1
|
Kim YJ, Oh D, Kim J, Son J, Moon JY, Kim YK, Ahn B, Kang KR, Park D, Kang HM. Heightened incidence of adverse events associated with a live attenuated varicella vaccine strain that lacks critical genetic polymorphisms in open reading frame 62. Clin Microbiol Infect 2024; 30:1466-1473. [PMID: 39209266 DOI: 10.1016/j.cmi.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES This study aimed to identify the specific vaccine strain associated with herpes zoster (HZ) in children following a series of diagnosed cases and to explore whether differences in single nucleotide polymorphisms (SNPs) among various vaccine strains are linked to an increased incidence of herpes zoster after vaccination. METHODS From February 2021 to March 2024, children <12 years old suspected of vaccine-related varicella-like rash or HZ were included. Varicella zoster virus DNA isolated from the patients were sequenced to differentiate vaccine type versus wild-type. 3D protein structures of pORF62 were simulated using open reading frame 62 sequences extracted from whole genome sequencing of vOka, MAV/06, Oka/SK vaccines, and pOka reference. RESULTS A total of 27 children with a median age of 2.1 (interquartile range, 1.5-3.4) years old presented with vaccine-related varicella-like rash (n = 4/27, 14.8%) or HZ (n = 23/27, 85.2%). One patient with varicella-like rash and 34.8% (n = 8/23) with HZ had disseminated skin involvement. All were immunized with the Oka/SK strain varicella vaccine. Genotyping showed 88.2% (n = 15/17) had SNPs specific to the Oka/SK strain, and two had SNPs considered pOka type contained within the Oka/SK vaccine. Despite accumulations of SNPs in ORF 62 of Oka/SK, the translated amino acid sequence and 3D protein structure were identical to wild-type pOka's pORF62. In vOKA and MAV/06, changes in amino acids occurred at two positions, S628G and R958G, within pORF62. The predicted 3D protein structure of vOka and MAV/06's pORF62 showed that the α helical structure within region I undergoes conformational change, potentially increasing difficulties in interactions with infection-related proteins and thereby decreasing virulence. pORF62 in pOka and Oka/SK exhibited more stable structure complex of the α helical structure. DISCUSSION Lack of structural alternations in region I of pORF62 due to the absence of critical genetic polymorphisms in open reading frame 62 could be associated with the heightened incidence of adverse events.
Collapse
Affiliation(s)
- Ye Ji Kim
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Doyeop Oh
- Department of Molecular Science and Technology, Advanced College of Bio-Convergence Engineering, Ajou University, Suwon, South Korea
| | - Jaehoon Kim
- Department of Molecular Science and Technology, Advanced College of Bio-Convergence Engineering, Ajou University, Suwon, South Korea
| | - Jeongtae Son
- Ajou Energy Science Research Center, Ajou University, Suwon, South Korea
| | - Jae Yun Moon
- Department of Molecular Science and Technology, Advanced College of Bio-Convergence Engineering, Ajou University, Suwon, South Korea
| | - Ye Kyung Kim
- Department of Pediatrics, Konkuk University Medical Center, Seoul, South Korea
| | - Bin Ahn
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Pediatrics, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyu Ri Kang
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Daechan Park
- Department of Molecular Science and Technology, Advanced College of Bio-Convergence Engineering, Ajou University, Suwon, South Korea
| | - Hyun Mi Kang
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
2
|
Romero N, Wuerzberger-Davis SM, Van Waesberghe C, Jansens RJ, Tishchenko A, Verhamme R, Miyamoto S, Favoreel HW. Pseudorabies Virus Infection Results in a Broad Inhibition of Host Gene Transcription. J Virol 2022; 96:e0071422. [PMID: 35730976 PMCID: PMC9278110 DOI: 10.1128/jvi.00714-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022] Open
Abstract
Pseudorabies virus (PRV) is a porcine alphaherpesvirus that belongs to the Herpesviridae family. We showed earlier that infection of porcine epithelial cells with PRV triggers activation of the nuclear factor κB (NF-κB) pathway, a pivotal signaling axis in the early immune response. However, PRV-induced NF-κB activation does not lead to NF-κB-dependent gene expression. Here, using electrophoretic mobility shift assays (EMSAs), we show that PRV does not disrupt the ability of NF-κB to interact with its κB target sites. Assessing basal cellular transcriptional activity in PRV-infected cells by quantitation of prespliced transcripts of constitutively expressed genes uncovered a broad suppression of cellular transcription by PRV, which also affects the inducible expression of NF-κB target genes. Host cell transcription inhibition was rescued when viral genome replication was blocked using phosphonoacetic acid (PAA). Remarkably, we found that host gene expression shutoff in PRV-infected cells correlated with a substantial retention of the NF-κB subunit p65, the TATA box binding protein, and RNA polymerase II-essential factors required for (NF-κB-dependent) gene transcription-in expanding PRV replication centers in the nucleus and thereby away from the host chromatin. This study reveals a potent mechanism used by the alphaherpesvirus PRV to steer the protein production capacity of infected cells to viral proteins by preventing expression of host genes, including inducible genes involved in mounting antiviral responses. IMPORTANCE Herpesviruses are highly successful pathogens that cause lifelong persistent infections of their host. Modulation of the intracellular environment of infected cells is imperative for the success of virus infections. We reported earlier that a DNA damage response in epithelial cells infected with the alphaherpesvirus pseudorabies virus (PRV) results in activation of the hallmark proinflammatory NF-κB signaling axis but, remarkably, that this activation does not lead to NF-κB-induced (proinflammatory) gene expression. Here, we report that PRV-mediated inhibition of host gene expression stretches beyond NF-κB-dependent gene expression and in fact reflects a broad inhibition of host gene transcription, which correlates with a substantial recruitment of essential host transcription factors in viral replication compartments in the nucleus, away from the host chromatin. These data uncover a potent alphaherpesvirus mechanism to interfere with production of host proteins, including proteins involved in antiviral responses.
Collapse
Affiliation(s)
- Nicolás Romero
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Shelly M. Wuerzberger-Davis
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cliff Van Waesberghe
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Robert J. Jansens
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York, USA
| | - Alexander Tishchenko
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ruth Verhamme
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Herman W. Favoreel
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Interferon Gamma Inhibits Varicella-Zoster Virus Replication in a Cell Line-Dependent Manner. J Virol 2019; 93:JVI.00257-19. [PMID: 30918075 DOI: 10.1128/jvi.00257-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/21/2019] [Indexed: 01/29/2023] Open
Abstract
The major immediate early 62 (IE62) protein of varicella-zoster virus (VZV) is delivered to newly infected cell nuclei, where it initiates VZV replication by transactivating viral immediate early (IE), early (E), and late (L) genes. Interferon gamma (IFN-γ) is a potent cytokine produced following primary VZV infection. Furthermore, VZV reactivation correlates with a decline in IFN-γ-producing immune cells. Our results showed that treatment with 20 ng/ml of IFN-γ completely reduced intracellular VZV yield in A549 lung epithelial cells, MRC-5 lung fibroblasts, and ARPE-19 retinal epithelial cells at 4 days post-VZV infection. However, IFN-γ reduced virus yield only 2-fold in MeWo melanoma cells compared to that of untreated cells. IFN-β significantly inhibited VZV replication in both ARPE-19 and MeWo cells. In luciferase assays with VZV open reading frame 61 (ORF61) promoter reporter plasmid, IFN-γ abrogated the transactivation activity of IE62 by 95%, 97%, and 89% in A549, ARPE-19, and MRC-5 cells, respectively. However, IFN-γ abrogated IE62's transactivation activity by 16% in MeWo cells, indicating that IFN-γ inhibits VZV replication as well as IE62-mediated transactivation in a cell line-dependent manner. The expression of VZV IE62 and ORF63 suppressed by IFN-γ was restored by JAK1 inhibitor treatment, indicating that the inhibition of VZV replication is mediated by JAK/STAT1 signaling. In the presence of IFN-γ, knockdown of interferon response factor 1 (IRF1) increased VZV replication. Ectopic expression of IRF1 reduced VZV yields 4,000-fold in MRC-5 and ARPE-19 cells but 3-fold in MeWo cells. These results suggest that IFN-γ blocks VZV replication by inhibiting IE62 function in a cell line-dependent manner.IMPORTANCE Our results showed that IFN-γ significantly inhibited VZV replication in a cell line-dependent manner. IFN-γ inhibited VZV gene expression after the immediate early stage of infection and abrogated IE62-mediated transactivation. These results suggest that IFN-γ blocks VZV replication by inhibiting IE62 function in a cell line-dependent manner. Understanding the mechanisms by which IFN-γ plays a role in VZV gene programming may be important in determining the tissue restriction of VZV.
Collapse
|
4
|
Ko H, Lee GM, Shin OS, Song MJ, Lee CH, Kim YE, Ahn JH. Analysis of IE62 mutations found in Varicella-Zoster virus vaccine strains for transactivation activity. J Microbiol 2018; 56:441-448. [PMID: 29858833 DOI: 10.1007/s12275-018-8144-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/16/2022]
Abstract
Live attenuated vaccine strains have been developed for Varicella-Zoster virus (VZV). Compared to clinically isolated strains, the vaccine strains contain several non-synonymous mutations in open reading frames (ORFs) 0, 6, 31, 39, 55, 62, and 64. In particular, ORF62, encoding an immediate-early (IE) 62 protein that acts as a transactivator for viral gene expression, contains six non-synonymous mutations, but whether these mutations affect transactivation activity of IE62 is not understood. In this study, we investigated the role of non-synonymous vaccine-type mutations (M99T, S628G, R958G, V1197A, I1260V, and L1275S) of IE62 in Suduvax, a vaccine strain isolated in Korea, for transactivation activity. In reporter assays, Suduvax IE62 showed 2- to 4-fold lower transactivation activity toward ORF4, ORF28, ORF29, and ORF68 promoters than wild-type IE62. Introduction of individual M99T, S628G, R958G, or V1197A/I1260V/L1275S mutations into wild-type IE62 did not affect transactivation activity. However, the combination of M99T within the N-terminal Sp transcription factor binding region and V1197A/I1260V/L1275S within the C-terminal serine-enriched acidic domain (SEAD) significantly reduced the transactivation activity of IE62. The M99T/V1197A/I1260V/L1275S mutant IE62 did not show considerable alterations in intracellular distribution and Sp3 binding compared to wild-type IE62, suggesting that other alteration(s) may be responsible for the reduced transactivation activity. Collectively, our results suggest that acquisition of mutations in both Met 99 and the SEAD of IE62 is responsible for the reduced transactivation activity found in IE62 of the VZV vaccine strains and contributes to attenuation of the virus.
Collapse
Affiliation(s)
- Hyemin Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Suwon, 16419, Republic of Korea
| | - Gwang Myeong Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Suwon, 16419, Republic of Korea
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 08308, Republic of Korea
| | - Moon Jung Song
- Department of Biosystems and Biotechnology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Chan Hee Lee
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Young Eui Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Suwon, 16419, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Majima R, Shindoh K, Yamaguchi T, Inoue N. Characterization of a thienylcarboxamide derivative that inhibits the transactivation functions of cytomegalovirus IE2 and varicella zoster virus IE62. Antiviral Res 2017; 140:142-150. [PMID: 28161581 DOI: 10.1016/j.antiviral.2017.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 11/15/2022]
Abstract
Previously we established reporter cell lines for human cytomegalovirus (HCMV) and varicella zoster virus (VZV) and identified several antiviral compounds against these viruses using the reporter cells. In this study, we found that one of the identified anti-HCMV compounds, a thienylcarboxamide derivative (coded as 133G4), was effective against not only HCMV but also VZV. The following findings indicate that 133G4 inhibits the activation of early gene promoters by HCMV IE2 and VZV IE62: i) 133G4 decreased the expression of HCMV early and late genes but not that of HCMV IE1/IE2 in HCMV-infected cells, ii) 133G4 inhibited the activation of several HCMV early gene promoters of transiently-transfected plasmids in HCMV-infected cells, and iii) in transient transfection assays, 133G4 decreased the activation of HCMV (or VZV) early gene promoters by HCMV IE2 (or VZV IE62) in the absence of other viral protein expression. The inhibition of early gene activation was observed in the human and African green monkey cell lines but not in the rodent cell lines, and the compound was not effective against murine CMV. In addition, VZV IE62 activated HCMV early promoters, and 133G4 still inhibited such promoter activation. Therefore, we hypothesized that 133G4 targets a cellular factor used commonly in activation of human herpesvirus promoters and examined whether 133G4 affects the functions of cellular proteins USF1, TBP, Med25 and EAP, the involvement of which in VZV IE62-dependent viral gene activation has been well characterized. Our experimental results using one-hybrid and bimolecular fluorescence complementation assays demonstrated that 133G4 did not inhibit the recruitment of USF1 or TBP to their binding sites, nor inhibited the direct interactions of VZV IE62 with Med25 and EAP. Thus, 133G4 is a unique anti-VZV and -HCMV compound, which warrants further studies to find out its inhibitory mechanism.
Collapse
Affiliation(s)
- Ryuichi Majima
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Keiko Shindoh
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan; Department of Biosciences, Teikyo University of Science and Technology, Yamanashi, Japan
| | - Toyofumi Yamaguchi
- Department of Biosciences, Teikyo University of Science and Technology, Yamanashi, Japan
| | - Naoki Inoue
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan; Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
6
|
Kim SK, Shakya AK, O'Callaghan DJ. Immunization with Attenuated Equine Herpesvirus 1 Strain KyA Induces Innate Immune Responses That Protect Mice from Lethal Challenge. J Virol 2016; 90:8090-104. [PMID: 27356904 PMCID: PMC5008086 DOI: 10.1128/jvi.00986-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/24/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Equine herpesvirus 1 (EHV-1) is a major pathogen affecting equines worldwide. The virus causes respiratory disease, abortion, and, in some cases, neurological disease. EHV-1 strain KyA is attenuated in the mouse and equine, whereas wild-type strain RacL11 induces severe inflammation of the lung, causing infected mice to succumb at 4 to 6 days postinfection. Our previous results showed that KyA immunization protected CBA mice from pathogenic RacL11 challenge at 2 and 4 weeks postimmunization and that KyA infection elicited protective humoral and cell-mediated immune responses. To investigate the protective mechanisms of innate immune responses to KyA, KyA-immunized mice were challenged with RacL11 at various times postvaccination. KyA immunization protected mice from RacL11 challenge at 1 to 7 days postimmunization. Immunized mice lost less than 10% of their body weight and rapidly regained weight. Virus titers in the lungs of KyA-immunized mice were 1,000-fold lower at 2 days post-RacL11 challenge than virus titers in the lungs of nonimmunized mice, indicating accelerated virus clearance. Affymetrix microarray analysis revealed that gamma interferon (IFN-γ) and 16 antiviral interferon-stimulated genes (ISGs) were upregulated 3.1- to 48.2-fold at 8 h postchallenge in the lungs of RacL11-challenged mice that had been immunized with KyA. Murine IFN-γ inhibited EHV-1 infection of murine alveolar macrophages and protected mice against lethal EHV-1 challenge, suggesting that IFN-γ expression is important in mediating the protection elicited by KyA immunization. These results suggest that EHV-1 KyA may be used as a live attenuated EHV-1 vaccine as well as a prophylactic agent in horses. IMPORTANCE Viral infection of cells initiates a signal cascade of events that ultimately attempts to limit viral replication and prevent infection through the expression of host antiviral proteins. In this study, we show that EHV-1 KyA immunization effectively protected CBA mice from pathogenic RacL11 challenge at 1 to 7 days postvaccination and increased the expression of IFN-γ and 16 antiviral interferon-stimulated genes (ISGs). The administration of IFN-γ blocked EHV-1 replication in murine alveolar macrophages and mouse lungs and protected mice from lethal challenge. To our knowledge, this is the first report of an attenuated EHV-1 vaccine that protects the animal at 1 to 7 days postimmunization by innate immune responses. Our findings suggested that IFN-γ serves as a novel prophylactic agent and may offer new strategies for the development of anti-EHV-1 agents in the equine.
Collapse
Affiliation(s)
- Seong K Kim
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Akhalesh K Shakya
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Dennis J O'Callaghan
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|