1
|
Gao C, Xiao C, Wang M, Liang X, Qin C, Zhang H, Bai R, Zhang R, Feng W, Yang J, Tang J. HIF-1 Transcriptionally Regulates Basal Expression of STING to Maintain Cellular Innate Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:494-505. [PMID: 38967520 DOI: 10.4049/jimmunol.2400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Stimulator of IFN genes (STING) is a critical component of the innate immune system, playing an essential role in defending against DNA virus infections. However, the mechanisms governing basal STING regulation remain poorly understood. In this study, we demonstrate that the basal level of STING is critically maintained by hypoxia-inducible factor 1 (HIF-1)α through transcription. Under normal conditions, HIF-1α binds constitutively to the promoter region of STING, actively promoting its transcription. Knocking down HIF-1α results in a decrease in STING expression in multiple cell lines and zebrafish, which in turn reduces cellular responses to synthetic dsDNAs, including cell signaling and IFN production. Moreover, this decrease in STING levels leads to an increase in cellular susceptibility to DNA viruses HSV-1 and pseudorabies virus. These findings unveil a (to our knowledge) novel role of HIF-1α in maintaining basal STING levels and provide valuable insights into STING-mediated antiviral activities and associated diseases.
Collapse
Affiliation(s)
- Chao Gao
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chenglu Xiao
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengdong Wang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinxin Liang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chao Qin
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hang Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rulan Bai
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rui Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenhai Feng
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinbo Yang
- Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jun Tang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Chengyue W, Mengdong W, Xiaoquan W, Yeping C, Hao L, Liumei S, Jianle R, Zhendong Z. TRIM26 facilitates PRV infection through NDP52-mediated autophagic degradation of MAVS. Vet Res 2024; 55:84. [PMID: 38965634 PMCID: PMC11225307 DOI: 10.1186/s13567-024-01336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 07/06/2024] Open
Abstract
Pseudorabies virus (PRV) has evolved multiple strategies to evade host antiviral responses to benefit virus replication and establish persistent infection. Recently, tripartite motif 26 (TRIM26), a TRIM family protein, has been shown to be involved in a broad range of biological processes involved in innate immunity, especially in regulating viral infection. Herein, we found that the expression of TRIM26 was significantly induced after PRV infection. Surprisingly, the overexpression of TRIM26 promoted PRV production, while the depletion of this protein inhibited virus replication, suggesting that TRIM26 could positively regulate PRV infection. Further analysis revealed that TRIM26 negatively regulates the innate immune response by targeting the RIG-I-triggered type I interferon signalling pathway. TRIM26 was physically associated with MAVS independent of viral infection and reduced MAVS expression. Mechanistically, we found that NDP52 interacted with both TRIM26 and MAVS and that TRIM26-induced MAVS degradation was almost entirely blocked in NDP52-knockdown cells, demonstrating that TRIM26 degrades MAVS through NDP52-mediated selective autophagy. Our results reveal a novel mechanism by which PRV escapes host antiviral innate immunity and provide insights into the crosstalk among virus infection, autophagy, and the innate immune response.
Collapse
Affiliation(s)
- Wu Chengyue
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Wang Mengdong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Wang Xiaoquan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Chen Yeping
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Li Hao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Sun Liumei
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Ren Jianle
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Zhang Zhendong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.
| |
Collapse
|
3
|
Wang D, Chen D, Xu S, Wei F, Zhao H. Comparative proteomic analysis of PK-15 cells infected with wild-type strain and its EP0 gene-deleted mutant strain of pseudorabies virus. J Vet Sci 2024; 25:e54. [PMID: 39083206 PMCID: PMC11291433 DOI: 10.4142/jvs.24069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 08/02/2024] Open
Abstract
IMPORTANCE As one of the main etiologic agents of infectious diseases in pigs, pseudorabies virus (PRV) infections have caused enormous economic losses worldwide. EP0, one of the PRV early proteins (EP) plays a vital role in PRV infections, but the mechanisms are unclear. OBJECTIVE This study examined the function of EP0 to provide a direction for its in-depth analysis. METHODS In this study, the EP0-deleted PRV mutant was obtained, and Tandem Mass Tag-based proteomic analysis was used to screen the differentially expressed proteins (DEPs) quantitatively in EP0-deleted PRV- or wild-type PRV-infected porcine kidney 15 cells. RESULTS This study identified 7,391 DEPs, including 120 and 21 up-regulated and down-regulated DEPs, respectively. Western blot analysis confirmed the changes in the expression of the selected proteins, such as speckled protein 100. Comprehensive analysis revealed 141 DEPs involved in various biological processes and molecular functions, such as transcription regulator activity, biological regulation, and localization. CONCLUSIONS AND RELEVANCE These results holistically outlined the functions of EP0 during a PRV infection and might provide a direction for more detailed function studies of EP0 and the stimulation of lytic PRV infections.
Collapse
Affiliation(s)
- Di Wang
- School of Agroforestry and Medicine, The Open University of China, Beijing 100039, China
| | - Dongjie Chen
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Shengkui Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Fang Wei
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hongyuan Zhao
- School of Modern Agriculture & Biotechnology, Ankang University, Ankang 725000, China.
| |
Collapse
|
4
|
Zhou Y, Li T, Zhang Y, Zhang N, Guo Y, Gao X, Peng W, Shu S, Zhao C, Cui D, Sun H, Sun Y, Liu J, Tang J, Zhang R, Pu J. BAG6 inhibits influenza A virus replication by inducing viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly. PLoS Pathog 2024; 20:e1012110. [PMID: 38498560 PMCID: PMC10977894 DOI: 10.1371/journal.ppat.1012110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/28/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
The interaction between influenza A virus (IAV) and host proteins is an important process that greatly influences viral replication and pathogenicity. PB2 protein is a subunit of viral ribonucleoprotein (vRNP) complex playing distinct roles in viral transcription and replication. BAG6 (BCL2-associated athanogene 6) as a multifunctional host protein participates in physiological and pathological processes. Here, we identify BAG6 as a new restriction factor for IAV replication through targeting PB2. For both avian and human influenza viruses, overexpression of BAG6 reduced viral protein expression and virus titers, whereas deletion of BAG6 significantly enhanced virus replication. Moreover, BAG6-knockdown mice developed more severe clinical symptoms and higher viral loads upon IAV infection. Mechanistically, BAG6 restricted IAV transcription and replication by inhibiting the activity of viral RNA-dependent RNA polymerase (RdRp). The co-immunoprecipitation assays showed BAG6 specifically interacted with the N-terminus of PB2 and competed with PB1 for RdRp complex assembly. The ubiquitination assay indicated that BAG6 promoted PB2 ubiquitination at K189 residue and targeted PB2 for K48-linked ubiquitination degradation. The antiviral effect of BAG6 necessitated its N-terminal region containing a ubiquitin-like (UBL) domain (17-92aa) and a PB2-binding domain (124-186aa), which are synergistically responsible for viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly. These findings unravel a novel antiviral mechanism via the interaction of viral PB2 and host protein BAG6 during avian or human influenza virus infection and highlight a potential application of BAG6 for antiviral drug development.
Collapse
Affiliation(s)
- Yong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tian Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yunfan Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nianzhi Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuxin Guo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyi Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenjing Peng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sicheng Shu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuankuo Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rui Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Dong JG, Chen MR, Rao D, Zhang N, He S, Na L. Genome-wide analysis of long noncoding RNA profiles in pseudorabies-virus-infected PK15 cells. Arch Virol 2023; 168:240. [PMID: 37668724 DOI: 10.1007/s00705-023-05859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023]
Abstract
Recently, an increasing number of studies have shown that long noncoding RNAs (lncRNAs) are involved in host metabolism after infection with pseudorabies virus (PRV). In our study, via RNA sequencing analysis, a total of 418 mRNAs, 137 annotated lncRNAs, and 312 new lncRNAs were found to be differentially expressed. These lncRNAs were closely associated with metabolic regulation and immunity-related signalling pathways, including the T-cell receptor signalling pathway, chemokine signalling pathway, mitogen-activated protein kinase (MAPK) signalling pathway, TNF signalling pathway, Ras signalling pathway, calcium signalling pathway, and phosphatidylinositol signalling system. Real-time PCR indicated that several mRNAs and lncRNAs involved in the regulation of the immune effector process, T-cell receptor signalling pathway, TNF signalling pathway, MAPK signalling pathway, and chemokine signalling pathways were significantly expressed. These mRNAs and lncRNAs might play a role in PRV infection.
Collapse
Affiliation(s)
- Jian-Guo Dong
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Ming-Rui Chen
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Dan Rao
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Ning Zhang
- Jiangsu Vocational College Agriculture and Forestry, Jurong, 212400, China
- Henan Fengyuan Hepu Agriculture and Animal Husbandry Co. LTD, Zhumadian, 463900, China
| | - Shuhai He
- School of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, China.
| | - Lei Na
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Wang M, Song J, Gao C, Yu C, Qin C, Lang Y, Xu A, Liu Y, Feng W, Tang J, Zhang R. UHRF1 Deficiency Inhibits Alphaherpesvirus through Inducing RIG-I-IRF3-Mediated Interferon Production. J Virol 2023; 97:e0013423. [PMID: 36916938 PMCID: PMC10062162 DOI: 10.1128/jvi.00134-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023] Open
Abstract
Type I interferon (IFN-I) response plays a prominent role in innate immunity, which is frequently modulated during viral infection. Here, we report DNA methylation regulator UHRF1 as a potent negative regulator of IFN-I induction during alphaherpesvirus infection, whereas the viruses in turn regulates the transcriptional expression of UHRF1. Knockdown of UHRF1 in cells significantly increases interferon-β (IFN-β)-mediated gene transcription and viral inhibition against herpes simplex virus 1 (HSV1) and pseudorabies virus (PRV). Mechanistically, UHRF1 deficiency promotes IFN-I production by triggering dsRNA-sensing receptor RIG-I and activating IRF3 phosphorylation. Knockdown of UHRF1 in cells upregulates the accumulation of double-stranded RNA (dsRNA), including host endogenous retroviral sequence (ERV) transcripts, while the treatment of RNase III, known to specifically digest dsRNA, prevents IFN-β induction by siUHRF1. Furthermore, the double-knockdown assay of UHRF1 and DNA methyltransferase DNMT1 suggests that siUHRF1-mediated DNA demethylation may play an important role in dsRNA accumulation and subsequently IFN induction. These findings establish the essential role of UHRF1 in IFN-I-induced antiviral immunity and reveal UHRF1 as a potential antivrial target. IMPORTANCE Alphaherpesviruses can establish lifelong infections and cause many diseases in humans and animals, which rely partly on their interaction with IFN-mediated innate immune response. Using alphaherpesviruses PRV and HSV-1 as models, we identified an essential role of DNA methylation regulator UHRF1 in IFN-mediated immunity against virus replication, which unravels a novel mechanism employed by epigenetic factor to control IFN-mediated antiviral immune response and highlight UHRF1, which might be a potential target for antiviral drug development.
Collapse
Affiliation(s)
- Mengdong Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Song
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chao Gao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Cuilian Yu
- College of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chao Qin
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yue Lang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Aotian Xu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yun Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenhai Feng
- College of Biology, China Agricultural University, Beijing, China
| | - Jun Tang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rui Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Nie Z, Zhu S, Wu L, Sun R, Shu J, He Y, Feng H. Progress on innate immune evasion and live attenuated vaccine of pseudorabies virus. Front Microbiol 2023; 14:1138016. [PMID: 36937252 PMCID: PMC10020201 DOI: 10.3389/fmicb.2023.1138016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Pseudorabies virus (PRV) is a highly infectious disease that can infect most mammals, with pigs as the only natural host, has caused considerable economic losses to the pig husbandry of the world. Innate immunity is the first defense line of the host against the attack of pathogens and is essential for the proper establishment of adaptive immunity. The host uses the innate immune response to against the invasion of PRV; however PRV makes use of various strategies to inhibit the innate immunity to promote the virus replication. Currently, live attenuated vaccine is used to prevent pig from infection with the PRV worldwide, such as Bartha K61. However, a growing number of data indicates that these vaccines do not provide complete protection against new PRV variants that have emerged since late 2011. Here we summarized the interactions between PRV and host innate immunity and the current status of live attenuated PRV vaccines to promote the development of novel and more effective PRV vaccines.
Collapse
Affiliation(s)
- Zhenyu Nie
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ruolin Sun
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Huapeng Feng,
| |
Collapse
|
8
|
Yin Y, Ma J, Van Waesberghe C, Devriendt B, Favoreel HW. Pseudorabies virus-induced expression and antiviral activity of type I or type III interferon depend on the type of infected epithelial cell. Front Immunol 2022; 13:1016982. [PMID: 36405751 PMCID: PMC9666427 DOI: 10.3389/fimmu.2022.1016982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Type I and III Interferons (IFNs) are the initial antiviral cytokines produced in response to virus infection. These IFNs in turn bind to their respective receptors, trigger JAK-STAT signaling and induce the expression of IFN-stimulated genes (ISGs) to engage antiviral functions. Unlike the receptor for type I IFNs, which is broadly expressed, the expression of the type III IFN receptor is mainly confined to epithelial cells that line mucosal surfaces. Accumulating evidence has shown that type III IFNs may play a unique role in protecting mucosal surfaces against viral challenges. The porcine alphaherpesvirus pseudorabies virus (PRV) causes huge economic losses to the pig industry worldwide. PRV first replicates in the respiratory tract, followed by spread via neurons and via lymph and blood vessels to the central nervous system and internal organs, e.g. the kidney, lungs and intestinal tract. In this study, we investigate whether PRV triggers the expression of type I and III IFNs and whether these IFNs exert antiviral activity against PRV in different porcine epithelial cells: porcine kidney epithelial cells (PK-15), primary respiratory epithelial cells (PoREC) and intestinal porcine epithelial cells (IPEC-J2). We show that PRV triggers a multiplicity of infection-dependent type I IFN response and a prominent III IFN response in PK-15 cells, a multiplicity of infection-dependent expression of both types of IFN in IPEC-J2 cells and virtually no expression of either IFN in PoREC. Pretreatment of the different cell types with equal amounts of porcine IFN-λ3 (type III IFN) or porcine IFN-α (type I IFN) showed that IFN-α, but not IFN-λ3, suppressed PRV replication and spread in PK-15 cells, whereas the opposite was observed in IPEC-J2 cells and both types of IFN showed anti-PRV activity in PoREC cells, although the antiviral activity of IFN-α was more potent than that of IFN-λ3 in the latter cell type. In conclusion, the current data show that PRV-induced type I and III IFN responses and their antiviral activity depend to a large extent on the epithelial cell type used, and for the first time show that type III IFN displays antiviral activity against PRV in epithelial cells from the respiratory and particularly the intestinal tract.
Collapse
|