1
|
Wang G, Zha Z, Huang P, Sun H, Huang Y, He M, Chen T, Lin L, Chen Z, Kong Z, Que Y, Li T, Gu Y, Yu H, Zhang J, Zheng Q, Chen Y, Li S, Xia N. Structures of pseudorabies virus capsids. Nat Commun 2022; 13:1533. [PMID: 35318331 PMCID: PMC8940892 DOI: 10.1038/s41467-022-29250-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
Pseudorabies virus (PRV) is a major etiological agent of swine infectious diseases and is responsible for significant economic losses in the swine industry. Recent data points to human viral encephalitis caused by PRV infection, suggesting that PRV may be able to overcome the species barrier to infect humans. To date, there is no available therapeutic for PRV infection. Here, we report the near-atomic structures of the PRV A-capsid and C-capsid, and illustrate the interaction that occurs between these subunits. We show that the C-capsid portal complex is decorated with capsid-associated tegument complexes. The PRV capsid structure is highly reminiscent of other α-herpesviruses, with some additional structural features of β- and γ-herpesviruses. These results illustrate the structure of the PRV capsid and elucidate the underlying assembly mechanism at the molecular level. This knowledge may be useful for the development of oncolytic agents or specific therapeutics against this arm of the herpesvirus family.
Collapse
Affiliation(s)
- Guosong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhenghui Zha
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Pengfei Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Tian Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Lina Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Yixin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China. .,Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, 361102, China.
| |
Collapse
|
2
|
Mechanical Capsid Maturation Facilitates the Resolution of Conflicting Requirements for Herpesvirus Assembly. J Virol 2021; 96:e0183121. [PMID: 34878808 PMCID: PMC8865421 DOI: 10.1128/jvi.01831-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most viruses undergo a maturation process from a weakly self-assembled, noninfectious particle to a stable, infectious virion. For herpesviruses, this maturation process resolves several conflicting requirements: (i) assembly must be driven by weak, reversible interactions between viral particle subunits to reduce errors and minimize the energy of self-assembly, and (ii) the viral particle must be stable enough to withstand tens of atmospheres of DNA pressure resulting from its strong confinement in the capsid. With herpes simplex virus 1 (HSV-1) as a prototype of human herpesviruses, we demonstrated that this mechanical capsid maturation is mainly facilitated through capsid binding auxiliary protein UL25, orthologs of which are present in all herpesviruses. Through genetic manipulation of UL25 mutants of HSV-1 combined with the interrogation of capsid mechanics with atomic force microscopy nano-indentation, we suggested the mechanism of stepwise binding of distinct UL25 domains correlated with capsid maturation and DNA packaging. These findings demonstrate another paradigm of viruses as elegantly programmed nano-machines where an intimate relationship between mechanical and genetic information is preserved in UL25 architecture. IMPORTANCE The minor capsid protein UL25 plays a critical role in the mechanical maturation of the HSV-1 capsid during virus assembly and is required for stable DNA packaging. We modulated the UL25 capsid interactions by genetically deleting different UL25 regions and quantifying the effect on mechanical capsid stability using an atomic force microscopy (AFM) nanoindentation approach. This approach revealed how UL25 regions reinforced the herpesvirus capsid to stably package and retain pressurized DNA. Our data suggest a mechanism of stepwise binding of two main UL25 domains timed with DNA packaging.
Collapse
|
3
|
Draganova EB, Valentin J, Heldwein EE. The Ins and Outs of Herpesviral Capsids: Divergent Structures and Assembly Mechanisms across the Three Subfamilies. Viruses 2021; 13:v13101913. [PMID: 34696343 PMCID: PMC8539031 DOI: 10.3390/v13101913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Human herpesviruses, classified into three subfamilies, are double-stranded DNA viruses that establish lifelong latent infections within most of the world’s population and can cause severe disease, especially in immunocompromised people. There is no cure, and current preventative and therapeutic options are limited. Therefore, understanding the biology of these viruses is essential for finding new ways to stop them. Capsids play a central role in herpesvirus biology. They are sophisticated vehicles that shelter the pressurized double-stranded-DNA genomes while ensuring their delivery to defined cellular destinations on the way in and out of the host cell. Moreover, the importance of capsids for multiple key steps in the replication cycle makes their assembly an attractive therapeutic target. Recent cryo-electron microscopy reconstructions of capsids from all three subfamilies of human herpesviruses revealed not only conserved features but also remarkable structural differences. Furthermore, capsid assembly studies have suggested subfamily-specific roles of viral capsid protein homologs. In this review, we compare capsid structures, assembly mechanisms, and capsid protein functions across human herpesvirus subfamilies, highlighting the differences.
Collapse
Affiliation(s)
- Elizabeth B. Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Jonathan Valentin
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32603, USA;
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA;
- Correspondence:
| |
Collapse
|
4
|
Abstract
During viral replication, herpesviruses utilize a unique strategy, termed nuclear egress, to translocate capsids from the nucleus into the cytoplasm. This initial budding step transfers a newly formed capsid from within the nucleus, too large to fit through nuclear pores, through the inner nuclear membrane to the perinuclear space. The perinuclear enveloped virion must then fuse with the outer nuclear membrane to be released into the cytoplasm for further maturation, undergoing budding once again at the trans-Golgi network or early endosomes, and ultimately exit the cell non-lytically to spread infection. This first budding process is mediated by two conserved viral proteins, UL31 and UL34, that form a heterodimer called the nuclear egress complex (NEC). This review focuses on what we know about how the NEC mediates capsid transport to the perinuclear space, including steps prior to and after this budding event. Additionally, we discuss the involvement of other viral proteins in this process and how NEC-mediated budding may be regulated during infection.
Collapse
Affiliation(s)
- Elizabeth B Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Michael K Thorsen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Draganova EB, Zhang J, Zhou ZH, Heldwein EE. Structural basis for capsid recruitment and coat formation during HSV-1 nuclear egress. eLife 2020; 9:56627. [PMID: 32579107 PMCID: PMC7340501 DOI: 10.7554/elife.56627] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
During herpesvirus infection, egress of nascent viral capsids from the nucleus is mediated by the viral nuclear egress complex (NEC). NEC deforms the inner nuclear membrane (INM) around the capsid by forming a hexagonal array. However, how the NEC coat interacts with the capsid and how curved coats are generated to enable budding is yet unclear. Here, by structure-guided truncations, confocal microscopy, and cryoelectron tomography, we show that binding of the capsid protein UL25 promotes the formation of NEC pentagons rather than hexagons. We hypothesize that during nuclear budding, binding of UL25 situated at the pentagonal capsid vertices to the NEC at the INM promotes formation of NEC pentagons that would anchor the NEC coat to the capsid. Incorporation of NEC pentagons at the points of contact with the vertices would also promote assembly of the curved hexagonal NEC coat around the capsid, leading to productive egress of UL25-decorated capsids.
Collapse
Affiliation(s)
- Elizabeth B Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| | - Jiayan Zhang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, United States.,Molecular Biology Institute, UCLA, Los Angeles, United States.,California NanoSystems Institute, UCLA, Los Angeles, United States
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, United States.,Molecular Biology Institute, UCLA, Los Angeles, United States.,California NanoSystems Institute, UCLA, Los Angeles, United States
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| |
Collapse
|
6
|
Bailer SM. Venture from the Interior-Herpesvirus pUL31 Escorts Capsids from Nucleoplasmic Replication Compartments to Sites of Primary Envelopment at the Inner Nuclear Membrane. Cells 2017; 6:cells6040046. [PMID: 29186822 PMCID: PMC5755504 DOI: 10.3390/cells6040046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/29/2023] Open
Abstract
Herpesviral capsid assembly is initiated in the nucleoplasm of the infected cell. Size constraints require that newly formed viral nucleocapsids leave the nucleus by an evolutionarily conserved vescular transport mechanism called nuclear egress. Mature capsids released from the nucleoplasm are engaged in a membrane-mediated budding process, composed of primary envelopment at the inner nuclear membrane and de-envelopment at the outer nuclear membrane. Once in the cytoplasm, the capsids receive their secondary envelope for maturation into infectious virions. Two viral proteins conserved throughout the herpesvirus family, the integral membrane protein pUL34 and the phosphoprotein pUL31, form the nuclear egress complex required for capsid transport from the infected nucleus to the cytoplasm. Formation of the nuclear egress complex results in budding of membrane vesicles revealing its function as minimal virus-encoded membrane budding and scission machinery. The recent structural analysis unraveled details of the heterodimeric nuclear egress complex and the hexagonal coat it forms at the inside of budding vesicles to drive primary envelopment. With this review, I would like to present the capsid-escort-model where pUL31 associates with capsids in nucleoplasmic replication compartments for escort to sites of primary envelopment thereby coupling capsid maturation and nuclear egress.
Collapse
Affiliation(s)
- Susanne M. Bailer
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart 70174, Germany;
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany;
| |
Collapse
|
7
|
Liu YT, Jiang J, Bohannon KP, Dai X, Gant Luxton GW, Hui WH, Bi GQ, Smith GA, Zhou ZH. A pUL25 dimer interfaces the pseudorabies virus capsid and tegument. J Gen Virol 2017; 98:2837-2849. [PMID: 29035172 DOI: 10.1099/jgv.0.000903] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inside the virions of α-herpesviruses, tegument protein pUL25 anchors the tegument to capsid vertices through direct interactions with tegument proteins pUL17 and pUL36. In addition to promoting virion assembly, both pUL25 and pUL36 are critical for intracellular microtubule-dependent capsid transport. Despite these essential roles during infection, the stoichiometry and precise organization of pUL25 and pUL36 on the capsid surface remain controversial due to the insufficient resolution of existing reconstructions from cryo-electron microscopy (cryoEM). Here, we report a three-dimensional (3D) icosahedral reconstruction of pseudorabies virus (PRV), a varicellovirus of the α-herpesvirinae subfamily, obtained by electron-counting cryoEM at 4.9 Å resolution. Our reconstruction resolves a dimer of pUL25 forming a capsid-associated tegument complex with pUL36 and pUL17 through a coiled coil helix bundle, thus correcting previous misinterpretations. A comparison between reconstructions of PRV and the γ-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) reinforces their similar architectures and establishes important subfamily differences in the capsid-tegument interface.
Collapse
Affiliation(s)
- Yun-Tao Liu
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.,Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Brain Science and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jiansen Jiang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.,California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Kevin Patrick Bohannon
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA.,Present address: Department of Pharmacology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Xinghong Dai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.,California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - G W Gant Luxton
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA.,Present address: College of Biological Sciences, University of Minnesota, 420 Washington, Avenue SE, Minneapolis, MN 55455, USA
| | - Wong Hoi Hui
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Guo-Qiang Bi
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Brain Science and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Gregory Allan Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.,California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
The C Terminus of the Herpes Simplex Virus UL25 Protein Is Required for Release of Viral Genomes from Capsids Bound to Nuclear Pores. J Virol 2017; 91:JVI.00641-17. [PMID: 28490590 DOI: 10.1128/jvi.00641-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/03/2017] [Indexed: 12/27/2022] Open
Abstract
The herpes simplex virus (HSV) capsid is released into the cytoplasm after fusion of viral and host membranes, whereupon dynein-dependent trafficking along microtubules targets it to the nuclear envelope. Binding of the capsid to the nuclear pore complex (NPC) is mediated by the capsid protein pUL25 and the capsid-tethered tegument protein pUL36. Temperature-sensitive mutants in both pUL25 and pUL36 dock at the NPC but fail to release DNA. The uncoating reaction has been difficult to study due to the rapid release of the genome once the capsid interacts with the nuclear pore. In this study, we describe the isolation and characterization of a truncation mutant of pUL25. Live-cell imaging and immunofluorescence studies demonstrated that the mutant was not impaired in penetration of the host cell or in trafficking of the capsid to the nuclear membrane. However, expression of viral proteins was absent or significantly delayed in cells infected with the pUL25 mutant virus. Transmission electron microscopy revealed capsids accumulated at nuclear pores that retained the viral genome for at least 4 h postinfection. In addition, cryoelectron microscopy (cryo-EM) reconstructions of virion capsids did not detect any obvious differences in the location or structural organization for the pUL25 or pUL36 proteins on the pUL25 mutant capsids. Further, in contrast to wild-type virus, the antiviral response mediated by the viral DNA-sensing cyclic guanine adenine synthase (cGAS) was severely compromised for the pUL25 mutant. These results demonstrate that the pUL25 capsid protein has a critical role in releasing viral DNA from NPC-bound capsids.IMPORTANCE Herpes simplex virus 1 (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. Early steps in infection include release of the capsid into the cytoplasm, docking of the capsid at a nuclear pore, and release of the viral genome into the nucleus. A key knowledge gap is how the capsid engages the NPC and what triggers release of the viral genome into the nucleus. Here we show that the C-terminal region of the HSV-1 pUL25 protein is required for releasing the viral genome from capsids docked at nuclear pores. The significance of our research is in identifying pUL25 as a key viral factor for genome uncoating. pUL25 is found at each of the capsid vertices as part of the capsid vertex-specific component and implicates the importance of this complex for NPC binding and genome release.
Collapse
|
9
|
Roller RJ, Baines JD. Herpesvirus Nuclear Egress. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:143-169. [PMID: 28528443 DOI: 10.1007/978-3-319-53168-7_7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herpesviruses assemble and package their genomes into capsids in the nucleus, but complete final assembly of the mature virion in the cell cytoplasm. This requires passage of the genome-containing capsid across the double-membrane nuclear envelope. Herpesviruses have evolved a mechanism that relies on a pair of conserved viral gene products to shuttle the capsids from the nucleus to the cytoplasm by way of envelopment and de-envelopment at the inner and outer nuclear membranes, respectively. This complex process requires orchestration of the activities of viral and cellular factors to alter the architecture of the nuclear membrane, select capsids at the appropriate stage for egress, and accomplish efficient membrane budding and fusion events. The last few years have seen major advances in our understanding of the membrane budding mechanism and helped clarify the roles of viral and cellular proteins in the other, more mysterious steps. Here, we summarize and place into context this recent research and, hopefully, clarify both the major advances and major gaps in our understanding.
Collapse
Affiliation(s)
- Richard J Roller
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Joel D Baines
- Kenneth F. Burns Chair in Veterinary Medicine, School of Veterinary Medicine, Skip Bertman Drive, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
10
|
Human Cytomegalovirus pUL93 Links Nucleocapsid Maturation and Nuclear Egress. J Virol 2016; 90:7109-7117. [PMID: 27226374 DOI: 10.1128/jvi.00728-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/18/2016] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) pUL93 and pUL77 are both essential for virus growth, but their functions in the virus life cycle remain mostly unresolved. Homologs of pUL93 and pUL77 in herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) are known to interact to form a complex at capsid vertices known as the capsid vertex-specific component (CVSC), which likely stabilizes nucleocapsids during virus maturation and also aids in nuclear egress. In herpesviruses, nucleocapsids assemble and partially mature in nuclear replication compartments and then travel to the inner nuclear membrane (INM) for nuclear egress. The factors governing the recruitment of nucleocapsids to the INM are not known. Kinetic analysis of pUL93 demonstrates that this protein is expressed late during infection and localizes primarily to the nucleus of infected cells. pUL93 associates with both virions and capsids and interacts with the components of the nuclear egress complex (NEC), namely, pUL50, pUL53, and pUL97, during infection. Also, multiple regions in pUL93 can independently interact with pUL77, which has been shown to help retain viral DNA during capsid assembly. These studies, combined with our earlier report of an essential role of pUL93 in viral DNA packaging, indicate that pUL93 serves as an important link between nucleocapsid maturation and nuclear egress. IMPORTANCE HCMV causes life-threatening disease and disability in immunocompromised patients and congenitally infected newborns. In this study, we investigated the functions of HCMV essential tegument protein pUL93 and determined that it interacts with the components of the nuclear egress complex, namely, pUL50, pUL53, and pUL97. We also found that pUL93 specifically interacts with pUL77, which helps retain viral DNA during capsid assembly. Together, our data point toward an important role of pUL93 in linking virus maturation to nuclear egress. In addition to expanding our knowledge of the process of HCMV maturation, information from these studies will also be utilized to develop new antiviral therapies.
Collapse
|
11
|
Borst EM, Bauerfeind R, Binz A, Stephan TM, Neuber S, Wagner K, Steinbrück L, Sodeik B, Lenac Roviš T, Jonjić S, Messerle M. The Essential Human Cytomegalovirus Proteins pUL77 and pUL93 Are Structural Components Necessary for Viral Genome Encapsidation. J Virol 2016; 90:5860-5875. [PMID: 27009952 PMCID: PMC4907240 DOI: 10.1128/jvi.00384-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/15/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Several essential viral proteins are proposed to participate in genome encapsidation of human cytomegalovirus (HCMV), among them pUL77 and pUL93, which remain largely uncharacterized. To gain insight into their properties, we generated an HCMV mutant expressing a pUL77-monomeric enhanced green fluorescent protein (mGFP) fusion protein and a pUL93-specific antibody. Immunoblotting demonstrated that both proteins are incorporated into capsids and virions. Conversely to data suggesting internal translation initiation sites within the UL93 open reading frame (ORF), we provide evidence that pUL93 synthesis commences at the first start codon. In infected cells, pUL77-mGFP was found in nuclear replication compartments and dot-like structures, colocalizing with capsid proteins. Immunogold labeling of nuclear capsids revealed that pUL77 is present on A, B, and C capsids. Pulldown of pUL77-mGFP revealed copurification of pUL93, indicating interaction between these proteins, which still occurred when capsid formation was prevented. Correct subnuclear distribution of pUL77-mGFP required pUL93 as well as the major capsid protein (and thus probably the presence of capsids), but not the tegument protein pp150 or the encapsidation protein pUL52, demonstrating that pUL77 nuclear targeting occurs independently of the formation of DNA-filled capsids. When pUL77 or pUL93 was missing, generation of unit-length genomes was not observed, and only empty B capsids were produced. Taken together, these results show that pUL77 and pUL93 are capsid constituents needed for HCMV genome encapsidation. Therefore, the task of pUL77 seems to differ from that of its alphaherpesvirus orthologue pUL25, which exerts its function subsequent to genome cleavage-packaging. IMPORTANCE The essential HCMV proteins pUL77 and pUL93 were suggested to be involved in viral genome cleavage-packaging but are poorly characterized both biochemically and functionally. By producing a monoclonal antibody against pUL93 and generating an HCMV mutant in which pUL77 is fused to a fluorescent protein, we show that pUL77 and pUL93 are capsid constituents, with pUL77 being similarly abundant on all capsid types. Each protein is required for genome encapsidation, as the absence of either pUL77 or pUL93 results in a genome packaging defect with the formation of empty capsids only. This distinguishes pUL77 from its alphaherpesvirus orthologue pUL25, which is enriched on DNA-filled capsids and exerts its function after the viral DNA is packaged. Our data for the first time describe an HCMV mutant with a fluorescent capsid and provide insight into the roles of pUL77 and pUL93, thus contributing to a better understanding of the HCMV encapsidation network.
Collapse
Affiliation(s)
- Eva Maria Borst
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Rudolf Bauerfeind
- Institute for Cell Biology, Hannover Medical School, Hannover, Germany
| | - Anne Binz
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | | | - Sebastian Neuber
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Karen Wagner
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Lars Steinbrück
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute for Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Tihana Lenac Roviš
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Martin Messerle
- Institute for Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| |
Collapse
|
12
|
Extensive subunit contacts underpin herpesvirus capsid stability and interior-to-exterior allostery. Nat Struct Mol Biol 2016; 23:531-9. [PMID: 27111889 PMCID: PMC4899274 DOI: 10.1038/nsmb.3212] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/23/2016] [Indexed: 11/09/2022]
Abstract
The herpesvirus capsid is a complex protein assembly that includes hundreds of copies of four major subunits and lesser numbers of several minor proteins, all of which are essential for infectivity. Cryo-electron microscopy is uniquely suited for studying interactions that govern the assembly and function of such large functional complexes. Here we report two high-quality capsid structures, from human herpes simplex virus type 1 (HSV-1) and the animal pseudorabies virus (PRV), imaged inside intact virions at ~7-Å resolution. From these, we developed a complete model of subunit and domain organization and identified extensive networks of subunit contacts that underpin capsid stability and form a pathway that may signal the completion of DNA packaging from the capsid interior to outer surface, thereby initiating nuclear egress. Differences in the folding and orientation of subunit domains between herpesvirus capsids suggest that common elements have been modified for specific functions.
Collapse
|
13
|
Hellberg T, Paßvogel L, Schulz KS, Klupp BG, Mettenleiter TC. Nuclear Egress of Herpesviruses: The Prototypic Vesicular Nucleocytoplasmic Transport. Adv Virus Res 2016; 94:81-140. [PMID: 26997591 DOI: 10.1016/bs.aivir.2015.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herpesvirus particles mature in two different cellular compartments. While capsid assembly and packaging of the genomic linear double-stranded DNA occur in the nucleus, virion formation takes place in the cytoplasm by the addition of numerous tegument proteins as well as acquisition of the viral envelope by budding into cellular vesicles derived from the trans-Golgi network containing virally encoded glycoproteins. To gain access to the final maturation compartment, herpesvirus nucleocapsids have to cross a formidable barrier, the nuclear envelope (NE). Since the ca. 120 nm diameter capsids are unable to traverse via nuclear pores, herpesviruses employ a vesicular transport through both leaflets of the NE. This process involves proteins which support local dissolution of the nuclear lamina to allow access of capsids to the inner nuclear membrane (INM), drive vesicle formation from the INM and mediate inclusion of the capsid as well as scission of the capsid-containing vesicle (also designated as "primary virion"). Fusion of the vesicle membrane (i.e., the "primary envelope") with the outer nuclear membrane subsequently results in release of the nucleocapsid into the cytoplasm for continuing virion morphogenesis. While this process has long been thought to be unique for herpesviruses, a similar pathway for nuclear egress of macromolecular complexes has recently been observed in Drosophila. Thus, herpesviruses may have coopted a hitherto unrecognized cellular mechanism of vesicle-mediated nucleocytoplasmic transport. This could have far reaching consequences for our understanding of cellular functions as again unraveled by the study of viruses.
Collapse
Affiliation(s)
- Teresa Hellberg
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Lars Paßvogel
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina S Schulz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
14
|
Funk C, Ott M, Raschbichler V, Nagel CH, Binz A, Sodeik B, Bauerfeind R, Bailer SM. The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain. PLoS Pathog 2015; 11:e1004957. [PMID: 26083367 PMCID: PMC4471197 DOI: 10.1371/journal.ppat.1004957] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/14/2015] [Indexed: 12/01/2022] Open
Abstract
Progeny capsids of herpesviruses leave the nucleus by budding through the nuclear envelope. Two viral proteins, the membrane protein pUL34 and the nucleo-phosphoprotein pUL31 form the nuclear egress complex that is required for capsid egress out of the nucleus. All pUL31 orthologs are composed of a diverse N-terminal domain with 1 to 3 basic patches and a conserved C-terminal domain. To decipher the functions of the N-terminal domain, we have generated several Herpes simplex virus mutants and show here that the N-terminal domain of pUL31 is essential with basic patches being critical for viral propagation. pUL31 and pUL34 entered the nucleus independently of each other via separate routes and the N-terminal domain of pUL31 was required to prevent their premature interaction in the cytoplasm. Unexpectedly, a classical bipartite nuclear localization signal embedded in this domain was not required for nuclear import of pUL31. In the nucleus, pUL31 associated with the nuclear envelope and newly formed capsids. Viral mutants lacking the N-terminal domain or with its basic patches neutralized still associated with nucleocapsids but were unable to translocate them to the nuclear envelope. Replacing the authentic basic patches with a novel artificial one resulted in HSV1(17+)Lox-UL31-hbpmp1mp2, that was viable but delayed in nuclear egress and compromised in viral production. Thus, while the C-terminal domain of pUL31 is sufficient for the interaction with nucleocapsids, the N-terminal domain was essential for capsid translocation to sites of nuclear egress and a coordinated interaction with pUL34. Our data indicate an orchestrated sequence of events with pUL31 binding to nucleocapsids and escorting them to the inner nuclear envelope. We propose a common mechanism for herpesviral nuclear egress: pUL31 is required for intranuclear translocation of nucleocapsids and subsequent interaction with pUL34 thereby coupling capsid maturation with primary envelopment. Herpesviral capsid assembly is initiated in the host nucleus. Due to size constraints, newly formed nucleocapsids are unable to leave the nucleus through the nuclear pore complex. Instead herpesviruses apply an evolutionarily conserved mechanism for nuclear export of capsids called nuclear egress. This process is initiated by docking of capsids at the inner nuclear membrane, budding of enveloped capsids into the perinuclear space followed by de-envelopment and release of capsids to the cytoplasm where further maturation occurs. Two viral proteins conserved throughout the herpesvirus family, the membrane protein pUL34 and the phosphoprotein pUL31 form the nuclear egress complex that is critical for primary envelopment. We show here that pUL31 and pUL34 enter the nucleus independently of each other. pUL31 is targeted to the nucleoplasm where it binds to nucleocapsids via the conserved C-terminal domain, while its N-terminal domain is important for capsid translocation to the nuclear envelope and for a coordinated interaction with pUL34. Our data suggest a mechanism that is apparently conserved among all herpesviruses with pUL31 escorting nucleocapsids to the nuclear envelope in order to couple capsid maturation with primary envelopment.
Collapse
Affiliation(s)
- Christina Funk
- Institute for Interfacial Engineering and Plasma Technology (IGVP), University of Stuttgart, Stuttgart, Germany
| | - Melanie Ott
- Max von Pettenkofer-Institut, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Verena Raschbichler
- Max von Pettenkofer-Institut, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Anne Binz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Rudolf Bauerfeind
- Institute of Cell Biology, Hannover Medical School, Hannover, Germany
| | - Susanne M. Bailer
- Institute for Interfacial Engineering and Plasma Technology (IGVP), University of Stuttgart, Stuttgart, Germany
- Max von Pettenkofer-Institut, Ludwig-Maximilians-University Munich, Munich, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
- * E-mail:
| |
Collapse
|
15
|
Schulz KS, Klupp BG, Granzow H, Passvogel L, Mettenleiter TC. Herpesvirus nuclear egress: Pseudorabies Virus can simultaneously induce nuclear envelope breakdown and exit the nucleus via the envelopment-deenvelopment-pathway. Virus Res 2015; 209:76-86. [PMID: 25678269 DOI: 10.1016/j.virusres.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/01/2015] [Accepted: 02/02/2015] [Indexed: 12/19/2022]
Abstract
Herpesvirus replication takes place in the nucleus and in the cytosol. After entering the cell, nucleocapsids are transported to nuclear pores where viral DNA is released into the nucleus. After gene expression and DNA replication new nucleocapsids are assembled which have to exit the nucleus for virion formation in the cytosol. Since nuclear pores are not wide enough to allow passage of the nucleocapsid, nuclear egress occurs by vesicle-mediated transport through the nuclear envelope. To this end, nucleocapsids bud at the inner nuclear membrane (INM) recruiting a primary envelope which then fuses with the outer nuclear membrane (ONM). In the absence of this regulated nuclear egress, mutants of the alphaherpesvirus pseudorabies virus have been described that escape from the nucleus after virus-induced nuclear envelope breakdown. Here we review these exit pathways and demonstrate that both can occur simultaneously under appropriate conditions.
Collapse
Affiliation(s)
- Katharina S Schulz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Harald Granzow
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Lars Passvogel
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
16
|
Homa FL, Huffman JB, Toropova K, Lopez HR, Makhov AM, Conway JF. Structure of the pseudorabies virus capsid: comparison with herpes simplex virus type 1 and differential binding of essential minor proteins. J Mol Biol 2013; 425:3415-28. [PMID: 23827137 DOI: 10.1016/j.jmb.2013.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/12/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
The structure of pseudorabies virus (PRV) capsids isolated from the nucleus of infected cells and from PRV virions was determined by cryo-electron microscopy (cryo-EM) and compared to herpes simplex virus type 1 (HSV-1) capsids. PRV capsid structures closely resemble those of HSV-1, including distribution of the capsid vertex specific component (CVSC) of HSV-1, which is a heterodimer of the pUL17 and pUL25 proteins. Occupancy of CVSC on all PRV capsids is near 100%, compared to ~50% reported for HSV-1 C-capsids and 25% or less that we measure for HSV-1 A- and B-capsids. A PRV mutant lacking pUL25 does not produce C-capsids and lacks visible CVSC density in the cryo-EM-based reconstruction. A reconstruction of PRV capsids in which green fluorescent protein was fused within the N-terminus of pUL25 confirmed previous studies with a similar HSV-1 capsid mutant localizing pUL25 to the CVSC density region that is distal to the penton. However, comparison of the CVSC density in a 9-Å-resolution PRV C-capsid map with the available crystal structure of HSV-1 pUL25 failed to find a satisfactory fit, suggesting either a different fold for PRV pUL25 or a capsid-bound conformation for pUL25 that does not match the X-ray model determined from protein crystallized in solution. The PRV capsid imaged within virions closely resembles C-capsids with the addition of weak but significant density shrouding the pentons that we attribute to tegument proteins. Our results demonstrate significant structure conservation between the PRV and HSV capsids.
Collapse
Affiliation(s)
- F L Homa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
17
|
Mapping of sequences in Pseudorabies virus pUL34 that are required for formation and function of the nuclear egress complex. J Virol 2013; 87:4475-85. [PMID: 23388710 DOI: 10.1128/jvi.00021-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nuclear egress complex (NEC) is required for efficient translocation of newly synthesized herpesvirus nucleocapsids from the nucleus to the cytosol. It consists of the type II membrane protein pUL34 which interacts with pUL31 at the inner nuclear membrane (INM). To map regions within pUL34 required for nuclear membrane targeting and pUL31 interaction, we constructed deletion/substitution mutations. Previously, we showed that 50 C-terminal amino acids (aa) of pseudorabies virus (PrV) pUL34, including the transmembrane domain, could be functionally replaced by cellular lamina-associated polypeptide 2β (Lap2β) sequences. In contrast, replacement of the C-terminal 100 aa abrogated complementation but not pUL31 interaction. To further delineate essential sequences within this region, C-terminal pUL34 truncations of 60, 70, 80, 85, and 90 aa fused to Lap2β sequences were generated. While truncations up to 85 aa were functional, deletion of the C-terminal 90 aa abrogated function, which indicates that the important region is located between aa 171 and 176. Amino acids 173 to 175 represent RQR, a motif suggested to mediate INM targeting. Mutagenesis to RQG revealed that the mutant protein exhibited pronounced Golgi localization, but a fraction still reached the INM. Deletion mutations in the N-terminal domain of pUL34 demonstrated that absence of the first 4 aa was tolerated, while removal of 9 or more residues resulted in a nonfunctional protein. In addition, mutation of three conserved cysteines did not abrogate pUL34 function, whereas alteration of a conserved glutamine/tyrosine sequence yielded a nonfunctional protein.
Collapse
|
18
|
Mettenleiter TC, Müller F, Granzow H, Klupp BG. The way out: what we know and do not know about herpesvirus nuclear egress. Cell Microbiol 2012; 15:170-8. [PMID: 23057731 DOI: 10.1111/cmi.12044] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 11/28/2022]
Abstract
Herpesvirus capsids are assembled in the nucleus of infected cells whereas final maturation occurs in the cytosol. To access the final maturation compartment, intranuclear capsids have to cross the nuclear envelope which represents a formidable barrier. They do so by budding at the inner nuclear membrane, thereby forming a primary enveloped particle residing in the perinuclear cleft. Formation of primary envelopes is driven by a heterodimeric complex of two conserved herpesviral proteins, designated in the herpes simplex virus nomenclature as pUL34, a tail-anchored transmembrane protein located in the nuclear envelope, and pUL31. This nuclear egress complex recruits viral and cellular kinases to soften the nuclear lamina and allowing access of capsids to the inner nuclear membrane. How capsids are recruited to the budding site and into the primary virus particle is still not completely understood, nor is the composition of the primary enveloped virion in the perinuclear cleft. Fusion of the primary envelope with the outer nuclear membrane then results in translocation of the capsid to the cytosol. This fusion event is clearly different from fusion during infectious entry of free virions into target cells in that it does not require the conserved essential core herpesvirus fusion machinery. Nuclear egress can thus be viewed as a vesicle (primary envelope)-mediated transport of cargo (capsids) through thenuclear envelope, a process which had been unique in cell biology. Only recently has a similar process been identified in Drosophila for nuclear egress of large ribonucleoprotein complexes. Thus, herpesviruses appear to subvert a hitherto cryptic cellular pathway for translocation of capsids from the nucleus to the cytosol.
Collapse
Affiliation(s)
- Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | | | | | | |
Collapse
|
19
|
Characterization of conserved region 2-deficient mutants of the cytomegalovirus egress protein pM53. J Virol 2012; 86:12512-24. [PMID: 22993161 DOI: 10.1128/jvi.00471-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dominant-negative (DN) mutants are powerful tools for studying essential protein-protein interactions. A systematic genetic screen of the essential murine cytomegalovirus (MCMV) protein pM53 identified the accumulation of inhibitory mutations within conserved region 2 (CR2) and CR4. The strong inhibitory potential of these CR4 mutants is characterized by a particular phenotype. The DN effect of the small insertion mutations in CR2 was too weak to analyze (M. Popa, Z. Ruzsics, M. Lötzerich, L. Dölken, C. Buser, P. Walther, and U. H. Koszinowski, J. Virol. 84:9035-9046, 2010); therefore, the present study describes the construction of M53 alleles lacking CR2 (either completely or partially) and subsequent examination of the DN effect on MCMV replication upon conditional expression. Overexpression of CR2-deficient pM53 inhibited virus production by about 10,000-fold. This was due to interference with capsid export from the nucleus and viral genome cleavage/packaging. In addition, the fate of the nuclear envelopment complex in the presence of DN pM53 overexpression was analyzed. The CR2 mutants were able to bind to pM50, albeit to a lesser extent than the wild-type protein, and relocalized the wild-type nuclear envelope complex in infected cells. Unlike the CR4 DN, the CR2 DN mutants did not affect the stability of pM50.
Collapse
|
20
|
Meissner CS, Köppen-Rung P, Dittmer A, Lapp S, Bogner E. A "coiled-coil" motif is important for oligomerization and DNA binding properties of human cytomegalovirus protein UL77. PLoS One 2011; 6:e25115. [PMID: 21998635 PMCID: PMC3187746 DOI: 10.1371/journal.pone.0025115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/24/2011] [Indexed: 11/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) UL77 gene encodes the essential protein UL77, its function is characterized in the present study. Immunoprecipitation identified monomeric and oligomeric pUL77 in HCMV infected cells. Immunostaining of purified virions and subviral fractions showed that pUL77 is a structural protein associated with capsids. In silico analysis revealed the presence of a coiled-coil motif (CCM) at the N-terminus of pUL77. Chemical cross-linking of either wild-type pUL77 or CCM deletion mutant (pUL77ΔCCM) implicated that CCM is critical for oligomerization of pUL77. Furthermore, co-immunoprecipitations of infected and transfected cells demonstrated that pUL77 interacts with the capsid-associated DNA packaging motor components, pUL56 and pUL104, as well as the major capsid protein. The ability of pUL77 to bind dsDNA was shown by an in vitro assay. Binding to certain DNA was further confirmed by an assay using biotinylated 36-, 250-, 500-, 1000-meric dsDNA and 966-meric HCMV-specific dsDNA designed for this study. The binding efficiency (BE) was determined by image processing program defining values above 1.0 as positive. While the BE of the pUL56 binding to the 36-mer bio-pac1 containing a packaging signal was 10.0 ± 0.63, the one for pUL77 was only 0.2±0.03. In contrast to this observation the BE of pUL77 binding to bio-500 bp or bio-1000 bp was 2.2 ± 0.41 and 4.9 ± 0.71, respectively. By using pUL77ΔCCM it was demonstrated that this protein could not bind to dsDNA. These data indicated that pUL77 (i) could form homodimers, (ii) CCM of pUL77 is crucial for oligomerization and (iii) could bind to dsDNA in a sequence independent manner.
Collapse
Affiliation(s)
| | - Pánja Köppen-Rung
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alexandra Dittmer
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Lapp
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elke Bogner
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
21
|
A physical link between the pseudorabies virus capsid and the nuclear egress complex. J Virol 2011; 85:11675-84. [PMID: 21880751 DOI: 10.1128/jvi.05614-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Following their assembly, herpesvirus capsids exit the nucleus by budding at the inner nuclear membrane. Two highly conserved viral proteins are required for this process, pUL31 and pUL34. In this report, we demonstrate that the pUL31 component of the pseudorabies virus nuclear egress complex is a conditional capsid-binding protein that is unmasked in the absence of pUL34. The interaction between pUL31 and capsids was confirmed through fluorescence microscopy and Western blot analysis of purified intranuclear capsids. Three viral proteins were tested for their abilities to mediate the pUL31-capsid interaction: the minor capsid protein pUL25, the portal protein pUL6, and the terminase subunit pUL33. Despite the requirement for each protein in nuclear egress, none of these viral proteins were required for the pUL31-capsid interaction. These findings provide the first formal evidence that a herpesvirus nuclear egress complex interacts with capsids and have implications for how DNA-containing capsids are selectively targeted for nuclear egress.
Collapse
|
22
|
Disulfide bond formation contributes to herpes simplex virus capsid stability and retention of pentons. J Virol 2011; 85:8625-34. [PMID: 21697480 DOI: 10.1128/jvi.00214-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Disulfide bonds reportedly stabilize the capsids of several viruses, including papillomavirus, polyomavirus, and simian virus 40, and have been detected in herpes simplex virus (HSV) capsids. In this study, we show that in mature HSV-1 virions, capsid proteins VP5, VP23, VP19C, UL17, and UL25 participate in covalent cross-links, and that these are susceptible to dithiothreitol (DTT). In addition, several tegument proteins were found in high-molecular-weight complexes, including VP22, UL36, and UL37. Cross-linked capsid complexes can be detected in virions isolated in the presence and absence of N-ethylmaleimide (NEM), a chemical that reacts irreversibly with free cysteines to block disulfide formation. Intracellular capsids isolated in the absence of NEM contain disulfide cross-linked species; however, intracellular capsids isolated from cells pretreated with NEM did not. Thus, the free cysteines in intracellular capsids appear to be positioned such that disulfide bond formation can occur readily if they are exposed to an oxidizing environment. These results indicate that disulfide cross-links are normally present in extracellular virions but not in intracellular capsids. Interestingly, intracellular capsids isolated in the presence of NEM are unstable; B and C capsids are converted to a novel form that resembles A capsids, indicating that scaffold and DNA are lost. Furthermore, these capsids also have lost pentons and peripentonal triplexes as visualized by cryoelectron microscopy. These data indicate that capsid stability, and especially the retention of pentons, is regulated by the formation of disulfide bonds in the capsid.
Collapse
|
23
|
Uncoupling uncoating of herpes simplex virus genomes from their nuclear import and gene expression. J Virol 2011; 85:4271-83. [PMID: 21345968 DOI: 10.1128/jvi.02067-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Incoming capsids of herpes simplex virus type 1 (HSV-1) enter the cytosol by fusion of the viral envelopes with host cell membranes and use microtubules and microtubule motors for transport to the nucleus. Upon docking to the nuclear pores, capsids release their genomes into the nucleoplasm. Progeny genomes are replicated in the nucleoplasm and subsequently packaged into newly assembled capsids. The minor capsid protein pUL25 of alphaherpesviruses is required for capsid stabilization after genome packaging and for nuclear targeting of incoming genomes. Here, we show that HSV-1 pUL25 bound to mature capsids within the nucleus and remained capsid associated during assembly and nuclear targeting. Furthermore, we tested potential interactions between parental pUL25 bound to incoming HSV-1 capsids and host factors by competing for such interactions with an experimental excess of cytosolic pUL25. Overexpression of pUL25, GFPUL25, or UL25GFP prior to infection reduced gene expression of HSV-1. Electron microscopy and in situ hybridization studies revealed that an excess of GFPUL25 or UL25GFP prevented efficient nuclear import and/or transcription of parental HSV-1 genomes, but not nuclear targeting of capsids or the uncoating of the incoming genomes at the nuclear pore. Thus, the uncoating of HSV-1 genomes could be uncoupled from their nuclear import and gene expression. Most likely, surplus pUL25 competed with important interactions between the parental capsids, and possibly between authentic capsid-associated pUL25, and cytosolic or nuclear host factors required for functional interaction of the incoming genomes with the nuclear machinery.
Collapse
|
24
|
Analysis of pseudorabies and herpes simplex virus recombinants simultaneously lacking the pUL17 and pUL25 components of the C-capsid specific component. Virus Res 2010; 153:20-8. [PMID: 20603164 DOI: 10.1016/j.virusres.2010.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 11/23/2022]
Abstract
Homologs of the UL17 and UL25 gene products of herpes simplex virus 1 (HSV-1) are conserved throughout the Herpesviridae and essential for virus replication. However, their exact function is still unknown. Although both proteins form a complex on DNA-containing C-capsids defects observed in the absence of either protein differ. Absence of pUL17 from HSV-1 or the related alphaherpesvirus pseudorabies virus (PrV) precludes cleavage and packaging of newly replicated viral DNA, whereas in the absence of pUL25 genomic DNA is encapsidated but nuclear egress of capsids to the cytosol is abolished. HSV-1 pUL25 partially complemented the defect in a PrV UL25 deletion mutant indicating overlapping functions. However, reciprocal complementation did not ensue, and the present study demonstrates that UL17-deleted HSV-1 or PrV mutants are also not rescued by heterologous pUL17. To analyze whether simultaneous substitution of both complex partners may allow or increase trans-complementation we generated rabbit kidney cell lines co-expressing either PrV or HSV-1 pUL17 and pUL25, and respective HSV-1 and PrV double deletion mutants. Whereas the defects of both double mutants were trans-complemented by cell lines co-expressing the homologous complex partners, productive replication was not restored by heterologous pUL17 and pUL25. Thus, the protein complexes of PrV and HSV-1 either possess distinct functions, or require interactions with other viral proteins which are impaired in a heterologous context.
Collapse
|
25
|
Dominant negative mutants of the murine cytomegalovirus M53 gene block nuclear egress and inhibit capsid maturation. J Virol 2010; 84:9035-46. [PMID: 20610730 DOI: 10.1128/jvi.00681-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The alphaherpesvirus proteins UL31 and UL34 and their homologues in other herpesvirus subfamilies cooperate at the nuclear membrane in the export of nascent herpesvirus capsids. We studied the respective betaherpesvirus proteins M53 and M50 in mouse cytomegalovirus (MCMV). Recently, we established a random approach to identify dominant negative (DN) mutants of essential viral genes and isolated DN mutants of M50 (B. Rupp, Z. Ruzsics, C. Buser, B. Adler, P. Walther and U. H. Koszinowski, J. Virol 81:5508-5517). Here, we report the identification and phenotypic characterization of DN alleles of its partner, M53. While mutations in the middle of the M53 open reading frame (ORF) resulted in DN mutants inhibiting MCMV replication by approximately 100-fold, mutations at the C terminus resulted in up to 1,000,000-fold inhibition of virus production. C-terminal DN mutants affected nuclear distribution and steady-state levels of the nuclear egress complex and completely blocked export of viral capsids. In addition, they induced a marked maturation defect of viral capsids, resulting in the accumulation of nuclear capsids with aberrant morphology. This was associated with a two-thirds reduction in the total amount of unit length genomes, indicating an accessory role for M53 in DNA packaging.
Collapse
|
26
|
Mutational analysis of the herpes simplex virus type 1 UL25 DNA packaging protein reveals regions that are important after the viral DNA has been packaged. J Virol 2010; 84:4252-63. [PMID: 20181717 DOI: 10.1128/jvi.02442-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) UL25 gene encodes a minor capsid protein, pUL25, that is essential for packaging the full-length viral genome. Six regions which contain disordered residues have been identified in the high-resolution structure of pUL25. To investigate the significance of these flexible regions, a panel of plasmids was generated encoding mutant proteins, with each member lacking the disordered residues in one of the six regions. In addition, UL25 constructs were produced, which specified proteins that contained missense mutations individually affecting two of the four regions on the surface of pUL25 predicted from evolutionary trace analysis to be important in protein-protein interactions. The impacts of these mutations on viral DNA packaging, virus assembly, and growth were examined. Of the nine mutant proteins analyzed, five failed to complement the growth of a UL25 deletion mutant in Vero cells. These noncomplementing proteins fell into three classes. Proteins in one class did not alter the DNA packaging phenotype of an HSV-1 UL25 deletion mutant, whereas proteins from the other two classes allowed the UL25 null mutant to package full-length viral DNA. Subsequent analysis of the latter classes of mutant proteins demonstrated that one class enabled the null virus to release enveloped virus particles from U2OS cells, whereas the other class prevented egress of mature HSV-1 capsids from the nucleus. These findings reveal a new role for pUL25 in virion assembly, consistent with its flexible structure and location on the capsid.
Collapse
|
27
|
Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc Natl Acad Sci U S A 2009; 106:9673-8. [PMID: 19487681 DOI: 10.1073/pnas.0901514106] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze the structural and mechanical properties of scaffold-containing (B), empty (A), and DNA-containing (C) nuclear capsids. Atomic force microscopy experiments revealed that A and C capsids were mechanically indistinguishable, indicating that the presence of DNA does not account for changes in mechanical properties during capsid maturation. Despite having the same rigidity, the scaffold-containing B capsids broke at significantly lower forces than A and C capsids. An extraction of pentons with guanidine hydrochloride (GuHCl) increased the flexibility of all capsids. Surprisingly, the breaking forces of the modified A and C capsids dropped to similar values as those of the GuHCl-treated B capsids, indicating that mechanical reinforcement occurs at the vertices. Nonetheless, it also showed that HSV1 capsids possess a remarkable structural integrity that was preserved after removal of pentons. We suggest that HSV1 capsids are stabilized after removal of the scaffold proteins, and that this stabilization is triggered by the packaging of DNA, but independent of the actual presence of DNA.
Collapse
|
28
|
Herpesvirus capsid association with the nuclear pore complex and viral DNA release involve the nucleoporin CAN/Nup214 and the capsid protein pUL25. J Virol 2009; 83:6610-23. [PMID: 19386703 DOI: 10.1128/jvi.02655-08] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
After penetrating the host cell, the herpesvirus capsid is transported to the nucleus along the microtubule network and docks to the nuclear pore complex before releasing the viral DNA into the nucleus. The viral and cellular interactions involved in the docking process are poorly characterized. However, the minor capsid protein pUL25 has recently been reported to be involved in viral DNA uncoating. Here we show that herpes simplex virus type 1 (HSV-1) capsids interact with the nucleoporin CAN/Nup214 in infected cells and that RNA silencing of CAN/Nup214 delays the onset of viral DNA replication in the nucleus. We also show that pUL25 interacts with CAN/Nup214 and another nucleoporin, hCG1, and binds to the pUL36 and pUL6 proteins, two other components of the herpesvirus particle that are known to be important for the initiation of infection and viral DNA release. These results identify CAN/Nup214 as being a nuclear receptor for the herpesvirus capsid and pUL25 as being an interface between incoming capsids and the nuclear pore complex and as being a triggering element for viral DNA release into the nucleus.
Collapse
|
29
|
Mettenleiter TC, Klupp BG, Granzow H. Herpesvirus assembly: an update. Virus Res 2009; 143:222-34. [PMID: 19651457 DOI: 10.1016/j.virusres.2009.03.018] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/28/2009] [Accepted: 03/28/2009] [Indexed: 12/30/2022]
Abstract
The order Herpesvirales contains viruses infecting animals from molluscs to men with a common virion morphology which have been classified into the families Herpesviridae, Alloherpesviridae and Malacoherpesviridae. Herpes virions are among the most complex virus particles containing a multitude of viral and cellular proteins which assemble into nucleocapsid, envelope and tegument. After autocatalytic assembly of the capsid and packaging of the newly replicated viral genome, a process which occurs in the nucleus and resembles head formation and genome packaging in the tailed double-stranded DNA bacteriophages, the nucleocapsid is translocated to the cytoplasm by budding at the inner nuclear membrane followed by fusion of the primary envelope with the outer nuclear membrane. Viral and cellular proteins are involved in mediating this 'nuclear egress' which entails substantial remodeling of the nuclear architecture. For final maturation within the cytoplasm tegument components associate with the translocated nucleocapsid, with themselves, and with the future envelope containing viral membrane proteins in a complex network of interactions resulting in the formation of an infectious herpes virion. The diverse interactions between the involved proteins exhibit a striking redundancy which is still insufficiently understood. In this review, recent advances in our understanding of the molecular processes resulting in herpes virion maturation will be presented and discussed as an update of a previous contribution [Mettenleiter, T.C., 2004. Budding events in herpesvirus morphogenesis. Virus Res. 106, 167-180].
Collapse
|
30
|
Leege T, Granzow H, Fuchs W, Klupp BG, Mettenleiter TC. Phenotypic similarities and differences between UL37-deleted pseudorabies virus and herpes simplex virus type 1. J Gen Virol 2009; 90:1560-1568. [PMID: 19297610 DOI: 10.1099/vir.0.010322-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the absence of the tegument protein pUL37, virion formation of pseudorabies virus (PrV) and herpes simplex virus type 1 (HSV-1) is severely impaired. Non-enveloped nucleocapsids accumulate in clusters in the cytoplasm, whereas only a few enveloped particles can be detected. Although a contribution of pUL37 to nuclear egress of HSV-1 has been suggested, the nuclear stages of morphogenesis are not impaired in PrV-DeltaUL37-infected cells. Moreover, HSV-1 pUL37 has been described as essential for replication, whereas PrV is able to replicate productively without pUL37, although to lower titres than wild-type virus. Thus, there may be functional differences between the respective pUL37 proteins. This study compared the phenotypes of UL37-deleted PrV and HSV-1 in parallel assays, using a novel pUL37 deletion mutant of HSV-1 strain KOS, HSV-1DeltaUL37[86-1035]. Aggregates of seemingly 'naked' nucleocapsids were present in the cytoplasm of African green monkey (Vero) or rabbit kidney (RK13) cells infected with HSV-1DeltaUL37[86-1035] or PrV-DeltaUL37. Nuclear retention of nucleocapsids was not observed in either virus. However, in contrast to PrV-DeltaUL37, HSV-1DeltaUL37[86-1035] was unable to replicate productively in, and to form plaques on, either Vero or RK13 cells. Trans-complementation of respective deletion mutants with the heterologous pUL37 did not ensue. These data demonstrate that the conserved pUL37 in HSV-1 and PrV have similar but distinct functions.
Collapse
Affiliation(s)
- Tobias Leege
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Harald Granzow
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
31
|
Characterization of pseudorabies virus (PrV) cleavage-encapsidation proteins and functional complementation of PrV pUL32 by the homologous protein of herpes simplex virus type 1. J Virol 2009; 83:3930-43. [PMID: 19193798 DOI: 10.1128/jvi.02636-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cleavage and encapsidation of newly replicated herpes simplex virus type 1 (HSV-1) DNA requires several essential viral gene products that are conserved in sequence within the Herpesviridae. However, conservation of function has not been analyzed in greater detail. For functional characterization of the UL6, UL15, UL28, UL32, and UL33 gene products of pseudorabies virus (PrV), the respective deletion mutants were generated by mutagenesis of the virus genome cloned as a bacterial artificial chromosome (BAC) in Escherichia coli and propagated in transgenic rabbit kidney cells lines expressing the deleted genes. Neither of the PrV mutants was able to produce plaques or infectious progeny in noncomplementing cells. DNA analyses revealed that the viral genomes were replicated but not cleaved into monomers. By electron microscopy, only scaffold-containing immature but not DNA-containing mature capsids were detected in the nuclei of noncomplementing cells infected with either of the mutants. Remarkably, primary envelopment of empty capsids at the nuclear membrane occasionally occurred, and enveloped tegument-containing light particles were formed in the cytoplasm and released into the extracellular space. Immunofluorescence analyses with monospecific antisera of cells transfected with the respective expression plasmids indicated that pUL6, pUL15, and pUL32 were able to enter the nucleus. In contrast, pUL28 and pUL33 were predominantly found in the cytoplasm. Only pUL6 could be unequivocally identified and localized in PrV-infected cells and in purified virions, whereas the low abundance or immunogenicity of the other proteins hampered similar studies. Yeast two-hybrid analyses revealed physical interactions between the PrV pUL15, pUL28, and pUL33 proteins, indicating that, as in HSV-1, a tripartite protein complex might catalyze cleavage and encapsidation of viral DNA. Whereas the pUL6 protein is supposed to form the portal for DNA entry into the capsid, the precise role of the UL32 gene product during this process remains to be elucidated. Interestingly, the defect of UL32-negative PrV could be completely corrected in trans by the homologous protein of HSV-1, demonstrating similar functions. However, trans-complementation of UL32-negative HSV-1 by the PrV protein was not observed.
Collapse
|
32
|
Effects of simultaneous deletion of pUL11 and glycoprotein M on virion maturation of herpes simplex virus type 1. J Virol 2008; 83:896-907. [PMID: 19004941 DOI: 10.1128/jvi.01842-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The conserved membrane-associated tegument protein pUL11 and envelope glycoprotein M (gM) are involved in secondary envelopment of herpesvirus nucleocapsids in the cytoplasm. Although deletion of either gene had only moderate effects on replication of the related alphaherpesviruses herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PrV) in cell culture, simultaneous deletion of both genes resulted in a severe impairment in virion morphogenesis of PrV coinciding with the formation of huge inclusions in the cytoplasm containing nucleocapsids embedded in tegument (M. Kopp, H. Granzow, W. Fuchs, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 78:3024-3034, 2004). To test whether a similar phenotype occurs in HSV-1, a gM and pUL11 double deletion mutant was generated based on a newly established bacterial artificial chromosome clone of HSV-1 strain KOS. Since gM-negative HSV-1 has not been thoroughly investigated ultrastructurally and different phenotypes have been ascribed to pUL11-negative HSV-1, single gene deletion mutants were also constructed and analyzed. On monkey kidney (Vero) cells, deletion of either pUL11 or gM resulted in ca.-fivefold-reduced titers and 40- to 50%-reduced plaque diameters compared to those of wild-type HSV-1 KOS, while on rabbit kidney (RK13) cells the defects were more pronounced, resulting in ca.-50-fold titer and 70% plaque size reduction for either mutant. Electron microscopy revealed that in the absence of either pUL11 or gM virion formation in the cytoplasm was inhibited, whereas nuclear stages were not visibly affected, which is in line with the phenotypes of corresponding PrV mutants. Simultaneous deletion of pUL11 and gM led to additive growth defects and, in RK13 cells, to the formation of large intracytoplasmic inclusions of capsids and tegument material, comparable to those in PrV-DeltaUL11/gM-infected RK13 cells. The defects of HSV-1DeltaUL11 and HSV-1DeltaUL11/gM could be partially corrected in trans by pUL11 of PrV. Thus, our data indicate that PrV and HSV-1 pUL11 and gM exhibit similar functions in cytoplasmic steps of virion assembly.
Collapse
|
33
|
The UL25 gene product of herpes simplex virus type 1 is involved in uncoating of the viral genome. J Virol 2008; 82:6654-66. [PMID: 18448531 DOI: 10.1128/jvi.00257-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Studies on the herpes simplex virus type 1 UL25-null mutant KUL25NS have shown that the capsid-associated UL25 protein is required at a late stage in the encapsidation of viral DNA. Our previous work on UL25 with the UL25 temperature-sensitive (ts) mutant ts1204 also implicated UL25 in a role at very early times in the virus growth cycle, possibly at the stage of penetration of the host cell. We have reexamined this mutant and discovered that it had an additional ts mutation elsewhere in the genome. The ts1204 UL25 mutation was transferred into wild-type (wt) virus DNA, and the UL25 mutant ts1249 was isolated and characterized to clarify the function of UL25 at the initial stages of virus infection. Indirect immunofluorescence assays and in situ hybridization analysis of virus-infected cells revealed that the mutant ts1249 was not impaired in penetration of the host cell but had an uncoating defect at the nonpermissive temperature. When ts1249-infected cells were incubated initially at the permissive temperature to allow uncoating of the viral genome and subsequently transferred to the restrictive temperature, a DNA-packaging defect was evident. The results suggested that ts1249, like KUL25NS, had a block at a late stage of DNA packaging and that the packaged genome was shorter than the full-length genome. Examination of ts1249 capsids produced at the nonpermissive temperature revealed that, in comparison with wt capsids, they contained reduced amounts of UL25 protein, thereby providing a possible explanation for the failure of ts1249 to package full-length viral DNA.
Collapse
|