. Accordingly, it is necessary to establish an efficient and accurate methodology to evaluate vaccine efficacy in vivo. Here, we established a practical method using a hSCARB2 knock-in mouse model, which was susceptible to EV-A71 infection at 5-6 weeks of age, to directly determine the efficacy of vaccines. Unlike traditional approaches, one-week-old hSCARB2 mice were immunized twice with a licensed vaccine, with an interval of a week. The titre of antibodies was measured after 1 week. Mice at 4 weeks of age were challenged with EV-A71 intraperitoneally and intracranially, respectively. The unimmunized hSCARB2 mice displayed systemic clinical symptoms and succumbed to the disease at a rate of approximately 50%. High viral loads were detected in the lungs, brain, and muscles, accompanied by clear pathological changes. The expression of IL-1β, IL-13, IL-17, and TNF-α was significantly upregulated. By contrast, the immunized group was practically normal and indistinguishable from the control mice. These results indicate that the hSCARB2 knock-in mouse is susceptible to infection in adulthood, and the in vivo efficacy of EV-A71 vaccine could be directly evaluated in this mouse model. The method developed here may be used in the development of new vaccines against HFMD or quality control of licensed vaccines.
Collapse
Affiliation(s)
- Yong Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Zhe Qu
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Rui Xiong
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Yanwei Yang
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Susu Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Jianhui Nie
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Chunnan Liang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| |
Collapse
|