1
|
Uc PY, Miranda J, Raya-Sandino A, Alarcón L, Roldán ML, Ocadiz-Delgado R, Cortés-Malagón EM, Chávez-Munguía B, Ramírez G, Asomoza R, Shoshani L, Gariglio P, González-Mariscal L. E7 oncoprotein from human papillomavirus 16 alters claudins expression and the sealing of epithelial tight junctions. Int J Oncol 2020; 57:905-924. [PMID: 32945372 PMCID: PMC7473757 DOI: 10.3892/ijo.2020.5105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/16/2020] [Indexed: 11/24/2022] Open
Abstract
Tight junctions (TJs) are cell-cell adhesion structures frequently altered by oncogenic transformation. In the present study the role of human papillomavirus (HPV) 16 E7 oncoprotein on the sealing of TJs was investigated and also the expression level of claudins in mouse cervix and in epithelial Madin-Darby Canine Kidney (MDCK) cells. It was found that there was reduced expression of claudins -1 and -10 in the cervix of 7-month-old transgenic K14E7 mice treated with 17β-estradiol (E2), with invasive cancer. In addition, there was also a transient increase in claudin-1 expression in the cervix of 2-month-old K14E7 mice, and claudin-10 accumulated at the border of cells in the upper layer of the cervix in FvB mice treated with E2, and in K14E7 mice treated with or without E2. These changes were accompanied by an augmented paracellular permeability of the cervix in 2- and 7-monthold FvB mice treated with E2, which became more pronounced in K14E7 mice treated with or without E2. In MDCK cells the stable expression of E7 increased the space between adjacent cells and altered the architecture of the monolayers, induced the development of an acute peak of transepithelial electrical resistance accompanied by a reduced expression of claudins -1, -2 and -10, and an increase in claudin-4. Moreover, E7 enhances the ability of MDCK cells to migrate through a 3D matrix and induces cell stiffening and stress fiber formation. These observations revealed that cell transformation induced by HPV16 E7 oncoprotein was accompanied by changes in the pattern of expression of claudins and the degree of sealing of epithelial TJs.
Collapse
Affiliation(s)
- Perla Yaceli Uc
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Arturo Raya-Sandino
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - María Luisa Roldán
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Rodolfo Ocadiz-Delgado
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Enoc Mariano Cortés-Malagón
- Research Unit on Genetics and Cancer, Research Division, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Georgina Ramírez
- Department of Electrical Engineering, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - René Asomoza
- Department of Electrical Engineering, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Liora Shoshani
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| |
Collapse
|
2
|
Kodigepalli KM, Li M, Bonifati S, Panfil AR, Green PL, Liu SL, Wu L. SAMHD1 inhibits epithelial cell transformation in vitro and affects leukemia development in xenograft mice. Cell Cycle 2018; 17:2564-2576. [PMID: 30474474 DOI: 10.1080/15384101.2018.1550955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a mammalian dNTP hydrolase (dNTPase) and functions as a negative regulator in the efficacy of cytarabine treatment of acute myeloid leukemia (AML). We have reported that SAMHD1 knockout (KO) increased the activity of phosphoinositide 3-kinase (PI3K) in AML-derived THP-1 cells and attenuated their ability to form subcutaneous tumors in xenografted immunodeficient mice. However, the functional significance of SAMHD1 in controlling AML leukemogenesis remains unclear. Previous studies show that in vitro transformation of Madin-Darby canine kidney (MDCK) epithelial cells by the Jaagsiekte sheep retrovirus (JSRV) envelope protein requires activation of the PI3K/Akt oncogenic signaling pathway. Using this cell transformation model, we demonstrated that ectopic expression of wild-type human SAMHD1 or a dNTPase-defective SAMHD1 mutant (HD/AA) significantly inhibited MDCK cell transformation, but did not affect cell proliferation. To visualize and quantify THP-1 cell growth and metastasis in xenografted immunodeficient mice, we generated luciferase-expressing stable SAMHD1 KO THP-1 cells and control THP-1 cells, which were injected intravenously into immunodeficient mice. Bioluminescence imaging and quantification analysis of xenografted mice revealed that SAMHD1 KO cell-derived tumors had similar growth and metastatic potential compared with control cells at 35 days post-injection. However, mice xenografted with SAMHD1 KO cells showed greater survival compared with mice injected with control cells. Our data suggest that exogenous SAMHD1 expression suppresses in vitro cell transformation independently of its dNTPase activity, and that endogenous SAMHD1 affects AML tumorigenicity and disease progression in vivo.
Collapse
Affiliation(s)
- Karthik M Kodigepalli
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Minghua Li
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Serena Bonifati
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Amanda R Panfil
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Patrick L Green
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA.,b Department of Cancer Biology and Genetics , The Ohio State University , Columbus , OH , USA.,c Comprehensive Cancer Center, The Ohio State University , Columbus , OH , USA
| | - Shan-Lu Liu
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA.,d Department of Microbial Infection and Immunity , The Ohio State University , Columbus , OH , USA
| | - Li Wu
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA.,c Comprehensive Cancer Center, The Ohio State University , Columbus , OH , USA.,d Department of Microbial Infection and Immunity , The Ohio State University , Columbus , OH , USA
| |
Collapse
|
3
|
Rosales Gerpe MC, van Vloten JP, Santry LA, de Jong J, Mould RC, Pelin A, Bell JC, Bridle BW, Wootton SK. Use of Precision-Cut Lung Slices as an Ex Vivo Tool for Evaluating Viruses and Viral Vectors for Gene and Oncolytic Therapy. Mol Ther Methods Clin Dev 2018; 10:245-256. [PMID: 30112421 PMCID: PMC6092314 DOI: 10.1016/j.omtm.2018.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/26/2018] [Indexed: 12/31/2022]
Abstract
Organotypic slice cultures recapitulate many features of an intact organ, including cellular architecture, microenvironment, and polarity, making them an ideal tool for the ex vivo study of viruses and viral vectors. Here, we describe a procedure for generating precision-cut ovine and murine tissue slices from agarose-perfused normal and murine melanoma tumor-bearing lungs. Furthermore, we demonstrate that these precision-cut lung slices can be maintained up to 1 month and can be used for a range of applications, which include characterizing the tissue tropism of viruses that cannot be propagated in cell monolayers, evaluating the transducing properties of gene therapy vectors, and, finally, investigating the tumor specificity of oncolytic viruses. Our results suggest that ex vivo lung slices are an ideal platform for studying the tissue specificity and cancer cell selectivity of gene therapy vectors and oncolytic viruses prior to in vivo studies, providing justification for pre-clinical work.
Collapse
Affiliation(s)
| | - Jacob P. van Vloten
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lisa A. Santry
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jondavid de Jong
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Robert C. Mould
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Adrian Pelin
- Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - John C. Bell
- Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Sun X, Du F, Liu S. Modulation of autophagy in exJSRV-env-transfected cells through the Akt/mTOR and MAPK signaling pathway. Biochem Biophys Res Commun 2017; 485:672-678. [PMID: 28235485 DOI: 10.1016/j.bbrc.2017.02.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 12/17/2022]
Abstract
The envelope (Env) of Jaagsiekte sheep retrovirus (JSRV) is an oncoprotein of ovine pulmonary adenocarcinoma (OPA). Autophagy is involved in different cancers, but how it is carcinogenic in JSRV Env is unclear. Modulation of autophagy in exJSRV-env-NM-transfected cells through the Akt/mTOR and MAPK signaling pathway was studied, and we observed strong positive labeling of p-Akt, p-mTOR, p-MEK1/2, p-ERK1/2, p-p38 and p-JNK in tumor cells and typical type II pneumocytes in naturally infected OPA lung tissues, which was co-aligned with JSRV-Env positive cells as shown by immunohistochemical and microscopic analysis. Akt/mTOR and MAPK pathways were activated in OPA lung and JSRV-Env transfected NIH 3T3 cells. Decreased Beclin1 and LC3 II/I suggested that autophagy was inhibited in OPA lung and JSRV-Env transfected NIH 3T3 cells. Beclin1 and LC3 II/I increased in JSRV-Env transfected NIH3T3 cells treated with mTOR inhibitor (rapamycin), ERK1/2 inhibitor (PD 98059), p38 inhibitor (SB 203580) and JNK inhibitor (SP 600125), suggesting that Akt/mTOR and MAPK pathways were responsible for JSRV-Env decreased autophagy. In conclusion, JSRV Env decreased autophagy in JSRV-Env transfected NIH3T3 cells through Akt/mTOR and MAPK pathways, in particular, JNK and p38 pathways.
Collapse
Affiliation(s)
- Xiaolin Sun
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China.
| | - Fangyuan Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Shuying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China.
| |
Collapse
|
5
|
Youssef G, Wallace WAH, Dagleish MP, Cousens C, Griffiths DJ. Ovine pulmonary adenocarcinoma: a large animal model for human lung cancer. ILAR J 2016; 56:99-115. [PMID: 25991702 DOI: 10.1093/ilar/ilv014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Recent progress in understanding the molecular pathogenesis of this disease has resulted in novel therapeutic strategies targeting specific groups of patients. Further studies are required to provide additional advances in diagnosis and treatment. Animal models are valuable tools for studying oncogenesis in lung cancer, particularly during the early stages of disease where tissues are rarely available from human cases. Mice have traditionally been used for studying lung cancer in vivo, and a variety of spontaneous and transgenic models are available. However, it is recognized that other species may also be informative for studies of cancer. Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring lung cancer of sheep caused by retrovirus infection and has several features in common with adenocarcinoma of humans, including a similar histological appearance and activation of common cell signaling pathways. Additionally, the size and organization of human lungs are much closer to those of sheep lungs than to those of mice, which facilitates experimental approaches in sheep that are not available in mice. Thus OPA presents opportunities for studying lung tumor development that can complement conventional murine models. Here we describe the potential applications of OPA as a model for human lung adenocarcinoma with an emphasis on the various in vivo and in vitro experimental systems available.
Collapse
Affiliation(s)
- Gehad Youssef
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - William A H Wallace
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - Mark P Dagleish
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - Chris Cousens
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - David J Griffiths
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| |
Collapse
|
6
|
Early Steps of Jaagsiekte Sheep Retrovirus-Mediated Cell Transformation Involve the Interaction between Env and the RALBP1 Cellular Protein. J Virol 2015; 89:8462-73. [PMID: 26041289 DOI: 10.1128/jvi.00590-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/27/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Ovine pulmonary adenocarcinoma is a naturally occurring lung cancer in sheep induced by the Jaagsiekte sheep retrovirus (JSRV). Its envelope glycoprotein (Env) carries oncogenic properties, and its expression is sufficient to induce in vitro cell transformation and in vivo lung adenocarcinoma. The identification of cellular partners of the JSRV envelope remains crucial for deciphering mechanisms leading to cell transformation. We initially identified RALBP1 (RalA binding protein 1; also known as RLIP76 or RIP), a cellular protein implicated in the ras pathway, as a partner of JSRV Env by yeast two-hybrid screening and confirmed formation of RALBP1/Env complexes in mammalian cells. Expression of the RALBP1 protein was repressed in tumoral lungs and in tumor-derived alveolar type II cells. Through its inhibition using specific small interfering RNA (siRNA), we showed that RALBP1 was involved in envelope-induced cell transformation and in modulation of the mTOR (mammalian target of rapamycin)/p70S6K pathway by the retroviral envelope. IMPORTANCE JSRV-induced lung adenocarcinoma is of importance for the sheep industry. While the envelope has been reported as the oncogenic determinant of the virus, the cellular proteins directly interacting with Env are still not known. Our report on the formation of RALBP/Env complexes and the role of this interaction in cell transformation opens up a new hypothesis for the dysregulation observed upon virus infection in sheep.
Collapse
|
7
|
Linnerth-Petrik NM, Santry LA, Yu DL, Wootton SK. Adeno-associated virus vector mediated expression of an oncogenic retroviral envelope protein induces lung adenocarcinomas in immunocompetent mice. PLoS One 2012; 7:e51400. [PMID: 23251519 PMCID: PMC3519541 DOI: 10.1371/journal.pone.0051400] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/02/2012] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related death worldwide. A poor overall survival rate of 16% necessitates the need for novel treatment strategies. Mouse models of lung cancer are important tools for analyzing the significance of somatic mutations in the initiation and progression of lung cancer. Of additional importance, however, are animal models of virally induced cancers. JSRV is a simple betaretrovirus that causes contagious lung cancer in sheep known as ovine pulmonary adenocarcinoma and closely resembles human lung adenocarcinoma. Previously we showed that expression of the JSRV envelope (Env) from an AAV vector induced lung tumors in immunodeficient mice, but not in immunocompetent mice. Because of the importance of studying lung cancer in the context of an intact immune system we sought to improve our mouse model. In this report, we employed the use of a strong JSRV enhancer-promoter combination to express Env at high levels and demonstrate for the first time, lung tumor induction in immunocompetent mice. This occurred despite a robust Env-specific antibody-mediated immune response. The PI3K/Akt and MAPK pathways were activated in both immunocompetent and immunodeficient mice, however, differential activation of PTEN, GSKα, p70S6K, p38MAPK, ATF2 and STAT5 was observed. A JSRV Env lung tumor-derived cell line was shown to have a similar signal transduction activation profile as Env-induced lung tumors in C57BL/6 mice. Given the similarities between our model and pulmonary adenocarcinomas in humans, and the ease with which tumors can be induced in any transgenic mouse, this system can be used to uncover novel mechanisms involved lung tumorigenesis.
Collapse
Affiliation(s)
| | - Lisa A. Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Darrick L. Yu
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
8
|
Johnson C, Fan H. Three-dimensional culture of an ovine pulmonary adenocarcinoma-derived cell line results in re-expression of surfactant proteins and Jaagsiekte sheep retrovirus. Virology 2011; 414:91-6. [PMID: 21481432 DOI: 10.1016/j.virol.2011.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/24/2011] [Accepted: 03/18/2011] [Indexed: 11/16/2022]
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma (OPA) in sheep. A major interest is elucidating the mechanism(s) of transformation by the viral envelope (Env) that functions as an oncogene. These studies would benefit from a cell line derived from type II pneumocytes that have maintained the differentiation state. In this study we used an OPA-derived cell line (JS7), which has lost structural and functional properties of type II pneumocytes, and no longer expresses JSRV when grown in 2-D monolayer culture. When JS7 cells were placed in 3-D culture using Matrigel, they grew as small spheres of polarized cells that re-expressed surfactant proteins characteristic of type II pneumocytes. Moreover, JS7 cells grown in 3-D re-expressed JSRV virus by several criteria. This study underscores the importance of the culture environment on maintaining the differentiation state of OPA tumor cells as well as expression of JSRV.
Collapse
Affiliation(s)
- Chassidy Johnson
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
9
|
Murgia C, Caporale M, Ceesay O, Di Francesco G, Ferri N, Varasano V, de las Heras M, Palmarini M. Lung adenocarcinoma originates from retrovirus infection of proliferating type 2 pneumocytes during pulmonary post-natal development or tissue repair. PLoS Pathog 2011; 7:e1002014. [PMID: 21483485 PMCID: PMC3068994 DOI: 10.1371/journal.ppat.1002014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/04/2011] [Indexed: 01/06/2023] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is a unique oncogenic virus with distinctive biological properties. JSRV is the only virus causing a naturally occurring lung cancer (ovine pulmonary adenocarcinoma, OPA) and possessing a major structural protein that functions as a dominant oncoprotein. Lung cancer is the major cause of death among cancer patients. OPA can be an extremely useful animal model in order to identify the cells originating lung adenocarcinoma and to study the early events of pulmonary carcinogenesis. In this study, we demonstrated that lung adenocarcinoma in sheep originates from infection and transformation of proliferating type 2 pneumocytes (termed here lung alveolar proliferating cells, LAPCs). We excluded that OPA originates from a bronchioalveolar stem cell, or from mature post-mitotic type 2 pneumocytes or from either proliferating or non-proliferating Clara cells. We show that young animals possess abundant LAPCs and are highly susceptible to JSRV infection and transformation. On the contrary, healthy adult sheep, which are normally resistant to experimental OPA induction, exhibit a relatively low number of LAPCs and are resistant to JSRV infection of the respiratory epithelium. Importantly, induction of lung injury increased dramatically the number of LAPCs in adult sheep and rendered these animals fully susceptible to JSRV infection and transformation. Furthermore, we show that JSRV preferentially infects actively dividing cell in vitro. Overall, our study provides unique insights into pulmonary biology and carcinogenesis and suggests that JSRV and its host have reached an evolutionary equilibrium in which productive infection (and transformation) can occur only in cells that are scarce for most of the lifespan of the sheep. Our data also indicate that, at least in this model, inflammation can predispose to retroviral infection and cancer.
Collapse
Affiliation(s)
- Claudio Murgia
- Medical Research Council – University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Marco Caporale
- Medical Research Council – University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Istituto G. Caporale, Teramo, Italy
| | - Ousman Ceesay
- Medical Research Council – University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | | | | | - Vincenzo Varasano
- Dipartimento di Scienze Cliniche Veterinarie, Facolta' di Medicina Veterinaria, Universita' di Teramo, Italy
| | | | - Massimo Palmarini
- Medical Research Council – University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
10
|
Johnson C, Jahid S, Voelker DR, Fan H. Enhanced proliferation of primary rat type II pneumocytes by Jaagsiekte sheep retrovirus envelope protein. Virology 2011; 412:349-56. [PMID: 21316726 DOI: 10.1016/j.virol.2011.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 12/24/2010] [Accepted: 01/14/2011] [Indexed: 01/05/2023]
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of a contagious lung cancer in sheep. The envelope protein (Env) is the oncogene, as it can transform cell lines in culture and induce tumors in animals, although the mechanisms for transformation are not yet clear because a system to perform transformation assays in differentiated type II pneumocytes does not exist. In this study we report culture of primary rat type II pneumocytes in conditions that favor prolonged expression of markers for type II pneumocytes. Env-expressing cultures formed more colonies that were larger in size and were viable for longer periods of time compared to vector control samples. The cells that remained in culture longer were confirmed to be derived from type II pneumocytes because they expressed surfactant protein C, cytokeratin, displayed alkaline phosphatase activity and were positive for Nile red. This system will be useful to study JSRV Env in the targets of transformation.
Collapse
Affiliation(s)
- Chassidy Johnson
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
11
|
Jaagsiekte sheep retrovirus biology and oncogenesis. Viruses 2010; 2:2618-48. [PMID: 21994634 PMCID: PMC3185594 DOI: 10.3390/v2122618] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of a lung cancer in sheep known as ovine pulmonary adenocarcinoma (OPA). The disease has been identified around the world in several breeds of sheep and goats, and JSRV infection typically has a serious impact on affected flocks. In addition, studies on OPA are an excellent model for human lung carcinogenesis. A unique feature of JSRV is that its envelope (Env) protein functions as an oncogene. The JSRV Env-induced transformation or oncogenesis has been studied in a variety of cell systems and in animal models. Moreover, JSRV studies have provided insights into retroviral genomic RNA export/expression mechanisms. JSRV encodes a trans-acting factor (Rej) within the env gene necessary for the synthesis of Gag protein from unspliced viral RNA. This review summarizes research pertaining to JSRV-induced pathogenesis, Env transformation, and other aspects of JSRV biology.
Collapse
|
12
|
Fazeli G, Oli RG, Schupp N, Stopper H. The role of the dopamine transporter in dopamine-induced DNA damage. Brain Pathol 2010; 21:237-48. [PMID: 20875051 DOI: 10.1111/j.1750-3639.2010.00440.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The neurotransmitter dopamine causes DNA damage, oxidative stress and is involved in the pathology of neurological diseases. To elucidate this potential link we investigated the mechanism of dopamine-induced DNA damage. We studied the role of the dopamine transporter (DAT) in MDCK and MDCK-DAT cells, containing the human DAT gene. After treatment with dopamine, only MDCK-DAT cells showed elevated chromosomal damage and dopamine uptake. Although stimulation of dopamine type 2 receptor (D(2)R) with quinpirole in the absence of dopamine did not induce genotoxicity in rat neuronal PC12 cells, interference with D(2)R signaling by inhibition of G-proteins, phosphoinositide 3 kinase and extracellular signal-regulated kinases reduced dopamine-induced genotoxicity and affected the ability of DAT to take up dopamine. Furthermore, the D(2)R antagonist sulpiride inhibited the dopamine-induced migration of DAT from cytosol to cell membrane. To determine whether oxidation of dopamine by monoamine oxidase (MAO) is relevant in its genotoxicity, we inhibited MAO, which reduced the formation of micronuclei and of the oxidative DNA adduct 8-oxodG. Overall, dopamine exerted its genotoxicity in vitro upon transport into the cells and oxidation by MAO. D(2)R signaling was involved in the genotoxicity of dopamine by affecting activation and cell surface expression of DAT and hence modulating dopamine uptake.
Collapse
Affiliation(s)
- Gholamreza Fazeli
- Department of Toxicology, University of Wuerzburg, Versbacherstr. 9, Wuerzburg, Germany
| | | | | | | |
Collapse
|