1
|
Stevenson EM, Terry S, Copertino D, Leyre L, Danesh A, Weiler J, Ward AR, Khadka P, McNeil E, Bernard K, Miller IG, Ellsworth GB, Johnston CD, Finkelsztein EJ, Zumbo P, Betel D, Dündar F, Duncan MC, Lapointe HR, Speckmaier S, Moran-Garcia N, Papa MP, Nicholes S, Stover CJ, Lynch RM, Caskey M, Gaebler C, Chun TW, Bosque A, Wilkin TJ, Lee GQ, Brumme ZL, Jones RB. SARS CoV-2 mRNA vaccination exposes latent HIV to Nef-specific CD8 + T-cells. Nat Commun 2022; 13:4888. [PMID: 35985993 PMCID: PMC9389512 DOI: 10.1038/s41467-022-32376-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/26/2022] [Indexed: 12/05/2022] Open
Abstract
Efforts to cure HIV have focused on reactivating latent proviruses to enable elimination by CD8+ cytotoxic T-cells. Clinical studies of latency reversing agents (LRA) in antiretroviral therapy (ART)-treated individuals have shown increases in HIV transcription, but without reductions in virologic measures, or evidence that HIV-specific CD8+ T-cells were productively engaged. Here, we show that the SARS-CoV-2 mRNA vaccine BNT162b2 activates the RIG-I/TLR - TNF - NFκb axis, resulting in transcription of HIV proviruses with minimal perturbations of T-cell activation and host transcription. T-cells specific for the early gene-product HIV-Nef uniquely increased in frequency and acquired effector function (granzyme-B) in ART-treated individuals following SARS-CoV-2 mRNA vaccination. These parameters of CD8+ T-cell induction correlated with significant decreases in cell-associated HIV mRNA, suggesting killing or suppression of cells transcribing HIV. Thus, we report the observation of an intervention-induced reduction in a measure of HIV persistence, accompanied by precise immune correlates, in ART-suppressed individuals. However, we did not observe significant depletions of intact proviruses, underscoring challenges to achieving (or measuring) HIV reservoir reductions. Overall, our results support prioritizing the measurement of granzyme-B-producing Nef-specific responses in latency reversal studies and add impetus to developing HIV-targeted mRNA therapeutic vaccines that leverage built-in LRA activity.
Collapse
Affiliation(s)
- Eva M Stevenson
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sandra Terry
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Dennis Copertino
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Louise Leyre
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Ali Danesh
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jared Weiler
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Adam R Ward
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Pragya Khadka
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Evan McNeil
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Kevin Bernard
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Itzayana G Miller
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Grant B Ellsworth
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Carrie D Johnston
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Eli J Finkelsztein
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Weill Cornell Medical College, New York, NY, USA
| | - Doron Betel
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Applied Bioinformatics Core, Weill Cornell Medical College, New York, NY, USA
| | - Friederike Dündar
- Applied Bioinformatics Core, Weill Cornell Medical College, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Maggie C Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Hope R Lapointe
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Sarah Speckmaier
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Nadia Moran-Garcia
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Michelle Premazzi Papa
- Dept of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Samuel Nicholes
- Dept of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Carissa J Stover
- Dept of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Rebecca M Lynch
- Dept of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID, NIH, Bethesda, MD, USA
| | - Alberto Bosque
- Dept of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Timothy J Wilkin
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Guinevere Q Lee
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - R Brad Jones
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
3
|
Wang H, Li P, Zhang M, Bi J, He Y, Li F, Yu R, Gao F, Kong W, Yu B, Chen L, Yu X. Vaccine with bacterium-like particles displaying HIV-1 gp120 trimer elicits specific mucosal responses and neutralizing antibodies in rhesus macaques. Microb Biotechnol 2022; 15:2022-2039. [PMID: 35290714 PMCID: PMC9249329 DOI: 10.1111/1751-7915.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/06/2022] [Indexed: 11/27/2022] Open
Abstract
Preclinical studies have shown that the induction of secretory IgA (sIgA) in mucosa and neutralizing antibodies (NAbs) in sera is essential for designing vaccines that can effectively block the transmission of HIV-1. We previously showed that a vaccine consisting of bacterium-like particles (BLPs) displaying Protan-gp120AE-MTQ (PAM) could induce mucosal immune responses through intranasal (IN) immunization in mice and NAbs through intramuscular (IM) immunization in guinea pigs. Here, we evaluated the ability of this vaccine BLP-PAM to elicit HIV-1-specific mucosal and systemic immune responses through IN and IM immunization combination strategies in rhesus macaques. First, the morphology, antigenicity and epitope accessibility of the vaccine were analysed by transmission electron microscopy, bio-layer interferometry and ELISA. In BLP-PAM-immunized macaques, HIV-1-specific sIgA were rapidly induced through IN immunization in situ and distant mucosal sites, although the immune responses are relatively weak. Furthermore, the HIV-1-specific IgG and IgA antibody levels in mucosal secretions were enhanced and maintained, while production of serum NAbs against heterologous HIV-1 tier 1 and 2 pseudoviruses was elicited after IM boost. Additionally, situ mucosal responses and systemic T cell immune responses were improved by rAd2-gp120AE boost immunization via the IN and IM routes. These results suggested that BLP-based delivery in combination with the IN and IM immunization approach represents a potential vaccine strategy against HIV-1.
Collapse
Affiliation(s)
- Huaiyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mo Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jinpeng Bi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yizi He
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangshen Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Rongzhen Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|