1
|
Vadon C, Magiera MM, Cimarelli A. TRIM Proteins and Antiviral Microtubule Reorganization: A Novel Component in Innate Immune Responses? Viruses 2024; 16:1328. [PMID: 39205302 DOI: 10.3390/v16081328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
TRIM proteins are a family of innate immune factors that play diverse roles in innate immunity and protect the cell against viral and bacterial aggression. As part of this special issue on TRIM proteins, we will take advantage of our findings on TRIM69, which acts by reorganizing the microtubules (MTs) in a manner that is fundamentally antiviral, to more generally discuss how host-pathogen interactions that take place for the control of the MT network represent a crucial facet of the struggle that opposes viruses to their cell environment. In this context, we will present several other TRIM proteins that are known to interact with microtubules in situations other than viral infection, and we will discuss evidence that may suggest a possible contribution to viral control. Overall, the present review will highlight the importance that the control of the microtubule network bears in host-pathogen interactions.
Collapse
Affiliation(s)
- Charlotte Vadon
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69364 Lyon, France
| | - Maria Magda Magiera
- Institut Curie, CNRS, UMR3348, Centre Universitaire, Bat 110, F-91405 Orsay, France
| | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69364 Lyon, France
| |
Collapse
|
2
|
Stephens C, Naghavi MH. The host cytoskeleton: a key regulator of early HIV-1 infection. FEBS J 2024; 291:1835-1848. [PMID: 36527282 PMCID: PMC10272291 DOI: 10.1111/febs.16706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Due to its central role in cell biology, the cytoskeleton is a key regulator of viral infection, influencing nearly every step of the viral life cycle. In this review, we will discuss the role of two key components of the cytoskeleton, namely the actin and microtubule networks in early HIV-1 infection. We will discuss key contributions to processes ranging from the attachment and entry of viral particles at the cell surface to their arrival and import into the nucleus and identify areas where further research into this complex relationship may yield new insights into HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Christopher Stephens
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mojgan H. Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
3
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
4
|
Li M, Peng D, Cao H, Yang X, Li S, Qiu HJ, Li LF. The Host Cytoskeleton Functions as a Pleiotropic Scaffold: Orchestrating Regulation of the Viral Life Cycle and Mediating Host Antiviral Innate Immune Responses. Viruses 2023; 15:1354. [PMID: 37376653 PMCID: PMC10301361 DOI: 10.3390/v15061354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Viruses are obligate intracellular parasites that critically depend on their hosts to initiate infection, complete replication cycles, and generate new progeny virions. To achieve these goals, viruses have evolved numerous elegant strategies to subvert and utilize different cellular machinery. The cytoskeleton is often one of the first components to be hijacked as it provides a convenient transport system for viruses to enter the cell and reach the site of replication. The cytoskeleton is an intricate network involved in controlling the cell shape, cargo transport, signal transduction, and cell division. The host cytoskeleton has complex interactions with viruses during the viral life cycle, as well as cell-to-cell transmission once the life cycle is completed. Additionally, the host also develops unique, cytoskeleton-mediated antiviral innate immune responses. These processes are also involved in pathological damages, although the comprehensive mechanisms remain elusive. In this review, we briefly summarize the functions of some prominent viruses in inducing or hijacking cytoskeletal structures and the related antiviral responses in order to provide new insights into the crosstalk between the cytoskeleton and viruses, which may contribute to the design of novel antivirals targeting the cytoskeleton.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
5
|
da Silva ES, Naghavi MH. Microtubules and viral infection. Adv Virus Res 2023; 115:87-134. [PMID: 37173066 DOI: 10.1016/bs.aivir.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Microtubules (MTs) form rapidly adaptable, complex intracellular networks of filaments that not only provide structural support, but also form the tracks along which motors traffic macromolecular cargos to specific sub-cellular sites. These dynamic arrays play a central role in regulating various cellular processes including cell shape and motility as well as cell division and polarization. Given their complex organization and functional importance, MT arrays are carefully controlled by many highly specialized proteins that regulate the nucleation of MT filaments at distinct sites, their dynamic growth and stability, and their engagement with other subcellular structures and cargoes destined for transport. This review focuses on recent advances in our understanding of how MTs and their regulatory proteins function, including their active targeting and exploitation, during infection by viruses that utilize a wide variety of replication strategies that occur within different cellular sub-compartments or regions of the cell.
Collapse
Affiliation(s)
- Eveline Santos da Silva
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; HIV Clinical and Translational Research, Luxembourg Institute of Health, Department of Infection and Immunity, Esch-sur-Alzette, Luxembourg
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
6
|
Wu Y. HIV Preintegration Transcription and Host Antagonism. Curr HIV Res 2023; 21:160-171. [PMID: 37345240 PMCID: PMC10661980 DOI: 10.2174/1570162x21666230621122637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Retrovirus integration is an obligatory step for the viral life cycle, but large amounts of unintegrated DNA (uDNA) accumulate during retroviral infection. For simple retroviruses, in the absence of integration, viral genomes are epigenetically silenced in host cells. For complex retroviruses such as HIV, preintegration transcription has been found to occur at low levels from a large population of uDNA even in the presence of host epigenetic silencing mechanisms. HIV preintegration transcription has been suggested to be a normal early process of HIV infection that leads to the syntheses of all three classes of viral transcripts: multiply-spliced, singly-spliced, and unspliced genomic RNA; only viral early proteins such as Nef are selectively translated at low levels in blood CD4 T cells and macrophages, the primary targets of HIV. The initiation and persistence of HIV preintegration transcription have been suggested to rely on viral accessory proteins, particularly virion Vpr and de novo Tat generated from uDNA; both proteins have been shown to antagonize host epigenetic silencing of uDNA. In addition, stimulation of latently infected resting T cells and macrophages with cytokines, PKC activator, or histone deacetylase inhibitors has been found to greatly upregulate preintegration transcription, leading to low-level viral production or even replication from uDNA. Functionally, Nef synthesized from preintegration transcription is biologically active in modulating host immune functions, lowering the threshold of T cell activation, and downregulating surface CD4, CXCR4/CCR5, and HMC receptors. The early Tat activity from preintegration transcription antagonizes repressive minichromatin assembled onto uDNA. The study of HIV preintegration transcription is important to understanding virus-host interaction and antagonism, viral persistence, and the mechanism of integrase drug resistance. The application of unintegrated lentiviral vectors for gene therapy also offers a safety advantage for minimizing retroviral vector-mediated insertional mutagenesis.
Collapse
Affiliation(s)
- Yuntao Wu
- Center for Infectious Disease Research, George Mason University, Manassas, Virginia, United States
| |
Collapse
|
7
|
Zhang H, Zhang XQ, Huang LS, Fang X, Khan M, Xu Y, An J, Schooley RT, Huang Z. Synergistic inhibition of hepatitis C virus infection by a novel microtubule inhibitor in combination with daclatasvir. Biochem Biophys Rep 2022; 30:101283. [PMID: 35647321 PMCID: PMC9136107 DOI: 10.1016/j.bbrep.2022.101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
Even though substantial progress has been made in the treatment of hepatitis C virus (HCV) infection, viral resistance and relapse still occur in some patients and additional therapeutic approaches may ultimately be needed should viral resistance become more prevalent. Microtubules play important roles in several HCV life cycle events, including cell attachment, entry, cellular transportation, morphogenesis and progeny secretion steps. Therefore, it was hypothesized that microtubular inhibition might be a novel approach for the treatment of HCV infection. Here, the inhibitory effects of our recently developed microtubule inhibitors were studied in the HCV replicon luciferase reporter system and the infectious system. In addition, the combination responses of microtubule inhibitors with daclatasvir, which is a clinically used HCV NS5A inhibitor, were also evaluated. Our results indicated that microtubule targeting had activity against HCV replication and showed synergistic effect with a current clinical drug. Microtubule inhibition affects HCV replication. Compound 9f displays time and concentration dependent inhibitory activities against HCV production. Combination of compound 9f with Daclatasvir shows modest synergistic effects against HCV replication.
Collapse
Affiliation(s)
- Huijun Zhang
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, 92093, California, USA
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xing-Quan Zhang
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, 92093, California, USA
| | - Lina S. Huang
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, 92093, California, USA
| | - Xiong Fang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mohsin Khan
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, 92093, California, USA
| | - Yan Xu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Jing An
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, 92093, California, USA
- Corresponding author.
| | - Robert T. Schooley
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, 92093, California, USA
- Corresponding author.
| | - Ziwei Huang
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, 92093, California, USA
- Corresponding author.
| |
Collapse
|
8
|
Naghavi MH. HIV-1 capsid exploitation of the host microtubule cytoskeleton during early infection. Retrovirology 2021; 18:19. [PMID: 34229718 PMCID: PMC8259435 DOI: 10.1186/s12977-021-00563-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023] Open
Abstract
Microtubules (MTs) form a filamentous array that provide both structural support and a coordinated system for the movement and organization of macromolecular cargos within the cell. As such, they play a critical role in regulating a wide range of cellular processes, from cell shape and motility to cell polarization and division. The array is radial with filament minus-ends anchored at perinuclear MT-organizing centers and filament plus-ends continuously growing and shrinking to explore and adapt to the intracellular environment. In response to environmental cues, a small subset of these highly dynamic MTs can become stabilized, acquire post-translational modifications and act as specialized tracks for cargo trafficking. MT dynamics and stability are regulated by a subset of highly specialized MT plus-end tracking proteins, known as +TIPs. Central to this is the end-binding (EB) family of proteins which specifically recognize and track growing MT plus-ends to both regulate MT polymerization directly and to mediate the accumulation of a diverse array of other +TIPs at MT ends. Moreover, interaction of EB1 and +TIPs with actin-MT cross-linking factors coordinate changes in actin and MT dynamics at the cell periphery, as well as during the transition of cargos from one network to the other. The inherent structural polarity of MTs is sensed by specialized motor proteins. In general, dynein directs trafficking of cargos towards the minus-end while most kinesins direct movement toward the plus-end. As a pathogenic cargo, HIV-1 uses the actin cytoskeleton for short-range transport most frequently at the cell periphery during entry before transiting to MTs for long-range transport to reach the nucleus. While the fundamental importance of MT networks to HIV-1 replication has long been known, recent work has begun to reveal the underlying mechanistic details by which HIV-1 engages MTs after entry into the cell. This includes mimicry of EB1 by capsid (CA) and adaptor-mediated engagement of dynein and kinesin motors to elegantly coordinate early steps in infection that include MT stabilization, uncoating (conical CA disassembly) and virus transport toward the nucleus. This review discusses recent advances in our understanding of how MT regulators and their associated motors are exploited by incoming HIV-1 capsid during early stages of infection.
Collapse
Affiliation(s)
- Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
9
|
Carnes SK, Aiken C. Host proteins involved in microtubule-dependent HIV-1 intracellular transport and uncoating. Future Virol 2019. [DOI: 10.2217/fvl-2019-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microtubules and microtubule-associated proteins are critical for cargo transport throughout the cell. Many viruses are able to usurp these transport systems for their own replication and spread. HIV-1 utilizes these proteins for many of its early events postentry, including transport, uncoating and reverse transcription. The molecular motor proteins dynein and kinesin-1 are the primary drivers of cargo transport, and HIV-1 utilizes these proteins for infection. In this Review, we highlight recent developments in the understanding of how HIV-1 hijacks motor transport, the key cellular and viral proteins involved, and the ways that transport influences other steps in the HIV-1 lifecycle.
Collapse
Affiliation(s)
- Stephanie K Carnes
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
10
|
ATG5 overexpression is neuroprotective and attenuates cytoskeletal and vesicle-trafficking alterations in axotomized motoneurons. Cell Death Dis 2018; 9:626. [PMID: 29799519 PMCID: PMC5967323 DOI: 10.1038/s41419-018-0682-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
Injured neurons should engage endogenous mechanisms of self-protection to limit neurodegeneration. Enhancing efficacy of these mechanisms or correcting dysfunctional pathways may be a successful strategy for inducing neuroprotection. Spinal motoneurons retrogradely degenerate after proximal axotomy due to mechanical detachment (avulsion) of the nerve roots, and this limits recovery of nervous system function in patients after this type of trauma. In a previously reported proteomic analysis, we demonstrated that autophagy is a key endogenous mechanism that may allow motoneuron survival and regeneration after distal axotomy and suture of the nerve. Herein, we show that autophagy flux is dysfunctional or blocked in degenerated motoneurons after root avulsion. We also found that there were abnormalities in anterograde/retrograde motor proteins, key secretory pathway factors, and lysosome function. Further, LAMP1 protein was missorted and underglycosylated as well as the proton pump v-ATPase. In vitro modeling revealed how sequential disruptions in these systems likely lead to neurodegeneration. In vivo, we observed that cytoskeletal alterations, induced by a single injection of nocodazole, were sufficient to promote neurodegeneration of avulsed motoneurons. Besides, only pre-treatment with rapamycin, but not post-treatment, neuroprotected after nerve root avulsion. In agreement, overexpressing ATG5 in injured motoneurons led to neuroprotection and attenuation of cytoskeletal and trafficking-related abnormalities. These discoveries serve as proof of concept for autophagy-target therapy to halting the progression of neurodegenerative processes.
Collapse
|
11
|
Ferguson R, Subramanian V. The cellular uptake of angiogenin, an angiogenic and neurotrophic factor is through multiple pathways and largely dynamin independent. PLoS One 2018; 13:e0193302. [PMID: 29486010 PMCID: PMC5828446 DOI: 10.1371/journal.pone.0193302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/08/2018] [Indexed: 01/25/2023] Open
Abstract
Angiogenin (ANG), a member of the RNase superfamily (also known as RNase 5) has neurotrophic, neuroprotective and angiogenic activities. Recently it has also been shown to be important in stem cell homeostasis. Mutations in ANG are associated with neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and Fronto-temporal dementia (FTD). ANG is a secreted protein which is taken up by cells and translocated to the nucleus. However, the import pathway/s through which ANG is taken up is/are still largely unclear. We have characterised the uptake of ANG in neuronal, astrocytic and microglial cell lines as well as primary neurons and astrocytes using pharmacological agents as well as dominant negative dynamin and Rab5 to perturb uptake and intracellular trafficking. We find that uptake of ANG is largely clathrin/dynamin independent and microtubule depolymerisation has a marginal effect. Perturbation of membrane ruffling and macropinocytosis significantly inhibited ANG uptake suggesting an uptake mechanism similar to RNase A. Our findings shed light on why mutations which do not overtly affect RNase activity but cause impaired localization are associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Ross Ferguson
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Vasanta Subramanian
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Discovery of Novel Small-Molecule Inhibitors of LIM Domain Kinase for Inhibiting HIV-1. J Virol 2017; 91:JVI.02418-16. [PMID: 28381571 PMCID: PMC5469273 DOI: 10.1128/jvi.02418-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/28/2017] [Indexed: 01/22/2023] Open
Abstract
A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity by hijacking chemokine coreceptor signaling, which activates a host dependency factor, cofilin, and its kinase, the LIM domain kinase (LIMK). Although knockdown of human LIM domain kinase 1 (LIMK1) with short hairpin RNA (shRNA) inhibits HIV infection, no specific small-molecule inhibitor of LIMK has been available. Here, we describe the design and discovery of novel classes of small-molecule inhibitors of LIMK for inhibiting HIV infection. We identified R10015 as a lead compound that blocks LIMK activity by binding to the ATP-binding pocket. R10015 specifically blocks viral DNA synthesis, nuclear migration, and virion release. In addition, R10015 inhibits multiple viruses, including Zaire ebolavirus (EBOV), Rift Valley fever virus (RVFV), Venezuelan equine encephalitis virus (VEEV), and herpes simplex virus 1 (HSV-1), suggesting that LIMK inhibitors could be developed as a new class of broad-spectrum antiviral drugs. IMPORTANCE The actin cytoskeleton is a structure that gives the cell shape and the ability to migrate. Viruses frequently rely on actin dynamics for entry and intracellular migration. In cells, actin dynamics are regulated by kinases, such as the LIM domain kinase (LIMK), which regulates actin activity through phosphorylation of cofilin, an actin-depolymerizing factor. Recent studies have found that LIMK/cofilin are targeted by viruses such as HIV-1 for propelling viral intracellular migration. Although inhibiting LIMK1 expression blocks HIV-1 infection, no highly specific LIMK inhibitor is available. This study describes the design, medicinal synthesis, and discovery of small-molecule LIMK inhibitors for blocking HIV-1 and several other viruses and emphasizes the feasibility of developing LIMK inhibitors as broad-spectrum antiviral drugs.
Collapse
|
13
|
Li Q, Li W, Yin W, Guo J, Zhang ZP, Zeng D, Zhang X, Wu Y, Zhang XE, Cui Z. Single-Particle Tracking of Human Immunodeficiency Virus Type 1 Productive Entry into Human Primary Macrophages. ACS NANO 2017; 11:3890-3903. [PMID: 28371581 DOI: 10.1021/acsnano.7b00275] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Macrophages are one of the major targets of human immunodeficiency virus (HIV-1), but the viral entry pathway remains poorly understood in these cells. Noninvasive virus labeling and single-virus tracking are effective tools for studying virus entry. Here, we constructed a quantum dot (QD)-encapsulated infectious HIV-1 particle to track viral entry at a single-particle level in live human primary macrophages. QDs were encapsulated in HIV-1 virions by incorporating viral accessory protein Vpr-conjugated QDs during virus assembly. With the HIV-1 particles encapsulating QDs, we monitored the early phase of viral infection in real time and observed that, during infection, HIV-1 was endocytosed in a clathrin-mediated manner; the particles were translocated into Rab5A-positive endosomes, and the core was released into the cytoplasm by viral envelope-mediated endosomal fusion. Drug inhibition assays verified that endosome fusion contributes to HIV-1 productive infection in primary macrophages. Additionally, we observed that a dynamic actin cytoskeleton is critical for HIV-1 entry and intracellular migration in primary macrophages. HIV-1 dynamics and infection could be blocked by multiple different actin inhibitors. Our study revealed a productive entry pathway in macrophages that requires both endosomal function and actin dynamics, which may assist in the development of inhibitors to block the HIV entry in macrophages.
Collapse
Affiliation(s)
- Qin Li
- College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, P.R. China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, P.R. China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, P.R. China
| | - Wen Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, P.R. China
| | - Jia Guo
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University , Manassas, Virginia 20110, United States
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, P.R. China
| | - Dejun Zeng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, P.R. China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, P.R. China
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University , Manassas, Virginia 20110, United States
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, P.R. China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, P.R. China
| |
Collapse
|
14
|
SUN2 Overexpression Deforms Nuclear Shape and Inhibits HIV. J Virol 2016; 90:4199-4214. [PMID: 26865710 DOI: 10.1128/jvi.03202-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED In a previous screen of putative interferon-stimulated genes, SUN2 was shown to inhibit HIV-1 infection in an uncharacterized manner. SUN2 is an inner nuclear membrane protein belonging to the linker of nucleoskeleton and cytoskeleton complex. We have analyzed here the role of SUN2 in HIV infection. We report that in contrast to what was initially thought, SUN2 is not induced by type I interferon, and that SUN2 silencing does not modulate HIV infection. However, SUN2 overexpression in cell lines and in primary monocyte-derived dendritic cells inhibits the replication of HIV but not murine leukemia virus or chikungunya virus. We identified HIV-1 and HIV-2 strains that are unaffected by SUN2, suggesting that the effect is specific to particular viral components or cofactors. Intriguingly, SUN2 overexpression induces a multilobular flower-like nuclear shape that does not impact cell viability and is similar to that of cells isolated from patients with HTLV-I-associated adult T-cell leukemia or with progeria. Nuclear shape changes and HIV inhibition both mapped to the nucleoplasmic domain of SUN2 that interacts with the nuclear lamina. This block to HIV replication occurs between reverse transcription and nuclear entry, and passaging experiments selected for a single-amino-acid change in capsid (CA) that leads to resistance to overexpressed SUN2. Furthermore, using chemical inhibition or silencing of cyclophilin A (CypA), as well as CA mutant viruses, we implicated CypA in the SUN2-imposed block to HIV infection. Our results demonstrate that SUN2 overexpression perturbs both nuclear shape and early events of HIV infection. IMPORTANCE Cells encode proteins that interfere with viral replication, a number of which have been identified in overexpression screens. SUN2 is a nuclear membrane protein that was shown to inhibit HIV infection in such a screen, but how it blocked HIV infection was not known. We show that SUN2 overexpression blocks the infection of certain strains of HIV before nuclear entry. Mutation of the viral capsid protein yielded SUN2-resistant HIV. Additionally, the inhibition of HIV infection by SUN2 involves cyclophilin A, a protein that binds the HIV capsid and directs subsequent steps of infection. We also found that SUN2 overexpression substantially changes the shape of the cell's nucleus, resulting in many flower-like nuclei. Both HIV inhibition and deformation of nuclear shape required the domain of SUN2 that interacts with the nuclear lamina. Our results demonstrate that SUN2 interferes with HIV infection and highlight novel links between nuclear shape and viral infection.
Collapse
|
15
|
Maizels Y, Gerlitz G. Shaping of interphase chromosomes by the microtubule network. FEBS J 2015; 282:3500-24. [PMID: 26040675 DOI: 10.1111/febs.13334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
Abstract
It is well established that microtubule dynamics play a major role in chromosome condensation and localization during mitosis. During interphase, however, it is assumed that the metazoan nuclear envelope presents a physical barrier, which inhibits interaction between the microtubules located in the cytoplasm and the chromatin fibers located in the nucleus. In recent years, it has become apparent that microtubule dynamics alter chromatin structure and function during interphase as well. Microtubule motor proteins transport several transcription factors and exogenous DNA (such as plasmid DNA) from the cytoplasm to the nucleus. Various soluble microtubule components are able to translocate into the nucleus, where they bind various chromatin elements leading to transcriptional alterations. In addition, microtubules may apply force on the nuclear envelope, which is transmitted into the nucleus, leading to changes in chromatin structure. Thus, microtubule dynamics during interphase may affect chromatin spatial organization, as well as transcription, replication and repair.
Collapse
Affiliation(s)
- Yael Maizels
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Israel
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Israel
| |
Collapse
|
16
|
Kondo N, Marin M, Kim JH, Desai TM, Melikyan GB. Distinct requirements for HIV-cell fusion and HIV-mediated cell-cell fusion. J Biol Chem 2015; 290:6558-73. [PMID: 25589785 DOI: 10.1074/jbc.m114.623181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Whether HIV-1 enters cells by fusing with the plasma membrane or with endosomes is a subject of active debate. The ability of HIV-1 to mediate fusion between adjacent cells, a process referred to as "fusion-from-without" (FFWO), shows that this virus can fuse with the plasma membrane. To compare FFWO occurring at the cell surface with HIV-cell fusion through a conventional entry route, we designed an experimental approach that enabled the measurements of both processes in the same sample. The following key differences were observed. First, a very small fraction of viruses fusing with target cells participated in FFWO. Second, whereas HIV-1 fusion with adherent cells was insensitive to actin inhibitors, post-CD4/coreceptor binding steps during FFWO were abrogated. A partial dependence of HIV-cell fusion on actin remodeling was observed in CD4(+) T cells, but this effect appeared to be due to the actin dependence of virus uptake. Third, deletion of the cytoplasmic tail of HIV-1 gp41 dramatically enhanced the ability of the virus to promote FFWO, while having a modest effect on virus-cell fusion. Distinct efficiencies and actin dependences of FFWO versus HIV-cell fusion are consistent with the notion that, except for a minor fraction of particles that mediate fusion between the plasma membranes of adjacent cells, HIV-1 enters through an endocytic pathway. We surmise, however, that cell-cell contacts enabling HIV-1 fusion with the plasma membrane could be favored at the sites of high density of target cells, such as lymph nodes.
Collapse
Affiliation(s)
- Naoyuki Kondo
- From the Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta and
| | - Mariana Marin
- From the Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta and
| | - Jeong Hwa Kim
- From the Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta and
| | - Tanay M Desai
- From the Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta and
| | - Gregory B Melikyan
- From the Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta and Children's Healthcare of Atlanta, Atlanta, Georgia 30322
| |
Collapse
|
17
|
Fernandez J, Portilho DM, Danckaert A, Munier S, Becker A, Roux P, Zambo A, Shorte S, Jacob Y, Vidalain PO, Charneau P, Clavel F, Arhel NJ. Microtubule-associated proteins 1 (MAP1) promote human immunodeficiency virus type I (HIV-1) intracytoplasmic routing to the nucleus. J Biol Chem 2014; 290:4631-4646. [PMID: 25505242 DOI: 10.1074/jbc.m114.613133] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After cell entry, HIV undergoes rapid transport toward the nucleus using microtubules and microfilaments. Neither the cellular cytoplasmic components nor the viral proteins that interact to mediate transport have yet been identified. Using a yeast two-hybrid screen, we identified four cytoskeletal components as putative interaction partners for HIV-1 p24 capsid protein: MAP1A, MAP1S, CKAP1, and WIRE. Depletion of MAP1A/MAP1S in indicator cell lines and primary human macrophages led to a profound reduction in HIV-1 infectivity as a result of impaired retrograde trafficking, demonstrated by a characteristic accumulation of capsids away from the nuclear membrane, and an overall defect in nuclear import. MAP1A/MAP1S did not impact microtubule network integrity or cell morphology but contributed to microtubule stabilization, which was shown previously to facilitate infection. In addition, we found that MAP1 proteins interact with HIV-1 cores both in vitro and in infected cells and that interaction involves MAP1 light chain LC2. Depletion of MAP1 proteins reduced the association of HIV-1 capsids with both dynamic and stable microtubules, suggesting that MAP1 proteins help tether incoming viral capsids to the microtubular network, thus promoting cytoplasmic trafficking. This work shows for the first time that following entry into target cells, HIV-1 interacts with the cytoskeleton via its p24 capsid protein. Moreover, our results support a role for MAP1 proteins in promoting efficient retrograde trafficking of HIV-1 by stimulating the formation of stable microtubules and mediating the association of HIV-1 cores with microtubules.
Collapse
Affiliation(s)
- Juliette Fernandez
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | - Débora M Portilho
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | | | - Sandie Munier
- the Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, CNRS UMR3569, Institut Pasteur, 75015 Paris, France
| | - Andreas Becker
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | - Pascal Roux
- Imagopole, Institut Pasteur, 75015 Paris, France
| | - Anaba Zambo
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | | | - Yves Jacob
- the Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, CNRS UMR3569, Institut Pasteur, 75015 Paris, France
| | - Pierre-Olivier Vidalain
- Unité de Génomique Virale et Vaccination, CNRS UMR3569, Institut Pasteur, 75015 Paris, France, and
| | - Pierre Charneau
- the Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, 75015 Paris, France
| | - François Clavel
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | - Nathalie J Arhel
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France,.
| |
Collapse
|
18
|
Cytoplasmic dynein promotes HIV-1 uncoating. Viruses 2014; 6:4195-211. [PMID: 25375884 PMCID: PMC4246216 DOI: 10.3390/v6114195] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022] Open
Abstract
Retroviral capsid (CA) cores undergo uncoating during their retrograde transport (toward the nucleus), and/or after reaching the nuclear membrane. However, whether HIV-1 CA core uncoating is dependent upon its transport is not understood. There is some evidence that HIV-1 cores retrograde transport involves cytoplasmic dynein complexes translocating on microtubules. Here we investigate the role of dynein-dependent transport in HIV-1 uncoating. To interfere with dynein function, we depleted dynein heavy chain (DHC) using RNA interference, and we over-expressed p50/dynamitin. In immunofluorescence microscopy experiments, DHC depletion caused an accumulation of CA foci in HIV-1 infected cells. Using a biochemical assay to monitor HIV-1 CA core disassembly in infected cells, we observed an increase in amounts of intact (pelletable) CA cores upon DHC depletion or p50 over-expression. Results from these two complementary assays suggest that inhibiting dynein-mediated transport interferes with HIV-1 uncoating in infected cells, indicating the existence of a functional link between HIV-1 transport and uncoating.
Collapse
|
19
|
Abstract
UNLABELLED Following entry into the target cell, human immunodeficiency virus type 1 (HIV-1) must reverse transcribe its RNA genome to DNA and traffic to the nuclear envelope, where the viral genome is translocated into the nucleus for subsequent integration into the host cell chromosome. During this time, the viral core, which houses the genome, undergoes a poorly understood process of disassembly, known as uncoating. Collectively, many studies suggest that uncoating is tightly regulated to allow nuclear import of the genome while minimizing the exposure of the newly synthesized DNA to cytosolic DNA sensors. However, whether host cellular proteins facilitate this process remains poorly understood. Here we report that intact microtubules facilitate HIV-1 uncoating in target cells. Disruption of microtubules with nocodazole substantially delays HIV-1 uncoating, as revealed with three different assay systems. This defect in uncoating did not correlate with defective reverse transcription at early times postinfection, demonstrating that microtubule-facilitated uncoating is distinct from the previously reported role of viral reverse transcription in the uncoating process. We also find that pharmacological or small interfering RNA (siRNA)-mediated inhibition of cytoplasmic dynein or the kinesin 1 heavy chain KIF5B delays uncoating, providing detailed insight into how microtubules facilitate the uncoating process. These studies reveal a previously unappreciated role for microtubules and microtubule motor function in HIV-1 uncoating, establishing a functional link between viral trafficking and uncoating. Targeted disruption of the capsid motor interaction may reveal novel mechanisms of inhibition of viral infection or provide opportunities to activate cytoplasmic antiviral responses directed against capsid or viral DNA. IMPORTANCE During HIV-1 infection, fusion of viral and target cell membranes dispenses the viral ribonucleoprotein complex into the cytoplasm of target cells. During this time, the virus must reverse transcribe its RNA genome, traffic from the location of fusion to the nuclear membrane, and undergo the process of uncoating, whereby the viral capsid core disassembles to allow the subsequent nuclear import of the viral genome. Numerous cellular restriction factors target the viral capsid, suggesting that perturbation of the uncoating process represents an excellent antiviral target. However, this uncoating process, and the cellular factors that facilitate uncoating, remains poorly understood. The main observation of this study is that normal uncoating requires intact microtubules and is facilitated by dynein and kinesin motors. Targeting these factors may either directly inhibit infection or delay it enough to trigger mediators of intrinsic immunity that recognize cytoplasmic capsid or DNA and subsequently induce an antiviral state in these cells.
Collapse
|
20
|
Rocha-Perugini V, Gordon-Alonso M, Sánchez-Madrid F. PIP2: choreographer of actin-adaptor proteins in the HIV-1 dance. Trends Microbiol 2014; 22:379-88. [PMID: 24768560 DOI: 10.1016/j.tim.2014.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/11/2014] [Accepted: 03/25/2014] [Indexed: 02/06/2023]
Abstract
The actin cytoskeleton plays a key role during the replication cycle of human immunodeficiency virus-1 (HIV-1). HIV-1 infection is affected by cellular proteins that influence the clustering of viral receptors or the subcortical actin cytoskeleton. Several of these actin-adaptor proteins are controlled by the second messenger phosphatidylinositol 4,5-biphosphate (PIP2), an important regulator of actin organization. PIP2 production is induced by HIV-1 attachment and facilitates viral infection. However, the importance of PIP2 in regulating cytoskeletal proteins and thus HIV-1 infection has been overlooked. This review examines recent reports describing the roles played by actin-adaptor proteins during HIV-1 infection of CD4+ T cells, highlighting the influence of the signaling lipid PIP2 in this process.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria de la Princesa, Madrid, Spain; Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Mónica Gordon-Alonso
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria de la Princesa, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria de la Princesa, Madrid, Spain; Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|
21
|
Functional evidence for the involvement of microtubules and dynein motor complexes in TRIM5α-mediated restriction of retroviruses. J Virol 2014; 88:5661-76. [PMID: 24600008 DOI: 10.1128/jvi.03717-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The tripartite motif (TRIM) family of proteins includes the TRIM5α antiretroviral restriction factor. TRIM5α from many Old World and some New World monkeys can restrict the human immunodeficiency virus type 1 (HIV-1), while human TRIM5α restricts N-tropic murine leukemia virus (N-MLV). TRIM5α forms highly dynamic cytoplasmic bodies (CBs) that associate with and translocate on microtubules. However, the functional involvement of microtubules or other cytoskeleton-associated factors in the viral restriction process had not been shown. Here, we demonstrate the dependency of TRIM5α-mediated restriction on microtubule-mediated transport. Pharmacological disruption of the microtubule network using nocodazole or disabling it using paclitaxel (originally named taxol) decreased the restriction of N-MLV and HIV-1 by human or simian alleles of TRIM5α, respectively. In addition, pharmacological inhibition of dynein motor complexes using erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and small interfering RNA-mediated depletion of the dynein heavy chain (DHC) similarly decreased TRIM5α-mediated restriction. The loss in restriction resulting from either the disassembly of microtubules or the disruption of dynein motor activity was seen for both endogenous and overexpressed TRIM5α and was not due to differences in protein stability or cell viability. Both nocodazole treatment and DHC depletion interfered with the dynamics of TRIM5α CBs, increasing their size and altering their intracellular localization. In addition, nocodazole, paclitaxel, and DHC depletion were all found to increase the stability of HIV-1 cores in infected cells, providing an alternative explanation for the decreased restriction. In conclusion, association with microtubules and the translocation activity of dynein motor complexes are required to achieve efficient restriction by TRIM5α. IMPORTANCE The primate innate cellular defenses against infection by retroviruses include a protein named TRIM5α, belonging to the family of restriction factors. TRIM5α is present in the cytoplasm, where it can intercept incoming retroviruses shortly after their entry. How TRIM5α manages to be present at the appropriate subcytoplasmic location to interact with its target is unknown. We hypothesized that TRIM5α, either as a soluble protein or a high-molecular-weight complex (the cytoplasmic body), is transported within the cytoplasm by a molecular motor called the dynein complex, which is known to interact with and move along microtubules. Our results show that destructuring microtubules or crippling their function decreased the capacity of human or simian TRIM5α to restrict their retroviral targets. Inhibiting dynein motor activity, or reducing the expression of a key component of this complex, similarly affected TRIM5α-mediated restriction. Thus, we have identified specific cytoskeleton structures involved in innate antiretroviral defenses.
Collapse
|
22
|
Evans VA, Kumar N, Filali A, Procopio FA, Yegorov O, Goulet JP, Saleh S, Haddad EK, da Fonseca Pereira C, Ellenberg PC, Sekaly RP, Cameron PU, Lewin SR. Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells. PLoS Pathog 2013; 9:e1003799. [PMID: 24339779 PMCID: PMC3855553 DOI: 10.1371/journal.ppat.1003799] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 10/12/2013] [Indexed: 12/11/2022] Open
Abstract
Latently infected resting CD4+ T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4+ T cells and syngeneic myeloid dendritic cells (mDC) can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4+ T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4+ T cells. Gene expression in non-proliferating CD4+ T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-κB and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4+ T cells, which is predominantly mediated through signalling during DC-T cell contact. Current antiretroviral drugs significantly prolong life and reduce morbidity but are unable to cure HIV. While on treatment, the virus is able to hide in resting memory T cells in a silent or “latent” form. These latently infected cells are rare and thus are hard to study using blood from HIV-infected individuals on treatment. Therefore, it is very important to have laboratory models that can closely mimic what is going on in the body. We have developed a novel model of HIV latency in the laboratory. Using this model we have shown that the presence of dendritic cells, an important type of immune cell that can regulate T cell activation, at the time of infection allows for the infection of resting T cells and the establishment of latency. We have demonstrated that this is predominantly mediated by direct cell-to-cell interactions. Further exploration of the mechanisms behind HIV latency could lead to new ways to treat and possibly eradicate HIV.
Collapse
Affiliation(s)
- Vanessa A. Evans
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Nitasha Kumar
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Ali Filali
- VGTI-Florida, Port St. Lucie, Florida, United States of America
| | | | - Oleg Yegorov
- VGTI-Florida, Port St. Lucie, Florida, United States of America
| | - Jean-Philippe Goulet
- Laboratoire d'immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Suha Saleh
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Elias K. Haddad
- VGTI-Florida, Port St. Lucie, Florida, United States of America
- Laboratoire d'immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Candida da Fonseca Pereira
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Monash Micro Imaging, Monash University, Melbourne, Victoria, Australia
| | - Paula C. Ellenberg
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Rafick-Pierre Sekaly
- VGTI-Florida, Port St. Lucie, Florida, United States of America
- Laboratoire d'immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Paul U. Cameron
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Alfred Hospital, Melbourne, Victoria, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Infectious Diseases Unit, Alfred Hospital, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
23
|
Sabo Y, Walsh D, Barry DS, Tinaztepe S, de los Santos K, Goff SP, Gundersen GG, Naghavi MH. HIV-1 induces the formation of stable microtubules to enhance early infection. Cell Host Microbe 2013; 14:535-46. [PMID: 24237699 PMCID: PMC3855456 DOI: 10.1016/j.chom.2013.10.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/27/2013] [Accepted: 10/22/2013] [Indexed: 02/05/2023]
Abstract
Stable microtubule (MT) subsets form distinct networks from dynamic MTs and acquire distinguishing posttranslational modifications, notably detyrosination and acetylation. Acting as specialized tracks for vesicle and macromolecular transport, their formation is regulated by the end-binding protein EB1, which recruits proteins that stabilize MTs. We show that HIV-1 induces the formation of acetylated and detyrosinated stable MTs early in infection. Although the MT depolymerizing agent nocodazole affected dynamic MTs, HIV-1 particles localized to nocodazole-resistant stable MTs, and infection was minimally affected. EB1 depletion or expression of an EB1 carboxy-terminal fragment that acts as a dominant-negative inhibitor of MT stabilization prevented HIV-1-induced stable MT formation and suppressed early viral infection. Furthermore, we show that the HIV-1 matrix protein targets the EB1-binding protein Kif4 to induce MT stabilization. Our findings illustrate how specialized MT-binding proteins mediate MT stabilization by HIV-1 and the importance of stable MT subsets in viral infection.
Collapse
Affiliation(s)
- Yosef Sabo
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Derek Walsh
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Denis S. Barry
- Centre for Research in Infectious Diseases, University College Dublin, Dublin 4, Ireland
| | - Sedef Tinaztepe
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Kenia de los Santos
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Stephen P. Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Gregg G. Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Mojgan H. Naghavi
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
- Centre for Research in Infectious Diseases, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
24
|
Gaudin R, de Alencar BC, Arhel N, Benaroch P. HIV trafficking in host cells: motors wanted! Trends Cell Biol 2013; 23:652-62. [PMID: 24119663 DOI: 10.1016/j.tcb.2013.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 11/16/2022]
Abstract
Throughout the viral replication cycle, viral proteins, complexes, and particles need to be transported within host cells. These transport events are dependent on the host cell cytoskeleton and molecular motors. However, the mechanisms by which virus is trafficked along cytoskeleton filaments and how molecular motors are recruited and regulated to guarantee successful integration of the viral genome and production of new viruses has only recently begun to be understood. Recent studies on HIV have identified specific molecular motors involved in the trafficking of these viral particles. Here we review recent literature on the transport of HIV components in the cell, provide evidence for the identity and role of molecular motors in this process, and highlight how these trafficking events may be related to those occurring with other viruses.
Collapse
Affiliation(s)
- Raphaël Gaudin
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, 75248 Paris Cedex 05, France; INSERM, U932, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | |
Collapse
|
25
|
Brice A, Moseley GW. Viral interactions with microtubules: orchestrators of host cell biology? Future Virol 2013. [DOI: 10.2217/fvl.12.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Viral interaction with the microtubule (MT) cytoskeleton is critical to infection by many viruses. Most data regarding virus–MT interaction indicate key roles in the subcellular transport of virions/viral genomic material to sites of replication, assembly and egress. However, the MT cytoskeleton orchestrates diverse processes in addition to subcellular cargo transport, including regulation of signaling pathways, cell survival and mitosis, suggesting that viruses, expert manipulators of the host cell, may use the virus–MT interface to control multiple aspects of cell biology. Several lines of evidence support this idea, indicating that specific viral proteins can modify MT dynamics and/or structure and regulate processes such as apoptosis and innate immune signaling through MT-dependent mechanisms. Here, the authors review general aspects of virus–MT interactions, with emphasis on viral mechanisms that modify MT dynamics and functions to affect processes beyond virion transport. The emerging importance of discrete viral protein–MT interactions in pathogenic processes indicates that these interfaces may represent new targets for future therapeutics and vaccine development.
Collapse
Affiliation(s)
- Aaron Brice
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Gregory W Moseley
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
26
|
De Conto F, Di Lonardo E, Arcangeletti MC, Chezzi C, Medici MC, Calderaro A. Highly dynamic microtubules improve the effectiveness of early stages of human influenza A/NWS/33 virus infection in LLC-MK2 cells. PLoS One 2012; 7:e41207. [PMID: 22911759 PMCID: PMC3401105 DOI: 10.1371/journal.pone.0041207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This study aims to investigate the role of microtubule dynamics in the initiation of NWS/33 human influenza A (NWS) virus infection in MDCK and LLC-MK2 mammalian kidney cells. We previously demonstrated a host-dependent role of the actin cytoskeleton in inducing restriction during the early phases of NWS infection. Furthermore, we showed the differential infectious entry of NWS virus in the above mentioned cell models. METHODOLOGY/PRINCIPAL FINDINGS By first employing a panel of microtubule-modulators, we evidenced that microtubule-stabilization negatively interferes with NWS replication in LLC-MK2 but not in MDCK cells. Conversely, microtubule-depolymerization improves NWS growth in LLC-MK2 but not in the MDCK model. By using immunofluorescence labelling and Western blotting analyses upon NWS infection in mammalian kidney cells, it was observed that the occurrence of alpha-tubulin hyperacetylation--a post-translational modified form suggestive of stable microtubules--was significantly delayed in LLC-MK2 when compared to MDCK cells. Furthermore, mock-infected LLC-MK2 cells were shown to have higher levels of both acetylated alpha-tubulin and microtubule-associated protein 4 (MAP4), the latter being essential for the maintenance of normal microtubule polymer levels in interphase epithelial cells. Finally, to obtain highly dynamic microtubules in LLC-MK2 cells, we knocked down the expression of MAP4 by using a RNA-mediated RNA interference approach. The results evidenced that MAP4 silencing improves NWS growth in LLC-MK2 cells. CONCLUSION By evidencing the cell type-dependent regulatory role of microtubule dynamics on NWS replication in mammalian kidney cells, we demonstrated that microtubule-stabilization represents a restriction factor for the initiation of NWS infection in LLC-MK2 but not in MDCK cells.
Collapse
Affiliation(s)
- Flora De Conto
- Section of Microbiology, Department of Pathology and Laboratory Medicine, University of Parma, Parma, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Evans VA, Khoury G, Saleh S, Cameron PU, Lewin SR. HIV persistence: chemokines and their signalling pathways. Cytokine Growth Factor Rev 2012; 23:151-7. [PMID: 22749173 DOI: 10.1016/j.cytogfr.2012.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Latently infected resting CD4+ T cells are the major barrier to curing HIV. We have recently demonstrated that chemokines, which bind to the chemokine receptors CCR7, CXCR3 and CCR6, facilitate efficient HIV nuclear localisation and integration in resting CD4+ T cells, leading to latency. As latently infected cells are enriched in lymphoid tissues, where chemokines are highly concentrated, this may provide a mechanism for the generation of latently infected cells in vivo. Here we review the role of chemokines in HIV persistence; the main signalling pathways that are involved; and how these pathways may be exploited to develop novel strategies to reduce or eliminate latently infected cells.
Collapse
Affiliation(s)
- Vanessa A Evans
- Department of Medicine, Monash University, Melbourne, 3004, Australia
| | | | | | | | | |
Collapse
|
28
|
Spear M, Guo J, Wu Y. The trinity of the cortical actin in the initiation of HIV-1 infection. Retrovirology 2012; 9:45. [PMID: 22640593 PMCID: PMC3416652 DOI: 10.1186/1742-4690-9-45] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/03/2012] [Indexed: 12/16/2022] Open
Abstract
For an infecting viral pathogen, the actin cortex inside the host cell is the first line of intracellular components that it encounters. Viruses devise various strategies to actively engage or circumvent the actin structure. In this regard, the human immunodeficiency virus-1 (HIV-1) exemplifies command of cellular processes to take control of actin dynamics for the initiation of infection. It has becomes increasingly evident that cortical actin presents itself both as a barrier to viral intracellular migration and as a necessary cofactor that the virus must actively engage, particularly, in the infection of resting CD4 blood T cells, the primary targets of HIV-1. The coercion of this most fundamental cellular component permits infection by facilitating entry, reverse transcription, and nuclear migration, three essential processes for the establishment of viral infection and latency in blood T cells. It is the purpose of this review to examine, in detail, the manifestation of viral dependence on the actin cytoskeleton, and present a model of how HIV utilizes actin dynamics to initiate infection.
Collapse
Affiliation(s)
- Mark Spear
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | | | | |
Collapse
|
29
|
Jayappa KD, Ao Z, Yao X. The HIV-1 passage from cytoplasm to nucleus: the process involving a complex exchange between the components of HIV-1 and cellular machinery to access nucleus and successful integration. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 3:70-85. [PMID: 22509482 PMCID: PMC3325773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/22/2012] [Indexed: 05/31/2023]
Abstract
The human immunodeficiency virus 1 (HIV-1) synthesizes its genomic DNA in cytoplasm as soon as it enters the cell. The newly synthesized DNA remains associated with viral/cellular proteins as a high molecular weight pre-integration complex (PIC), which precludes passive diffusion across intact nuclear membrane. However, HIV-1 successfully overcomes nuclear membrane barrier by actively delivering its DNA into nucleus with the help of host nuclear import machinery. Such ability allows HIV-1 to productively infect non-dividing cells as well as dividing cells at interphase. Further, HIV-1 nuclear import is also found important for the proper integration of viral DNA. Thus, nuclear import plays a crucial role in establishment of infection and disease progression. While several viral components, including matrix, viral protein R, integrase, capsid, and central DNA flap are implicated in HIV-1 nuclear import, their molecular mechanism remains poorly understood. In this review, we will elaborate the role of individual viral factors and some of current insights on their molecular mechanism(s) associated with HIV-1 nuclear import. In addition, we will discuss the importance of nuclear import for subsequent step of viral DNA integration. Hereby we aim to further our understanding on molecular mechanism of HIV-1 nuclear import and its potential usefulness for anti-HIV-1 strategies.
Collapse
Affiliation(s)
- Kallesh Danappa Jayappa
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| | | | | |
Collapse
|
30
|
Knockdown of MAP4 and DNAL1 produces a post-fusion and pre-nuclear translocation impairment in HIV-1 replication. Virology 2011; 422:13-21. [PMID: 22018492 DOI: 10.1016/j.virol.2011.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/02/2011] [Accepted: 09/13/2011] [Indexed: 02/03/2023]
Abstract
DNAL1 and MAP4 are both microtubule-associated proteins. These proteins were identified as HIV-1 dependency factors in a screen with wild-type HIV-1. In this study we demonstrate that knockdown using DNAL1 and MAP4 siRNAs and shRNAs inhibits HIV-1 infection regardless of envelope. Using a fusion assay, we show that DNAL1 and MAP4 do not impact fusion. By assaying for late reverse transcripts and 2-LTR circles, we show that DNAL1 and MAP4 inhibit both by approximately 50%. These results demonstrate that DNAL1 and MAP4 impact reverse transcription but not nuclear translocation. DNAL1 and MAP4 knockdown cells do not display cytoskeletal defects. Together these experiments indicate that DNAL1 and MAP4 may exert their functions in the HIV life cycle at reverse transcription, prior to nuclear translocation.
Collapse
|
31
|
Lehmann M, Nikolic DS, Piguet V. How HIV-1 takes advantage of the cytoskeleton during replication and cell-to-cell transmission. Viruses 2011; 3:1757-76. [PMID: 21994805 PMCID: PMC3187690 DOI: 10.3390/v3091757] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 12/29/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) infects T cells, macrophages and dendritic cells and can manipulate their cytoskeleton structures at multiple steps during its replication cycle. Based on pharmacological and genetic targeting of cytoskeleton modulators, new imaging approaches and primary cell culture models, important roles for actin and microtubules during entry and cell-to-cell transfer have been established. Virological synapses and actin-containing membrane extensions can mediate HIV-1 transfer from dendritic cells or macrophage cells to T cells and between T cells. We will review the role of the cytoskeleton in HIV-1 entry, cellular trafficking and cell-to-cell transfer between primary cells.
Collapse
Affiliation(s)
- Martin Lehmann
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland; E-Mails: (M.L.); (D.S.N)
- Department of Dermatology and Venereology, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland
| | - Damjan S. Nikolic
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland; E-Mails: (M.L.); (D.S.N)
- Department of Dermatology and Venereology, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland
| | - Vincent Piguet
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland; E-Mails: (M.L.); (D.S.N)
- Department of Dermatology and Venereology, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland
- Department of Dermatology and Wound Healing, Cardiff University School of Medicine and University Hospital of Wales, Cardiff, Wales, CF144XN, UK
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-(0)-29-20-744721; Fax: +44-(0)-29-20-744312
| |
Collapse
|