1
|
Parsons MS, Lloyd SB, Lee WS, Kristensen AB, Amarasena T, Center RJ, Keele BF, Lifson JD, LaBranche CC, Montefiori D, Wines BD, Hogarth PM, Swiderek KM, Venturi V, Davenport MP, Kent SJ. Partial efficacy of a broadly neutralizing antibody against cell-associated SHIV infection. Sci Transl Med 2018; 9:9/402/eaaf1483. [PMID: 28794282 DOI: 10.1126/scitranslmed.aaf1483] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 12/08/2016] [Accepted: 05/09/2017] [Indexed: 12/26/2022]
Abstract
Broadly neutralizing antibodies (BnAbs) protect macaques from cell-free simian/human immunodeficiency virus (SHIV) challenge, but their efficacy against cell-associated SHIV is unclear. Virus in cell-associated format is highly infectious, present in transmission-competent bodily fluids, and potentially capable of evading antibody-mediated neutralization. The PGT121 BnAb, which recognizes an epitope consisting of the V3 loop and envelope glycans, mediates antibody-dependent cellular cytotoxicity and neutralization of cell-to-cell HIV-1 transmission. To evaluate whether a BnAb can prevent infection after cell-associated viral challenge, we infused pigtail macaques with PGT121 or an isotype control and challenged animals 1 hour later intravenously with SHIVSF162P3-infected splenocytes. All five controls had high viremia 1 week after challenge. Three of six PGT121-infused animals were completely protected, two of six animals had a 1-week delay in onset of high viremia, and one animal had a 7-week delay in onset of viremia. The infused antibody had decayed on average to 2.0 μg/ml by 1 week after infusion and was well below 1 μg/ml (range, <0.1 to 0.8 μg/ml) by 8 weeks. The animals with a 1-week delay before high viremia had relatively lower plasma concentrations of PGT121. Transfer of 22 million peripheral blood mononuclear cells (PBMCs) stored at weeks 1 to 4 from the animal with the 7-week delayed onset of viremia into uninfected macaques did not initiate infection. Our results show that HIV-1-specific neutralizing antibodies have partial efficacy against cell-associated virus exposure in macaques. We conclude that sustaining high concentrations of bioavailable BnAb is important for protecting against cell-associated virus.
Collapse
Affiliation(s)
- Matthew S Parsons
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.
| | - Sarah B Lloyd
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Anne B Kristensen
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Rob J Center
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.,Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | | | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | | | - Vanessa Venturi
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Miles P Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia. .,Melbourne Sexual Health Centre, Alfred Hospital Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3053, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
2
|
Lloyd SB, Lichtfuss M, Amarasena TH, Alcantara S, De Rose R, Tachedjian G, Alinejad-Rokny H, Venturi V, Davenport MP, Winnall WR, Kent SJ. High fidelity simian immunodeficiency virus reverse transcriptase mutants have impaired replication in vitro and in vivo. Virology 2016; 492:1-10. [PMID: 26896929 DOI: 10.1016/j.virol.2016.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 11/15/2022]
Abstract
The low fidelity of HIV replication facilitates immune and drug escape. Some reverse transcriptase (RT) inhibitor drug-resistance mutations increase RT fidelity in biochemical assays but their effect during viral replication is unclear. We investigated the effect of RT mutations K65R, Q151N and V148I on SIV replication and fidelity in vitro, along with SIV replication in pigtailed macaques. SIVmac239-K65R and SIVmac239-V148I viruses had reduced replication capacity compared to wild-type SIVmac239. Direct virus competition assays demonstrated a rank order of wild-type>K65R>V148I mutants in terms of viral fitness. In single round in vitro-replication assays, SIVmac239-K65R demonstrated significantly higher fidelity than wild-type, and rapidly reverted to wild-type following infection of macaques. In contrast, SIVmac239-Q151N was replication incompetent in vitro and in pigtailed macaques. Thus, we showed that RT mutants, and specifically the common K65R drug-resistance mutation, had impaired replication capacity and higher fidelity. These results have implications for the pathogenesis of drug-resistant HIV.
Collapse
Affiliation(s)
- Sarah B Lloyd
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Marit Lichtfuss
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Thakshila H Amarasena
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Robert De Rose
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Gilda Tachedjian
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia; Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
| | | | - Vanessa Venturi
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wendy R Winnall
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
3
|
Martyushev AP, Petravic J, Grimm AJ, Alinejad-Rokny H, Gooneratne SL, Reece JC, Cromer D, Kent SJ, Davenport MP. Epitope-specific CD8+ T cell kinetics rather than viral variability determine the timing of immune escape in simian immunodeficiency virus infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:4112-21. [PMID: 25825438 DOI: 10.4049/jimmunol.1400793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/01/2015] [Indexed: 11/19/2022]
Abstract
CD8(+) T cells are important for the control of chronic HIV infection. However, the virus rapidly acquires "escape mutations" that reduce CD8(+) T cell recognition and viral control. The timing of when immune escape occurs at a given epitope varies widely among patients and also among different epitopes within a patient. The strength of the CD8(+) T cell response, as well as mutation rates, patterns of particular amino acids undergoing escape, and growth rates of escape mutants, may affect when escape occurs. In this study, we analyze the epitope-specific CD8(+) T cells in 25 SIV-infected pigtail macaques responding to three SIV epitopes. Two epitopes showed a variable escape pattern and one had a highly monomorphic escape pattern. Despite very different patterns, immune escape occurs with a similar delay of on average 18 d after the epitope-specific CD8(+) T cells reach 0.5% of total CD8(+) T cells. We find that the most delayed escape occurs in one of the highly variable epitopes, and that this is associated with a delay in the epitope-specific CD8(+) T cells responding to this epitope. When we analyzed the kinetics of immune escape, we found that multiple escape mutants emerge simultaneously during the escape, implying that a diverse population of potential escape mutants is present during immune selection. Our results suggest that the conservation or variability of an epitope does not appear to affect the timing of immune escape in SIV. Instead, timing of escape is largely determined by the kinetics of epitope-specific CD8(+) T cells.
Collapse
Affiliation(s)
- Alexey P Martyushev
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Janka Petravic
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Andrew J Grimm
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Hamid Alinejad-Rokny
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Shayarana L Gooneratne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jeanette C Reece
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Deborah Cromer
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Miles P Davenport
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| |
Collapse
|
4
|
Korsholm KS, Karlsson I, Tang ST, Brandt L, Agger EM, Aagaard C, Andersen P, Fomsgaard A. Broadening of the T-cell repertoire to HIV-1 Gag p24 by vaccination of HLA-A2/DR transgenic mice with overlapping peptides in the CAF05 adjuvant. PLoS One 2013; 8:e63575. [PMID: 23691069 PMCID: PMC3656914 DOI: 10.1371/journal.pone.0063575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/04/2013] [Indexed: 12/15/2022] Open
Abstract
Induction of broad T-cell immune responses is regarded as critical for vaccines against the human immunodeficiency virus type 1 (HIV-1) which exhibit high diversity and, therefore, focus has been on inducing cytotoxic CD8 T-cell responses against the more conserved parts of the virus, such as the Gag protein. Herein, we have used the p24 protein which contains a range of conserved T-cell epitopes. We demonstrate that a vaccine of HIV-1 subtype B consensus group-specific antigen (Gag) p24 protein with the CD8-inducing liposomal cationic adjuvant formulation (CAF) 05, induces both CD4 and CD8 T-cell responses in CB6F1 mice. The adjuvanted vaccine also induced functional antigen-specific cytotoxicity in vivo. Furthermore, we found that when fragmenting the Gag p24 protein into overlapping Gag p24 peptides, a broader T-cell epitope specificity was induced in the humanized human leukocyte antigen (HLA)-A2/DR-transgenic mouse model. Thus, combining overlapping Gag p24 peptides with CAF05 appears to be a promising and simple strategy for inducing broader T-cell responses to multiple conserved epitopes which will be relevant for both prophylactic and therapeutic HIV-1 vaccines.
Collapse
Affiliation(s)
- Karen S. Korsholm
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ingrid Karlsson
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Sheila T. Tang
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Lea Brandt
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Fomsgaard
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
5
|
Trivalent live attenuated influenza-simian immunodeficiency virus vaccines: efficacy and evolution of cytotoxic T lymphocyte escape in macaques. J Virol 2013; 87:4146-60. [PMID: 23345519 DOI: 10.1128/jvi.02645-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is an urgent need for a human immunodeficiency virus (HIV) vaccine that induces robust mucosal immunity. CD8(+) cytotoxic T lymphocytes (CTLs) apply substantial antiviral pressure, but CTLs to individual epitopes select for immune escape variants in both HIV in humans and SIV in macaques. Inducing multiple simian immunodeficiency virus (SIV)-specific CTLs may assist in controlling viremia. We vaccinated 10 Mane-A1*08401(+) female pigtail macaques with recombinant influenza viruses expressing three Mane-A1*08401-restricted SIV-specific CTL epitopes and subsequently challenged the animals, along with five controls, intravaginally with SIV(mac251). Seroconversion to the influenza virus vector resulted and small, but detectable, SIV-specific CTL responses were induced. There was a boost in CTL responses after challenge but no protection from high-level viremia or CD4 depletion was observed. All three CTL epitopes underwent a coordinated pattern of immune escape during early SIV infection. CTL escape was more rapid in the vaccinees than in the controls at the more dominant CTL epitopes. Although CTL escape can incur a "fitness" cost to the virus, a putative compensatory mutation 20 amino acids upstream from an immunodominant Gag CTL epitope also evolved soon after the primary CTL escape mutation. We conclude that vaccines based only on CTL epitopes will likely be undermined by rapid evolution of both CTL escape and compensatory mutations. More potent and possibly broader immune responses may be required to protect pigtail macaques from SIV.
Collapse
|
6
|
Circumventing antivector immunity by using adenovirus-infected blood cells for repeated application of adenovirus-vectored vaccines: proof of concept in rhesus macaques. J Virol 2012; 86:11031-42. [PMID: 22855499 DOI: 10.1128/jvi.00783-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus has been extensively exploited as a vector platform for delivering vaccines. However, preexisting antiadenovirus immunity is the major stumbling block for application of adenovirus-vectored vaccines. In this study, we found that freshly isolated peripheral blood mononuclear cells (PBMCs), mostly CD14(+) cells, from adenovirus serotype 5 (Ad5)-seropositive primates (humans and rhesus macaques) can be efficiently infected with Ad5 in vitro. On the basis of this observation, a novel strategy based on adenoviral vector-infected PBMC (AVIP) immunization was explored to circumvent antivector immunity. Autologous infusion of Ad5-SIVgag-infected PBMCs elicited a strong Gag-specific cellular immune response but induced weaker Ad5-neutralizing antibody (NAb) in Ad5-seronegative macaques than in macaques intramuscularly injected with Ad5-SIVgag. Moreover, Ad5-seropositive macaques receiving multiple AVIP immunizations with Ad5-SIVenv, Ad5-SIVgag, and Ad5-SIVpol vaccines elicited escalated Env-, Gag-, and Pol-specific immune responses after each immunization that were significantly greater than those in macaques intramuscularly injected with these Ad5-SIV vaccines. After challenged intravenously with a highly pathogenic SIVmac239 virus, macaques receiving AVIP immunization demonstrated a significant reduction in viral load at both the peak time and set-point period compared with macaques without Ad5-SIV vaccines. Our study warranted further research and development of the AVIP immunization as a platform for repeated applications of adenovirus-vectored vaccines.
Collapse
|
7
|
Jegaskanda S, Reece JC, De Rose R, Stambas J, Sullivan L, Brooks AG, Kent SJ, Sexton A. Comparison of influenza and SIV specific CD8 T cell responses in macaques. PLoS One 2012; 7:e32431. [PMID: 22403659 PMCID: PMC3293803 DOI: 10.1371/journal.pone.0032431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/30/2012] [Indexed: 12/12/2022] Open
Abstract
Macaques are a potentially useful non-human primate model to compare memory T-cell immunity to acute virus pathogens such as influenza virus and effector T-cell responses to chronic viral pathogens such as SIV. However, immunological reagents to study influenza CD8+ T-cell responses in the macaque model are limited. We recently developed an influenza-SIV vaccination model of pigtail macaques (Macaca nemestrina) and used this to study both influenza-specific and SIV-specific CD8+ T-cells in 39 pigtail macaques expressing the common Mane-A*10+ (Mane-A01*084) MHC-I allele. To perform comparative studies between influenza and SIV responses a common influenza nucleoprotein-specific CD8+ T-cell response was mapped to a minimal epitope (termed RA9), MHC-restricted to Mane-A*10 and an MHC tetramer developed to study this response. Influenza-specific memory CD8+ T-cell response maintained a highly functional profile in terms of multitude of effector molecule expression (CD107a, IFN-γ, TNF-α, MIP-1β and IL-2) and showed high avidity even in the setting of SIV infection. In contrast, within weeks following active SIV infection, SIV-specific CD8+ effector T-cells expressed fewer cytokines/degranulation markers and had a lower avidity compared to influenza specific CD8+ T-cells. Further, the influenza specific memory CD8 T-cell response retained stable expression of the exhaustion marker programmed death-marker-1 (PD-1) and co-stimulatory molecule CD28 following infection with SIV. This contrasted with the effector SIV-specific CD8+ T-cells following SIV infection which expressed significantly higher amounts of PD-1 and lower amounts of CD28. Our results suggest that strategies to maintain a more functional CD8+ T-cell response, profile may assist in controlling HIV disease.
Collapse
Affiliation(s)
- Sinthujan Jegaskanda
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kim JM, Han SH. Immunotherapeutic restoration in HIV-infected individuals. Immunotherapy 2011; 3:247-67. [PMID: 21322762 DOI: 10.2217/imt.10.91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
While the development of combined active antiretroviral therapy (cART) has dramatically improved life expectancies and quality of life in HIV-infected individuals, long-term clinical problems, such as metabolic complications, remain important constraints of life-long cART. Complete immune restoration using only cART is normally unattainable even in cases of sufficient plasma viral suppression. The need for immunologic adjuncts that complement cART remains, because while cART alone may result in the complete recovery of peripheral net CD4+ T lymphocytes, it may not affect the reservoir of HIV-infected cells. Here, we review current immunotherapies for HIV infection, with a particular emphasis on recent advances in cytokine therapies, therapeutic immunization, monoclonal antibodies, immune-modulating drugs, nanotechnology-based approaches and radioimmunotherapy.
Collapse
Affiliation(s)
- June Myung Kim
- Department of Internal Medicine & AIDS Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Korea.
| | | |
Collapse
|
9
|
Pistello M, Conti F, Vannucci L, Freer G. Novel approaches to vaccination against the feline immunodeficiency virus. Vet Immunol Immunopathol 2010; 134:48-53. [PMID: 19896725 DOI: 10.1016/j.vetimm.2009.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Inadequate antigen presentation and/or suboptimal immunogenicity are considered major causes in the failure of human immunodeficiency vaccine to adequately protect against wild-type virus. Several approaches have been attempted to circumvent these hurdles. Here we reviewed some recent vaccinal strategies tested against the feline immunodeficiency virus and focused on: (i) improving antigen presentation by taking advantage of the exquisite ability of dendritic cells to process and present immunogens to the immune system; (ii) boosting immune responses with vaccinal antigens presented in a truly native conformation by the natural target cells of infection. Significance of the studies, possible correlates of protection involved, and implications for developing anti-human immunodeficiency virus vaccines are discussed.
Collapse
Affiliation(s)
- Mauro Pistello
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy.
| | | | | | | |
Collapse
|
10
|
Thrombocytopenia is strongly associated with simian AIDS in pigtail macaques. J Acquir Immune Defic Syndr 2009; 51:374-9. [PMID: 19461525 DOI: 10.1097/qai.0b013e3181a9cbcf] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Simian AIDS has a variable time course and presentation making it difficult to define disease effects of progressive simian immunodeficiency virus (SIV) infection. We commonly observed thrombocytopenia (TCP) associated with progressive SIV infection of pigtail macaques (Macaca nemestrina). We therefore analyzed the relationship between platelet counts, viral load (VL), and CD4 T-cell levels in 44 unselected macaques with chronic SIV infection. Persistent TCP was observed in 70% of pigtail macaques infected with SIVmac251 for up to 77 weeks in the absence of clinically significant bleeding. The presence of TCP correlated with higher SIV plasma VLs and depressed total and memory CD4 T cells. TCP was more common in macaques requiring euthanasia for incipient AIDS than macaques that survived to the end of the studies, although VL and CD4 T-cell decline were stronger independent predictors of AIDS-free survival. There was however no clear correlation between the development of TCP and immune activation as measured by plasma soluble CD14. We conclude that TCP is a useful end point to analyze SIV studies in pigtail macaques.
Collapse
|
11
|
Soloff AC, Liu X, Gao W, Day RD, Gambotto A, Barratt-Boyes SM. Adenovirus 5- and 35-based immunotherapy enhances the strength but not breadth or quality of immunity during chronic SIV infection. Eur J Immunol 2009; 39:2437-49. [DOI: 10.1002/eji.200839130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe the current status of immunotherapies for the treatment of HIV-1 infection. This review is timely, as the results of the phase III clinical trials of recombinant interleukin-2 (rIL-2) as adjuncts to combination antiretroviral therapy are about to be released. RECENT FINDINGS For many years, the use of rIL-2 in HIV-infected individuals has been explored. Although the results of the clinical endpoint studies of rIL-2 are awaited, there are now further data for rIL-2 as a stand-alone therapy for the treatment of HIV. Maraviroc, a recently approved anti-HIV agent, is a small molecule antagonist of human chemokine receptor-5. The recent observation that maraviroc-treated patients achieved higher CD4 and CD8 T-cell counts compared with comparator regimens (without a chemokine receptor-5 antagonist) for equivalent viral load reductions has fueled interest in using these host-directed therapies to enhance immune restoration. SUMMARY This review summarizes the most recent clinical data for rIL-2 and reviews other immunotherapies in earlier development including cytokines rIL-7, rIL-15, rIL-21, new therapeutic vaccination approaches including infusion of overlapping HIV peptides and dendritic cell immunotherapy and novel agents including luteinizing hormone-releasing hormone analogues and vitamin D3-binding protein macrophage activating factor.
Collapse
Affiliation(s)
- Sarah L Pett
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Darlinghurst, New South Wales 2010, Australia.
| |
Collapse
|
13
|
Induction of novel CD8+ T-cell responses during chronic untreated HIV-1 infection by immunization with subdominant cytotoxic T-lymphocyte epitopes. AIDS 2009; 23:1329-40. [PMID: 19528789 DOI: 10.1097/qad.0b013e32832d9b00] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate the potential to induce additional cytotoxic T-lymphocyte (CTL) immunity during chronic HIV-1 infection. DESIGN We selected infrequently targeted or subdominant but conserved HLA-A*0201-binding epitopes in Gag, Pol, Env, Vpu and Vif. These relatively immune silent epitopes were modified as anchor-optimized peptides to improve immunogenicity and delivered on autologous monocyte-derived dendritic cells (MDDCs). METHODS Twelve treatment-naïve HLA-A*0201 HIV-1-infected Danish individuals received 1 x 10 MDDCs subcutaneously (s.c.) (weeks 0, 2, 4 and 8), pulsed with seven CD8 T-cell epitopes and three CD4 T-cell epitopes. Epitope-specific responses were evaluated by intracellular cytokine staining for interferon-gamma, tumor necrosis factor alpha and interleukin-2 and/or pentamer labeling 3 weeks prior to, 10 weeks after and 32 weeks after the first immunization. RESULTS Previously undetected T-cell responses specific for one or more epitopes were induced in all 12 individuals. Half of the participants had sustained CD4 T-cell responses 32 weeks after immunization. No severe adverse effects were observed. No overall or sustained change in viral load or CD4 T-cell counts was observed. CONCLUSION These data show that it is possible to generate new T-cell responses in treatment-naive HIV-1-infected individuals despite high viral loads, and thereby redirect immunity to target new multiple and rationally selected subdominant CTL epitopes. Further optimization could lead to stronger and more durable cellular responses to selected epitopes with the potential to control viral replication and prevent disease in HIV-1-infected individuals.
Collapse
|