1
|
Reich J, Serdar D, Weißmann AC, Kaufer BB. Identification of stimuli that enhance human herpesvirus 6A (HHV-6A) replication and reconstitution. J Virol 2024; 98:e0148524. [PMID: 39508597 DOI: 10.1128/jvi.01485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Despite the availability of bacterial artificial chromosome (BAC) systems for human herpesvirus 6A (HHV-6A), reconstitution of infectious viruses is very challenging and time consuming. In this study, we developed approaches to improve the reconstitution process and enhance virus replication to overcome these technical challenges. Using dimethyl sulfoxide and exonuclease V, we significantly increased the efficiency of BAC transfections into JJHan T cells. We tested several stimulation strategies to enhance lytic replication and identified mitogens and glucocorticoids that, in combination, improve virus replication. In addition, we demonstrated that the interferon-mediated response impairs virus reconstitution and that the JAK1/JAK2 inhibitor ruxolitinib resulted in an immense improvement. Furthermore, hypoxia-inducible factor 1 alpha stabilization by IOX2 drastically accelerated virus reconstitution, indicating that the hypoxic response is a crucial regulator of HHV-6A replication. Our study sheds light on strategic approaches that improve replication and reconstitution of this ubiquitous human herpesvirus. IMPORTANCE HHV-6A is a betaherpesvirus that infects a wide range of human tissues and establishes lifelong latency in the host. Its reactivation has been implicated in several diseases, including multiple sclerosis, encephalitis, myocarditis, and chronic fatigue syndrome, although its pathogenetic role remains elusive. The efficacy of common antiviral drugs is limited, and no specific drugs target HHV-6A infection. The data of this study shed light on stimuli and potential pathways that influence HHV-6A replication and reconstitution. Our strategies not only simplify virus propagation and reconstitution to study HHV-6A biology but also provide the basis for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jana Reich
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Dilan Serdar
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Ann-Christin Weißmann
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Benedikt B Kaufer
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Human Herpesvirus 6A Tegument Protein U14 Induces NF-κB Signaling by Interacting with p65. J Virol 2021; 95:e0126921. [PMID: 34549982 DOI: 10.1128/jvi.01269-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral infection induces host cells to mount a variety of immune responses, which may either limit viral propagation or create conditions conducive to virus replication in some instances. In this regard, activation of the NF-κB transcription factor is known to modulate virus replication. Human herpesvirus 6A (HHV-6A), which belongs to the Betaherpesvirinae subfamily, is frequently found in patients with neuroinflammatory diseases, although its role in disease pathogenesis has not been elucidated. In this study, we found that the HHV-6A-encoded U14 protein activates NF-κB signaling following interaction with the NF-κB complex protein, p65. Through induction of nuclear translocation of p65, U14 increases the expression of interleukin-6 (IL-6), IL-8, and monocyte chemoattractant protein 1 transcripts. We also demonstrated that activation of NF-κB signaling is important for HHV-6A replication, since inhibition of this pathway reduced virus protein accumulation and viral genome copy number. Taken together, our results suggest that HHV-6A infection activates the NF-κB pathway and promotes viral gene expression via late gene products, including U14. IMPORTANCE Human herpesvirus 6A (HHV-6A) is frequently found in patients with neuro-inflammation, although its role in the pathogenesis of this disease has not been elucidated. Most viral infections activate the NF-κB pathway, which causes the transactivation of various genes, including those encoding proinflammatory cytokines. Our results indicate that HHV-6A U14 activates the NF-κB pathway, leading to upregulation of proinflammatory cytokines. We also found that activation of the NF-κB transcription factor is important for efficient viral replication. This study provides new insight into HHV-6A U14 function in host cell signaling and identifies potential cellular targets involved in HHV-6A pathogenesis and replication.
Collapse
|
3
|
Zhang Y, Liu W, Li Z, Kumar V, Alvarez-Cabrera AL, Leibovitch EC, Cui Y, Mei Y, Bi GQ, Jacobson S, Zhou ZH. Atomic structure of the human herpesvirus 6B capsid and capsid-associated tegument complexes. Nat Commun 2019; 10:5346. [PMID: 31767868 PMCID: PMC6877594 DOI: 10.1038/s41467-019-13064-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Human herpesvirus 6B (HHV-6B) belongs to the β-herpesvirus subfamily of the Herpesviridae. To understand capsid assembly and capsid-tegument interactions, here we report atomic structures of HHV-6B capsid and capsid-associated tegument complex (CATC) obtained by cryoEM and sub-particle reconstruction. Compared to other β-herpesviruses, HHV-6B exhibits high similarity in capsid structure but organizational differences in its CATC (pU11 tetramer). 180 "VΛ"-shaped CATCs are observed in HHV-6B, distinguishing from the 255 "Λ"-shaped dimeric CATCs observed in murine cytomegalovirus and the 310 "Δ"-shaped CATCs in human cytomegalovirus. This trend in CATC quantity correlates with the increasing genomes sizes of these β-herpesviruses. Incompatible distances revealed by the atomic structures rationalize the lack of CATC's binding to triplexes Ta, Tc, and Tf in HHV-6B. Our results offer insights into HHV-6B capsid assembly and the roles of its tegument proteins, including not only the β-herpesvirus-specific pU11 and pU14, but also those conserved across all subfamilies of Herpesviridae.
Collapse
Affiliation(s)
- Yibo Zhang
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China.,California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095-7151, USA
| | - Wei Liu
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China.,California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095-7151, USA.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095-7364, USA.,State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University (ECNU), Shanghai, 200062, China
| | - Zihang Li
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095-7151, USA.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095-7364, USA
| | - Vinay Kumar
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095-7151, USA.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095-7364, USA
| | - Ana L Alvarez-Cabrera
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095-7151, USA.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095-7364, USA
| | - Emily C Leibovitch
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095-7151, USA
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University (ECNU), Shanghai, 200062, China
| | - Guo-Qiang Bi
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Steve Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095-7151, USA. .,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095-7364, USA.
| |
Collapse
|
4
|
Nishimura M, Mori Y. Structural Aspects of Betaherpesvirus-Encoded Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:227-249. [PMID: 29896670 DOI: 10.1007/978-981-10-7230-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Betaherpesvirus possesses a large genome DNA with a lot of open reading frames, indicating abundance in the variety of viral protein factors. Because the complicated pathogenicity of herpesvirus reflects the combined functions of these factors, analyses of individual proteins are the fundamental steps to comprehensively understand about the viral life cycle and the pathogenicity. In this chapter, structural aspects of the betaherpesvirus-encoded proteins are introduced. Betaherpesvirus-encoded proteins of which structural information is available were summarized and subcategorized into capsid proteins, tegument proteins, nuclear egress complex proteins, envelope glycoproteins, enzymes, and immune-modulating factors. Structure of capsid proteins are analyzed in capsid by electron cryomicroscopy at quasi-atomic resolution. Structural information of teguments is limited, but a recent crystallographic analysis of an essential tegument protein of human herpesvirus 6B is introduced. As for the envelope glycoproteins, crystallographic analysis of glycoprotein gB has been done, revealing the fine-tuned structure and the distribution of its antigenic domains. gH/gL structure of betaherpesvirus is not available yet, but the overall shape and the spatial arrangement of the accessory proteins are analyzed by electron microscopy. Nuclear egress complex was analyzed from the structural perspective in 2015, with the structural analysis of cytomegalovirus UL50/UL53. The category "enzymes" includes the viral protease, DNA polymerase and terminase for which crystallographic analyses have been done. The immune-modulating factors are viral ligands or receptors for immune regulating factors of host immune cells, and their communications with host immune molecules are demonstrated in the aspect of molecular structure.
Collapse
Affiliation(s)
- Mitsuhiro Nishimura
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
5
|
Close WL, Anderson AN, Pellett PE. Betaherpesvirus Virion Assembly and Egress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:167-207. [PMID: 29896668 DOI: 10.1007/978-981-10-7230-7_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Virions are the vehicle for cell-to-cell and host-to-host transmission of viruses. Virions need to be assembled reliably and efficiently, be released from infected cells, survive in the extracellular environment during transmission, recognize and then trigger entry of appropriate target cells, and disassemble in an orderly manner during initiation of a new infection. The betaherpesvirus subfamily includes four human herpesviruses (human cytomegalovirus and human herpesviruses 6A, 6B, and 7), as well as viruses that are the basis of important animal models of infection and immunity. Similar to other herpesviruses, betaherpesvirus virions consist of four main parts (in order from the inside): the genome, capsid, tegument, and envelope. Betaherpesvirus genomes are dsDNA and range in length from ~145 to 240 kb. Virion capsids (or nucleocapsids) are geometrically well-defined vessels that contain one copy of the dsDNA viral genome. The tegument is a collection of several thousand protein and RNA molecules packed into the space between the envelope and the capsid for delivery and immediate activity upon cellular entry at the initiation of an infection. Betaherpesvirus envelopes consist of lipid bilayers studded with virus-encoded glycoproteins; they protect the virion during transmission and mediate virion entry during initiation of new infections. Here, we summarize the mechanisms of betaherpesvirus virion assembly, including how infection modifies, reprograms, hijacks, and otherwise manipulates cellular processes and pathways to produce virion components, assemble the parts into infectious virions, and then transport the nascent virions to the extracellular environment for transmission.
Collapse
Affiliation(s)
- William L Close
- Department of Microbiology & Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ashley N Anderson
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Philip E Pellett
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
6
|
Crystal Structure of Human Herpesvirus 6B Tegument Protein U14. PLoS Pathog 2016; 12:e1005594. [PMID: 27152739 PMCID: PMC4859480 DOI: 10.1371/journal.ppat.1005594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/02/2016] [Indexed: 11/19/2022] Open
Abstract
The tegument protein U14 of human herpesvirus 6B (HHV-6B) constitutes the viral virion structure and is essential for viral growth. To define the characteristics and functions of U14, we determined the crystal structure of the N-terminal domain of HHV-6B U14 (U14-NTD) at 1.85 Å resolution. U14-NTD forms an elongated helix-rich fold with a protruding β hairpin. U14-NTD exists as a dimer exhibiting broad electrostatic interactions and a network of hydrogen bonds. This is first report of the crystal structure and dimerization of HHV-6B U14. The surface of the U14-NTD dimer reveals multiple clusters of negatively- and positively-charged residues that coincide with potential functional sites of U14. Three successive residues, L424, E425 and V426, which relate to viral growth, reside on the β hairpin close to the dimer's two-fold axis. The hydrophobic side-chains of L424 and V426 that constitute a part of a hydrophobic patch are solvent-exposed, indicating the possibility that the β hairpin region is a key functional site of HHV-6 U14. Structure-based sequence comparison suggests that U14-NTD corresponds to the core fold conserved among U14 homologs, human herpesvirus 7 U14, and human cytomegalovirus UL25 and UL35, although dimerization appears to be a specific feature of the U14 group. Human herpesvirus 6B (HHV-6B), a causative agent of exanthema subitum for children and immunocompromised adults, encodes numerous tegument proteins that constitute the viral matrix. HHV-6B U14 is a tegument protein essential for viral propagation, and additionally it interacts with host factors such as tumor suppressor p53 and cellular protein EDD, thereby regulating host cell responses. Here, we report the molecular structure of HHV-6B U14 at an atomic resolution. The N-terminal domain of U14 (U14-NTD) adopts an elongated, helix-rich fold without any significant overall similarity to known structures. U14-NTD forms a 100 kDa homodimer through electrostatic interactions and a wide hydrogen bond network. The U14-NTD homodimer displays four clusters of electrostatic potential with deep grooves, implying multiple binding sites for other viral or host proteins. U14-NTD corresponds to the core fold shared by homologous proteins of human herpesvirus 7 (HHV-7) and of human cytomegalovirus, although dimerization seems to be specific to HHV-6 and HHV-7. The U14-NTD structure provides clues to promote further analysis on the role and behavior of U14 in the pathogenesis of HHV-6. It also leads to a comprehensive understanding of the U14 homologs in beta herpesviruses, and furthermore contributes to the overall knowledge about tegument proteins in herpesviruses.
Collapse
|
7
|
Zhang E, Cotton VE, Hidalgo-Bravo A, Huang Y, Bell AJ, Jarrett RF, Wilkie GS, Davison AJ, Nacheva EP, Siebert R, Majid A, Kelpanides I, Jayne S, Dyer MJ, Royle NJ. HHV-8-unrelated primary effusion-like lymphoma associated with clonal loss of inherited chromosomally-integrated human herpesvirus-6A from the telomere of chromosome 19q. Sci Rep 2016; 6:22730. [PMID: 26947392 PMCID: PMC4779988 DOI: 10.1038/srep22730] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/18/2016] [Indexed: 12/26/2022] Open
Abstract
Primary effusion lymphomas (PEL) are associated with human herpesvirus-8 (HHV-8) and usually occur in immunocompromised individuals. However, there are numerous reports of HHV-8-unrelated PEL-like lymphomas with unknown aetiology. Here we characterize an HHV-8-unrelated PEL-like lymphoma in an elderly woman who was negative for human immunodeficiency viruses 1 and 2, and hepatitis B and C. The woman was, however, a carrier of an inherited-chromosomally-integrated human herpesvirus-6A (iciHHV-6A) genome in one 19q telomere. The iciHHV-6A genome was complete in blood DNA, encoding a full set of protein-coding genes. Interestingly, the entire iciHHV-6A genome was absent from the HHV-8-unrelated-PEL-like lymphoma cells despite retention of both copies of chromosome 19. The somatic loss of the 19q-iciHHV-6A genome occurred very early during lymphoma development and we propose it occurred via telomere-loop formation and excision to release a circular viral genome that was subsequently lost. Whether release of the HHV-6A genome from the telomere contributed to lymphomagenesis, or was coincidental, remains unclear but this event may have deregulated the expression of HHV-6A or 19q genes or else disrupted telomere function. To establish the frequency and importance of iciHHV-6 loss from telomeres, the HHV-6 copy number should be assessed in tumours that arise in iciHHV-6 carriers.
Collapse
Affiliation(s)
- Enjie Zhang
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Victoria E Cotton
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | | | - Yan Huang
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Adam J Bell
- MRC - University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Ruth F Jarrett
- MRC - University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Gavin S Wilkie
- MRC - University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Andrew J Davison
- MRC - University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Ellie P Nacheva
- Cytogenetics Laboratory, Royal Free London NHS Foundation Trust, London, NW3 2PF, UK
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel &University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 24, D-24105 Kiel, Germany
| | - Aneela Majid
- Ernest and Helen Scott Haematological Research Institute, Department of Cancer Studies, University of Leicester, Leicester, LE1 7RH, UK
| | - Inga Kelpanides
- Ernest and Helen Scott Haematological Research Institute, Department of Cancer Studies, University of Leicester, Leicester, LE1 7RH, UK
| | - Sandrine Jayne
- Ernest and Helen Scott Haematological Research Institute, Department of Cancer Studies, University of Leicester, Leicester, LE1 7RH, UK
| | - Martin J Dyer
- Ernest and Helen Scott Haematological Research Institute, Department of Cancer Studies, University of Leicester, Leicester, LE1 7RH, UK
| | - Nicola J Royle
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|