1
|
Aggarwal T, Kondabagil K. Assembly and Evolution of Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:35-54. [PMID: 38801570 DOI: 10.1007/978-3-031-57165-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxvirus assembly has been an intriguing area of research for several decades. While advancements in experimental techniques continue to yield fresh insights, many questions are still unresolved. Large genome sizes of up to 380 kbp, asymmetrical structure, an exterior lipid bilayer, and a cytoplasmic life cycle are some notable characteristics of these viruses. Inside the particle are two lateral bodies and a protein wall-bound-biconcave core containing the viral nucleocapsid. The assembly progresses through five major stages-endoplasmic reticulum (ER) membrane alteration and rupture, crescent formation, immature virion formation, genome encapsidation, virion maturation and in a subset of viruses, additional envelopment of the virion prior to its dissemination. Several large dsDNA viruses have been shown to follow a comparable sequence of events. In this chapter, we recapitulate our understanding of the poxvirus morphogenesis process while reviewing the most recent advances in the field. We also briefly discuss how virion assembly aids in our knowledge of the evolutionary links between poxviruses and other Nucleocytoplasmic Large DNA Viruses (NCLDVs).
Collapse
Affiliation(s)
- Tanvi Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
| |
Collapse
|
2
|
Schlosser-Perrin L, Holzmuller P, Fernandez B, Miotello G, Dahmani N, Neyret A, Bertagnoli S, Armengaud J, Caufour P. Constitutive proteins of lumpy skin disease virion assessed by next-generation proteomics. J Virol 2023; 97:e0072323. [PMID: 37737587 PMCID: PMC10617387 DOI: 10.1128/jvi.00723-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Lumpy skin disease virus (LSDV) is the causative agent of an economically important cattle disease which is notifiable to the World Organisation for Animal Health. Over the past decades, the disease has spread at an alarming rate throughout the African continent, the Middle East, Eastern Europe, the Russian Federation, and many Asian countries. While multiple LDSV whole genomes have made further genetic comparative analyses possible, knowledge on the protein composition of the LSDV particle remains lacking. This study provides for the first time a comprehensive proteomic analysis of an infectious LSDV particle, prompting new efforts toward further proteomic LSDV strain characterization. Furthermore, this first incursion within the capripoxvirus proteome represents one of very few proteomic studies beyond the sole Orthopoxvirus genus, for which most of the proteomics studies have been performed. Providing new information about other chordopoxviruses may contribute to shedding new light on protein composition within the Poxviridae family.
Collapse
Affiliation(s)
- Léo Schlosser-Perrin
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Philippe Holzmuller
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Bernard Fernandez
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Guylaine Miotello
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Noureddine Dahmani
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Aymeric Neyret
- CEMIPAI, University of Montpellier, UAR3725 CNRS, Montpellier, France
| | | | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé, Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Philippe Caufour
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| |
Collapse
|
3
|
Bottini A, Pacheco DRDCG, Forti FL, Bottini N. Revisiting VH1 phosphatase at the time of monkeypox: back to the spotlight. Biochem Soc Trans 2023; 51:1419-1427. [PMID: 37409507 DOI: 10.1042/bst20200408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
Vaccinia virus is a poxvirus that has been successfully leveraged to develop vaccines for smallpox, which is caused by the closely related Variola virus. Smallpox has been declared as 'eradicated' by the WHO in 1980; however, it still poses a potential bioterrorism threat. More recently, the spreading of monkeypox (MPox) in non-endemic countries has further highlighted the importance of continuing the exploration for druggable targets for poxvirus infections. The vaccinia H1 (VH1) phosphatase is the first reported dual specificity phosphatase (DUSP) able to hydrolyze both phosphotyrosine and phosphoserine/phosphotheonine residues. VH1 is a 20 kDa protein that forms a stable dimer and can dephosphorylate both viral and cellular substrates to regulate the viral replication cycle and host immune response. VH1 dimers adopt a domain swap mechanism with the first 20 amino acids of each monomer involved in dense electrostatic interaction and salt bridge formations while hydrophobic interactions between the N-terminal and C-terminal helices further stabilize the dimer. VH1 appears to be an ideal candidate for discovery of novel anti-poxvirus agents because it is highly conserved within the poxviridae family and is a virulence factor, yet it displays significant divergence in sequence and dimerization mechanism from its human closest ortholog vaccinia H1-related (VHR) phosphatase, encoded by the DUSP3 gene. As the dimeric quaternary structure of VH1 is essential for its phosphatase activity, strategies leading to disruption of the dimer structure might aid in VH1 inhibitor development.
Collapse
Affiliation(s)
- Angel Bottini
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, U.S.A
| | - Diana R D C G Pacheco
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Fabio L Forti
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Nunzio Bottini
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, U.S.A
| |
Collapse
|
4
|
Xu A, Basant A, Schleich S, Newsome TP, Way M. Kinesin-1 transports morphologically distinct intracellular virions during vaccinia infection. J Cell Sci 2023; 136:jcs260175. [PMID: 36093836 PMCID: PMC9659004 DOI: 10.1242/jcs.260175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo.
Collapse
Affiliation(s)
- Amadeus Xu
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Angika Basant
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sibylle Schleich
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Timothy P. Newsome
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Michael Way
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
5
|
Hernandez-Gonzalez M, Calcraft T, Nans A, Rosenthal PB, Way M. A succession of two viral lattices drives vaccinia virus assembly. PLoS Biol 2023; 21:e3002005. [PMID: 36862727 PMCID: PMC10013923 DOI: 10.1371/journal.pbio.3002005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/14/2023] [Accepted: 01/19/2023] [Indexed: 03/03/2023] Open
Abstract
During its cytoplasmic replication, vaccinia virus assembles non-infectious spherical immature virions (IV) coated by a viral D13 lattice. Subsequently, IV mature into infectious brick-shaped intracellular mature virions (IMV) that lack D13. Here, we performed cryo-electron tomography (cryo-ET) of frozen-hydrated vaccinia-infected cells to structurally characterise the maturation process in situ. During IMV formation, a new viral core forms inside IV with a wall consisting of trimeric pillars arranged in a new pseudohexagonal lattice. This lattice appears as a palisade in cross-section. As maturation occurs, which involves a 50% reduction in particle volume, the viral membrane becomes corrugated as it adapts to the newly formed viral core in a process that does not appear to require membrane removal. Our study suggests that the length of this core is determined by the D13 lattice and that the consecutive D13 and palisade lattices control virion shape and dimensions during vaccinia assembly and maturation.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, London, United Kingdom
| | - Thomas Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael Way
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Hyun J. Poxvirus under the eyes of electron microscope. Appl Microsc 2022; 52:11. [DOI: 10.1186/s42649-022-00080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractZoonotic poxvirus infections pose significant threat to human health as we have witnessed recent spread of monkeypox. Therefore, insights into molecular mechanism behind poxvirus replication cycle are needed for the development of efficient antiviral strategies. Virion assembly is one of the key steps that determine the fate of replicating poxviruses. However, in-depth understanding of poxvirus assembly is challenging due to the complex nature of multi-step morphogenesis and heterogeneous virion structures. Despite these challenges, decades of research have revealed virion morphologies at various maturation stages, critical protein components and interactions with host cell compartments. Transmission electron microscopy has been employed as an indispensable tool for the examination of virion morphology, and more recently for the structure determination of protein complexes. In this review, we describe some of the major findings in poxvirus morphogenesis and the contributions of continuously advancing electron microscopy techniques.
Collapse
|
7
|
Carten JD, Greseth M, Traktman P. Structure-Function Analysis of Two Interacting Vaccinia Proteins That Are Critical for Viral Morphogenesis: L2 and A30.5. J Virol 2022; 96:e0157721. [PMID: 34730390 PMCID: PMC8791271 DOI: 10.1128/jvi.01577-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
An enduring mystery in poxvirology is the mechanism by which virion morphogenesis is accomplished. A30.5 and L2 are two small regulatory proteins that are essential for this process. Previous studies have shown that vaccinia A30.5 and L2 localize to the ER and interact during infection, but how they facilitate morphogenesis is unknown. To interrogate the relationship between A30.5 and L2, we generated inducible complementing cell lines (CV1-HA-L2; CV1-3xFLAG-A30.5) and deletion viruses (vΔL2; vΔA30.5). Loss of either protein resulted in a block in morphogenesis and a significant (>100-fold) decrease in infectious viral yield. Structure-function analysis of L2 and A30.5, using transient complementation assays, identified key functional regions in both proteins. A clustered charge-to-alanine L2 mutant (L2-RRD) failed to rescue a vΔL2 infection and exhibits a significantly retarded apparent molecular weight in vivo (but not in vitro), suggestive of an aberrant posttranslational modification. Furthermore, an A30.5 mutant with a disrupted putative N-terminal α-helix failed to rescue a vΔA30.5 infection. Using our complementing cell lines, we determined that the stability of A30.5 is dependent on L2 and that wild-type L2 and A30.5 coimmunoprecipitate in the absence of other viral proteins. Further examination of this interaction, using wild-type and mutant forms of L2 or A30.5, revealed that the inability of mutant alleles to rescue the respective deletion viruses is tightly correlated with a failure of L2 to stabilize and interact with A30.5. L2 appears to function as a chaperone-like protein for A30.5, ensuring that they work together as a complex during viral membrane biogenesis. IMPORTANCE Vaccinia virus is a large, enveloped DNA virus that was successfully used as the vaccine against smallpox. Vaccinia continues to be an invaluable biomedical research tool in basic research and in gene therapy vector and vaccine development. Although this virus has been studied extensively, the complex process of virion assembly, termed morphogenesis, still puzzles the field. Our work aims to better understand how two small viral proteins that are essential for viral assembly, L2 and A30.5, function during early morphogenesis. We show that A30.5 requires L2 for stability and that these proteins interact in the absence of other viral proteins. We identify regions in each protein required for their function and show that mutations in these regions disrupt the interaction between L2 and A30.5 and fail to restore virus viability.
Collapse
Affiliation(s)
- Juliana Debrito Carten
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Matthew Greseth
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Paula Traktman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
8
|
Zhao Y, Zhao L, Huang P, Ren J, Zhang P, Tian H, Tan W. Non-replicating Vaccinia Virus TianTan Strain (NTV) Translation Arrest of Viral Late Protein Synthesis Associated With Anti-viral Host Factor SAMD9. Front Cell Infect Microbiol 2020; 10:116. [PMID: 32266167 PMCID: PMC7098914 DOI: 10.3389/fcimb.2020.00116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Abstract
NTV is a highly attenuated virus that was created by genetically deleting 26 genes related to host range and virulence from TianTan strain. Since NTV is highly attenuated, it has been used widely as an optimizing viral vector. In this study, we explored the biological characteristics in vitro and the host restriction mechanism of NTV. Most cell lines do not support sufficient dissemination and replication of NTV, and in non-permissive cell line HeLa, the replication block of NTV occurred at the translation stage of viral late protein expression. Lack of PKR activity was not sufficient to rescue expression of viral late proteins and replication, even though the phosphorylation level of eIF2α increased in NTV-infected HeLa cells. Moreover, the translation inhibition of NTV in HeLa cells was dependent upon a SAMD9 signaling pathway, as demonstrated by silencing SAMD9 expression with siRNA and observing the colocalization of SAMD9 and AVGs. Reinserting C7L or K1L into NTV rescued the late viral protein expression and replication of NTV in HeLa cells. Among the genes deleted in NTV, C7L or/and K1L gene was mainly responsible for its replication defect. Protein C7 interacted with SAMD9, which antagonized the antiviral response of SAMD9 to ensure viral protein translation and replication of NTV in non-permissive cell lines. Our finding will serve as a baseline for modification of NTV in future application.
Collapse
Affiliation(s)
- Ying Zhao
- NHC Key Laboratory of Medical Virology and Viral Disease, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Li Zhao
- NHC Key Laboratory of Medical Virology and Viral Disease, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Panpan Huang
- NHC Key Laboratory of Medical Virology and Viral Disease, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Jiao Ren
- NHC Key Laboratory of Medical Virology and Viral Disease, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Peng Zhang
- NHC Key Laboratory of Medical Virology and Viral Disease, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Houwen Tian
- NHC Key Laboratory of Medical Virology and Viral Disease, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Wenjie Tan
- NHC Key Laboratory of Medical Virology and Viral Disease, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| |
Collapse
|
9
|
Species-Specific Conservation of Linear Antigenic Sites on Vaccinia Virus A27 Protein Homologs of Orthopoxviruses. Viruses 2019; 11:v11060493. [PMID: 31146446 PMCID: PMC6631127 DOI: 10.3390/v11060493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022] Open
Abstract
The vaccinia virus (VACV) A27 protein and its homologs, which are found in a large number of members of the genus Orthopoxvirus (OPXV), are targets of viral neutralization by host antibodies. We have mapped six binding sites (epitopes #1A: aa 32–39, #1B: aa 28–33, #1C: aa 26–31, #1D: 28–34, #4: aa 9–14, and #5: aa 68–71) of A27 specific monoclonal antibodies (mAbs) using peptide arrays. MAbs recognizing epitopes #1A–D and #4 neutralized VACV Elstree in a complement dependent way (50% plaque-reduction: 12.5–200 µg/mL). Fusion of VACV at low pH was blocked through inhibition of epitope #1A. To determine the sequence variability of the six antigenic sites, 391 sequences of A27 protein homologs available were compared. Epitopes #4 and #5 were conserved among most of the OPXVs, while the sequential epitope complex #1A–D was more variable and, therefore, responsible for species-specific epitope characteristics. The accurate and reliable mapping of defined epitopes on immuno-protective proteins such as the A27 of VACV enables phylogenetic studies and insights into OPXV evolution as well as to pave the way to the development of safer vaccines and chemical or biological antivirals.
Collapse
|
10
|
Ibrahim N, Traktman P. Assessing the Structure and Function of Vaccinia Virus Gene Products by Transient Complementation. Methods Mol Biol 2019; 2023:131-141. [PMID: 31240675 DOI: 10.1007/978-1-4939-9593-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Poxviruses are large, complex dsDNA viruses that are highly unusual in replicating solely within the cytoplasm of the infected cell. The most infamous poxvirus was variola virus, the etiological agent of smallpox; today, poxviruses remain of biomedical significance, both as pathogens and as recombinant vaccines and oncolytic therapies. Vaccinia virus is the prototypic poxvirus for experimental analysis. The 195 kb dsDNA genome contains >200 genes that encode proteins involved in such processes as viral entry, gene expression, genome replication and maturation, virion assembly, virion egress, and immune evasion.Molecular genetic analysis has been instrumental in the study of the structure and function of many viral gene products. Temperature-sensitive (ts) mutants have been especially useful in this endeavor; inducible recombinants and deletion mutants are now also important tools. Once a phenotype is observed following the repression, deletion, or inactivation of a particular gene product, the technique of transient complementation becomes central for further study.Simply put, transient complementation involves the transient expression of a variety of alleles of a given viral gene within infected cells, and the evaluation of which of these alleles can "complement" or "rescue" the phenotype caused by the loss of the endogenous allele. This analysis leads to the identification of key domains, motifs, and sites of posttranslational modification. Subcellular localization and protein:protein interactions can also be evaluated in these studies. The development of a reliable toolbox of vectors encoding viral promoters of different temporal classes, and the use of a variety of epitope tags, has greatly enhanced the utility of this experimental approach for poxvirus research.
Collapse
Affiliation(s)
- Nouhou Ibrahim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Paula Traktman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
11
|
Mirzakhanyan Y, Gershon P. The Vaccinia virion: Filling the gap between atomic and ultrastructure. PLoS Pathog 2019; 15:e1007508. [PMID: 30615658 PMCID: PMC6336343 DOI: 10.1371/journal.ppat.1007508] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/17/2019] [Accepted: 12/06/2018] [Indexed: 01/19/2023] Open
Abstract
We have investigated the molecular-level structure of the Vaccinia virion in situ by protein-protein chemical crosslinking, identifying 4609 unique-mass crosslink ions at an effective FDR of 0.33%, covering 2534 unique pairs of crosslinked protein positions, 625 of which were inter-protein. The data were statistically non-random and rational in the context of known structures, and showed biological rationality. Crosslink density strongly tracked the individual proteolytic maturation products of p4a and p4b, the two major virion structural proteins, and supported the prediction of transmembrane domains within membrane proteins. A clear sub-network of four virion structural proteins provided structural insights into the virion core wall, and proteins VP8 and A12 formed a strongly-detected crosslinked pair with an apparent structural role. A strongly-detected sub-network of membrane proteins A17, H3, A27 and A26 represented an apparent interface of the early-forming virion envelope with structures added later during virion morphogenesis. Protein H3 seemed to be the central hub not only for this sub-network but also for an 'attachment protein' sub-network comprising membrane proteins H3, ATI, CAHH(D8), A26, A27 and G9. Crosslinking data lent support to a number of known interactions and interactions within known complexes. Evidence is provided for the membrane targeting of genome telomeres. In covering several orders of magnitude in protein abundance, this study may have come close to the bottom of the protein-protein crosslinkome of an intact organism, namely a complex animal virus.
Collapse
Affiliation(s)
- Yeva Mirzakhanyan
- Department of Molecular Biology & Biochemistry, UC-Irvine, Irvine, California, United States of America
| | - Paul Gershon
- Department of Molecular Biology & Biochemistry, UC-Irvine, Irvine, California, United States of America
| |
Collapse
|
12
|
Structural basis for the inhibition of poxvirus assembly by the antibiotic rifampicin. Proc Natl Acad Sci U S A 2018; 115:8424-8429. [PMID: 30068608 DOI: 10.1073/pnas.1810398115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Poxviruses are large DNA viruses that cause disease in animals and humans. They differ from classical enveloped viruses, because their membrane is acquired from cytoplasmic membrane precursors assembled onto a viral protein scaffold formed by the D13 protein rather than budding through cellular compartments. It was found three decades ago that the antibiotic rifampicin blocks this process and prevents scaffold formation. To elucidate the mechanism of action of rifampicin, we have determined the crystal structures of six D13-rifamycin complexes. These structures reveal that rifamycin compounds bind to a phenylalanine-rich region, or F-ring, at the membrane-proximal opening of the central channel of the D13 trimer. We show by NMR, surface plasmon resonance (SPR), and site-directed mutagenesis that A17, a membrane-associated viral protein, mediates the recruitment of the D13 scaffold by also binding to the F-ring. This interaction is the target of rifampicin, which prevents A17 binding, explaining the inhibition of viral morphogenesis. The F-ring of D13 is both conserved in sequence in mammalian poxviruses and essential for interaction with A17, defining a target for the development of assembly inhibitors. The model of the A17-D13 interaction describes a two-component system for remodeling nascent membranes that may be conserved in other large and giant DNA viruses.
Collapse
|
13
|
Novy K, Kilcher S, Omasits U, Bleck CKE, Beerli C, Vowinckel J, Martin CK, Syedbasha M, Maiolica A, White I, Mercer J, Wollscheid B. Proteotype profiling unmasks a viral signalling network essential for poxvirus assembly and transcriptional competence. Nat Microbiol 2018; 3:588-599. [DOI: 10.1038/s41564-018-0142-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2018] [Indexed: 11/09/2022]
|
14
|
Weisberg AS, Maruri-Avidal L, Bisht H, Hansen BT, Schwartz CL, Fischer ER, Meng X, Xiang Y, Moss B. Enigmatic origin of the poxvirus membrane from the endoplasmic reticulum shown by 3D imaging of vaccinia virus assembly mutants. Proc Natl Acad Sci U S A 2017; 114:E11001-E11009. [PMID: 29203656 PMCID: PMC5754806 DOI: 10.1073/pnas.1716255114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The long-standing inability to visualize connections between poxvirus membranes and cellular organelles has led to uncertainty regarding the origin of the viral membrane. Indeed, there has been speculation that viral membranes form de novo in cytoplasmic factories. Another possibility, that the connections are too short-lived to be captured by microscopy during a normal infection, motivated us to identify and characterize virus mutants that are arrested in assembly. Five conserved vaccinia virus proteins, referred to as Viral Membrane Assembly Proteins (VMAPs), that are necessary for formation of immature virions were found. Transmission electron microscopy studies of two VMAP deletion mutants had suggested retention of connections between viral membranes and the endoplasmic reticulum (ER). We now analyzed cells infected with each of the five VMAP deletion mutants by electron tomography, which is necessary to validate membrane continuity, in addition to conventional transmission electron microscopy. In all cases, connections between the ER and viral membranes were demonstrated by 3D reconstructions, supporting a role for the VMAPs in creating and/or stabilizing membrane scissions. Furthermore, coexpression of the viral reticulon-like transmembrane protein A17 and the capsid-like scaffold protein D13 was sufficient to form similar ER-associated viral structures in the absence of other major virion proteins. Determination of the mechanism of ER disruption during a normal VACV infection and the likely participation of both viral and cell proteins in this process may provide important insights into membrane dynamics.
Collapse
Affiliation(s)
- Andrea S Weisberg
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Liliana Maruri-Avidal
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Himani Bisht
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Bryan T Hansen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Cindi L Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Elizabeth R Fischer
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Xiangzhi Meng
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Yan Xiang
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
15
|
Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins. J Virol 2017; 91:JVI.00558-17. [PMID: 28490596 DOI: 10.1128/jvi.00558-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/05/2017] [Indexed: 11/20/2022] Open
Abstract
The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes.IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into many aspects of cell biology. The I2 protein is conserved in all poxviruses that infect vertebrates, suggesting an important role. The present study revealed that this protein is essential for vaccinia virus morphogenesis and that its absence results in an accumulation of deformed virus particles retaining the scaffold protein and deficient in surface proteins needed for cell entry.
Collapse
|
16
|
Greseth MD, Carter DC, Terhune SS, Traktman P. Proteomic Screen for Cellular Targets of the Vaccinia Virus F10 Protein Kinase Reveals that Phosphorylation of mDia Regulates Stress Fiber Formation. Mol Cell Proteomics 2017; 16:S124-S143. [PMID: 28183815 PMCID: PMC5393388 DOI: 10.1074/mcp.m116.065003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/28/2017] [Indexed: 01/12/2023] Open
Abstract
Vaccinia virus, a complex dsDNA virus, is unusual in replicating exclusively within the cytoplasm of infected cells. Although this prototypic poxvirus encodes >200 proteins utilized during infection, a significant role for host proteins and cellular architecture is increasingly evident. The viral B1 kinase and H1 phosphatase are known to target cellular proteins as well as viral substrates, but little is known about the cellular substrates of the F10 kinase. F10 is essential for virion morphogenesis, beginning with the poorly understood process of diversion of membranes from the ER for the purpose of virion membrane biogenesis. To better understand the function of F10, we generated a cell line that carries a single, inducible F10 transgene. Using uninduced and induced cells, we performed stable isotope labeling of amino acids in cell culture (SILAC) coupled with phosphopeptide analysis to identify cellular targets of F10-mediated phosphorylation. We identified 27 proteins that showed statistically significant changes in phosphorylation upon the expression of the F10 kinase: 18 proteins showed an increase in phosphorylation whereas 9 proteins showed a decrease in phosphorylation. These proteins participate in several distinct cellular processes including cytoskeleton dynamics, membrane trafficking and cellular metabolism. One of the proteins with the greatest change in phosphorylation was mDia, a member of the formin family of cytoskeleton regulators; F10 induction led to increased phosphorylation on Ser22 Induction of F10 induced a statistically significant decrease in the percentage of cells with actin stress fibers; however, this change was abrogated when an mDia Ser22Ala variant was expressed. Moreover, expression of a Ser22Asp variant leads to a reduction of stress fibers even in cells not expressing F10. In sum, we present the first unbiased screen for cellular targets of F10-mediated phosphorylation, and in so doing describe a heretofore unknown mechanism for regulating stress fiber formation through phosphorylation of mDia. Data are available via ProteomeXchange with identifier PXD005246.
Collapse
Affiliation(s)
- Matthew D Greseth
- From the ‡Departments of Biochemistry & Molecular Biology and Microbiology & Immunology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Dominique C Carter
- §Department of Microbiology & Molecular Genetics and the Biotechnology & Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Scott S Terhune
- §Department of Microbiology & Molecular Genetics and the Biotechnology & Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paula Traktman
- From the ‡Departments of Biochemistry & Molecular Biology and Microbiology & Immunology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina;
| |
Collapse
|
17
|
Erlandson KJ, Bisht H, Weisberg AS, Hyun SI, Hansen BT, Fischer ER, Hinshaw JE, Moss B. Poxviruses Encode a Reticulon-Like Protein that Promotes Membrane Curvature. Cell Rep 2016; 14:2084-2091. [PMID: 26923595 DOI: 10.1016/j.celrep.2016.01.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/16/2015] [Accepted: 01/25/2016] [Indexed: 12/01/2022] Open
Abstract
Poxviruses are enveloped DNA viruses that replicate within the cytoplasm. The first viral structures are crescents and spherical particles, with a lipoprotein membrane bilayer, that are thought to be derived from the ER. We determined that A17, a conserved viral transmembrane protein essential for crescent formation, forms homo-oligomers and shares topological features with cellular reticulon-like proteins. The latter cell proteins promote membrane curvature and contribute to the tubular structure of the ER. When the purified A17 protein was incorporated into liposomes, 25 nm diameter vesicles and tubules formed at low and high A17 concentrations, respectively. In addition, intracellular expression of A17 in the absence of other viral structural proteins transformed the ER into aggregated three-dimensional (3D) tubular networks. We suggest that A17 is a viral reticulon-like protein that contributes to curvature during biogenesis of the poxvirus membrane.
Collapse
Affiliation(s)
- Karl J Erlandson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Himani Bisht
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Andrea S Weisberg
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Seong-In Hyun
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Bryan T Hansen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Elizabeth R Fischer
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Jenny E Hinshaw
- Structural Cell Biology Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
The vaccinia virus E6 protein influences virion protein localization during virus assembly. Virology 2015; 482:147-56. [PMID: 25863879 DOI: 10.1016/j.virol.2015.02.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/22/2022]
Abstract
Vaccinia virus mutants in which expression of the virion core protein gene E6R is repressed are defective in virion morphogenesis. E6 deficient infections fail to properly package viroplasm into viral membranes, resulting in an accumulation of empty immature virions and large aggregates of viroplasm. We have used immunogold electron microscopy and immunofluorescence confocal microscopy to assess the intracellular localization of several virion structural proteins and enzymes during E6R mutant infections. We find that during E6R mutant infections virion membrane proteins and virion transcription enzymes maintain a normal localization within viral factories while several major core and lateral body proteins accumulate in aggregated virosomes. The results support a model in which vaccinia virions are assembled from at least three substructures, the membrane, the viroplasm and a "pre-nucleocapsid", and that the E6 protein is essential for maintaining proper localization of the seven-protein complex and the viroplasm during assembly.
Collapse
|
19
|
Poxvirus membrane biogenesis. Virology 2015; 479-480:619-26. [PMID: 25728299 DOI: 10.1016/j.virol.2015.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 12/18/2022]
Abstract
Poxviruses differ from most DNA viruses by replicating entirely within the cytoplasm. The first discernible viral structures are crescents and spherical immature virions containing a single lipoprotein membrane bilayer with an external honeycomb lattice. Because this viral membrane displays no obvious continuity with a cellular organelle, a de novo origin was suggested. Nevertheless, transient connections between viral and cellular membranes could be difficult to resolve. Despite the absence of direct evidence, the intermediate compartment (ERGIC) between the endoplasmic reticulum (ER) and Golgi apparatus and the ER itself were considered possible sources of crescent membranes. A break-through in understanding poxvirus membrane biogenesis has come from recent studies of the abortive replication of several vaccinia virus null mutants. Novel images showing continuity between viral crescents and the ER and the accumulation of immature virions in the expanded ER lumen provide the first direct evidence for a cellular origin of this poxvirus membrane.
Collapse
|
20
|
Moussatche N, Condit RC. Fine structure of the vaccinia virion determined by controlled degradation and immunolocalization. Virology 2014; 475:204-18. [PMID: 25486587 DOI: 10.1016/j.virol.2014.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
The vaccinia virion is a membraned, slightly flattened, barrel-shaped particle, with a complex internal structure featuring a biconcave core flanked by lateral bodies. Although the architecture of the purified mature virion has been intensely characterized by electron microscopy, the distribution of the proteins within the virion has been examined primarily using biochemical procedures. Thus, it has been shown that non-ionic and ionic detergents combined or not with a sulfhydryl reagent can be used to disrupt virions and, to a limited degree, separate the constituent proteins in different fractions. Applying a controlled degradation technique to virions adsorbed on EM grids, we were able to immuno-localize viral proteins within the virion particle. Our results show after NP40 and DTT treatment, membrane proteins are removed from the virion surface revealing proteins that are associated with the lateral bodies and the outer layer of the core wall. Combined treatment using high salt and high DTT removed lateral body proteins and exposed proteins of the internal core wall. Cores treated with proteases could be disrupted and the internal components were exposed. Cts8, a mutant in the A3 protein, produces aberrant virus that, when treated with NP-40 and DTT, releases to the exterior the virus DNA associated with other internal core proteins. With these results, we are able to propose a model for the structure the vaccinia virion.
Collapse
Affiliation(s)
- Nissin Moussatche
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
21
|
Liu L, Cooper T, Howley PM, Hayball JD. From crescent to mature virion: vaccinia virus assembly and maturation. Viruses 2014; 6:3787-808. [PMID: 25296112 PMCID: PMC4213562 DOI: 10.3390/v6103787] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 01/22/2023] Open
Abstract
Vaccinia virus (VACV) has achieved unprecedented success as a live viral vaccine for smallpox which mitigated eradication of the disease. Vaccinia virus has a complex virion morphology and recent advances have been made to answer some of the key outstanding questions, in particular, the origin and biogenesis of the virion membrane, the transformation from immature virion (IV) to mature virus (MV), and the role of several novel genes, which were previously uncharacterized, but have now been shown to be essential for VACV virion formation. This new knowledge will undoubtedly contribute to the rational design of safe, immunogenic vaccine candidates, or effective antivirals in the future. This review endeavors to provide an update on our current knowledge of the VACV maturation processes with a specific focus on the initiation of VACV replication through to the formation of mature virions.
Collapse
Affiliation(s)
- Liang Liu
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| | - Tamara Cooper
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| | - Paul M Howley
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| | - John D Hayball
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| |
Collapse
|
22
|
Infection cycles of large DNA viruses: Emerging themes and underlying questions. Virology 2014; 466-467:3-14. [DOI: 10.1016/j.virol.2014.05.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 11/20/2022]
|
23
|
Duplication of the A17L locus of vaccinia virus provides an alternate route to rifampin resistance. J Virol 2014; 88:11576-85. [PMID: 25078687 DOI: 10.1128/jvi.00618-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Specific gene duplications can enable double-stranded DNA viruses to adapt rapidly to environmental pressures despite the low mutation rate of their high-fidelity DNA polymerases. We report on the rapid positive selection of a novel vaccinia virus genomic duplication mutant in the presence of the assembly inhibitor rifampin. Until now, all known rifampin-resistant vaccinia virus isolates have contained missense mutations in the D13L gene, which encodes a capsid-like scaffold protein required for stabilizing membrane curvature during the early stage of virion assembly. Here we describe a second pathway to rifampin resistance involving A17, a membrane protein that binds and anchors D13 to the immature virion. After one round of selection, a rifampin-resistant virus that contained a genomic duplication in the A17L-A21L region was recovered. The mutant had both C-terminally truncated and full-length A17L open reading frames. Expression of the truncated A17 protein was retained when the virus was passaged in the presence of rifampin but was lost in the absence of the drug, suggesting that the duplication decreased general fitness. Both forms of A17 were bound to the virion membrane and associated with D13. Moreover, insertion of an additional truncated or inducible full-length A17L open reading frame into the genome of the wild-type virus was sufficient to confer rifampin resistance. In summary, this report contains the first evidence of an alternate mechanism for resistance of poxviruses to rifampin, indicates a direct relationship between A17 levels and the resistance phenotype, and provides further evidence of the ability of double-stranded DNA viruses to acquire drug resistance through gene duplication. IMPORTANCE The present study provides the first evidence of a new mechanism of resistance of a poxvirus to the antiviral drug rifampin. In addition, it affirms the importance of the interaction between the D13 scaffold protein and the A17 membrane protein for assembly of virus particles. Resistance to rifampin was linked to a partial duplication of the gene encoding the A17 protein, similar to the resistance to hydroxyurea enabled by duplication of the gene encoding the small subunit of ribonucleotide reductase and of the K3L gene to allow adaptation to the antiviral action of protein kinase R. Gene duplication may provide a way for poxviruses and other DNA viruses with high-fidelity DNA polymerases to adjust rapidly to changes in the environment.
Collapse
|
24
|
Abstract
Many viruses encode short transmembrane proteins that play vital roles in virus replication or virulence. Because many of these proteins are less than 50 amino acids long and not homologous to cellular proteins, their open reading frames were often overlooked during the initial annotation of viral genomes. Some of these proteins oligomerize in membranes and form ion channels. Other miniproteins bind to cellular transmembrane proteins and modulate their activity, whereas still others have an unknown mechanism of action. Based on the underlying principles of transmembrane miniprotein structure, it is possible to build artificial small transmembrane proteins that modulate a variety of biological processes. These findings suggest that short transmembrane proteins provide a versatile mechanism to regulate a wide range of cellular activities, and we speculate that cells also express many similar proteins that have not yet been discovered.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520;
| |
Collapse
|
25
|
Wang DR, Hsiao JC, Wong CH, Li GC, Lin SC, Yu SSF, Chen W, Chang W, Tzou DLM. Vaccinia viral protein A27 is anchored to the viral membrane via a cooperative interaction with viral membrane protein A17. J Biol Chem 2014; 289:6639-6655. [PMID: 24451374 DOI: 10.1074/jbc.m114.547372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The vaccinia viral protein A27 in mature viruses specifically interacts with heparan sulfate for cell surface attachment. In addition, A27 associates with the viral membrane protein A17 to anchor to the viral membrane; however, the specific interaction between A27 and A17 remains largely unclear. To uncover the active binding sites and the underlying binding mechanism, we expressed and purified the N-terminal (18-50 residues) and C-terminal (162-203 residues) fragments of A17, which are denoted A17-N and A17-C. Through surface plasmon resonance, the binding affinity of A27/A17-N (KA = 3.40 × 10(8) m(-1)) was determined to be approximately 3 orders of magnitude stronger than that of A27/A17-C (KA = 3.40 × 10(5) m(-1)), indicating that A27 prefers to interact with A17-N rather than A17-C. Despite the disordered nature of A17-N, the A27-A17 interaction is mediated by a specific and cooperative binding mechanism that includes two active binding sites, namely (32)SFMPK(36) (denoted as F1 binding) and (20)LDKDLFTEEQ(29) (F2). Further analysis showed that F1 has stronger binding affinity and is more resistant to acidic conditions than is F2. Furthermore, A27 mutant proteins that retained partial activity to interact with the F1 and F2 sites of the A17 protein were packaged into mature virus particles at a reduced level, demonstrating that the F1/F2 interaction plays a critical role in vivo. Using these results in combination with site-directed mutagenesis data, we established a computer model to explain the specific A27-A17 binding mechanism.
Collapse
Affiliation(s)
- Da-Rong Wang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529
| | - Jye-Chian Hsiao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529
| | - Chien-Hsuan Wong
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi, 60004, Taiwan, Republic of China
| | - Guo-Chian Li
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi, 60004, Taiwan, Republic of China
| | - Su-Ching Lin
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529
| | - Wenlung Chen
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi, 60004, Taiwan, Republic of China
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529
| | - Der-Lii M Tzou
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529.
| |
Collapse
|
26
|
Cáceres A, Perdiguero B, Gómez CE, Cepeda MV, Caelles C, Sorzano CO, Esteban M. Involvement of the cellular phosphatase DUSP1 in vaccinia virus infection. PLoS Pathog 2013; 9:e1003719. [PMID: 24244156 PMCID: PMC3828168 DOI: 10.1371/journal.ppat.1003719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 09/05/2013] [Indexed: 12/30/2022] Open
Abstract
Poxviruses encode a large variety of proteins that mimic, block or enhance host cell signaling pathways on their own benefit. It has been reported that mitogen-activated protein kinases (MAPKs) are specifically upregulated during vaccinia virus (VACV) infection. Here, we have evaluated the role of the MAPK negative regulator dual specificity phosphatase 1 (DUSP1) in the infection of VACV. We demonstrated that DUSP1 expression is enhanced upon infection with the replicative WR virus and with the attenuated VACV viruses MVA and NYVAC. This upregulation is dependent on early viral gene expression. In the absence of DUSP1 in cultured cells, there is an increased activation of its molecular targets JNK and ERK and an enhanced WR replication. Moreover, DUSP1 knock-out (KO) mice are more susceptible to WR infection as a result of enhanced virus replication in the lungs. Significantly, MVA, which is known to produce non-permissive infections in most mammalian cell lines, is able to grow in DUSP1 KO immortalized murine embryo fibroblasts (MEFs). By confocal and electron microscopy assays, we showed that in the absence of DUSP1 MVA morphogenesis is similar as in permissive cell lines and demonstrated that DUSP1 is involved at the stage of transition between IVN and MV in VACV morphogenesis. In addition, we have observed that the secretion of pro-inflammatory cytokines at early times post-infection in KO mice infected with MVA and NYVAC is increased and that the adaptive immune response is enhanced in comparison with WT-infected mice. Altogether, these findings reveal that DUSP1 is involved in the replication and host range of VACV and in the regulation of host immune responses through the modulation of MAPKs. Thus, in this study we demonstrate that DUSP1 is actively involved in the antiviral host defense mechanism against a poxvirus infection. Phosphorylation is a post-translational modification that is highly conserved throughout the animal kingdom. Viruses have evolved to acquire their own kinases and phosphatases and to be able to modulate host phosphorylation mechanisms on their benefit. DUSP1 is an early induced gene that belongs to the superfamily of Dual-specificity phosphatases and provides an essential negative feedback regulation of MAPKs. DUSP1 is involved in innate and adaptive immune responses against different bacteria and parasites infections. The use of Knock-out technology has allowed us to understand the role of DUSP1 in the context of VACV infection both in cultured cells and in the in vivo mouse model. Here, we have showed that DUSP1 expression is upregulated during VACV infection and that DUSP1 plays an important role in VACV replication. Interestingly, we have demonstrated that the VACV attenuated virus MVA is able to grow in immortalized murine embryo fibroblasts in the absence of DUSP1. In vivo results showed that VACV replication-competent WR pathogenesis is enhanced in the absence of DUSP1. Furthermore, we have demonstrated that DUSP1 is involved in the host innate and adaptive responses against VACV. Altogether, we have presented a novel role for DUSP1 in VACV replication and anti-VACV host immune response.
Collapse
Affiliation(s)
- Ana Cáceres
- Department of Molecular and Cellular Biology, National Centre of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, National Centre of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, National Centre of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Maria Victoria Cepeda
- Department of Molecular and Cellular Biology, National Centre of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carme Caelles
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Carlos Oscar Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, National Centre of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
27
|
Direct formation of vaccinia virus membranes from the endoplasmic reticulum in the absence of the newly characterized L2-interacting protein A30.5. J Virol 2013; 87:12313-26. [PMID: 24027302 DOI: 10.1128/jvi.02137-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Crescents consisting of a single lipoprotein membrane with an external protein scaffold comprise the initial structural elements of poxvirus morphogenesis. Crescents enlarge to form spherical immature virions, which enclose viroplasm consisting of proteins destined to form the cores of mature virions. Previous studies suggest that the L2 protein participates in the recruitment of endoplasmic reticulum (ER)-derived membranes to form immature virions within assembly sites of cytoplasmic factories. Here we show that L2 interacts with the previously uncharacterized 42-amino-acid A30.5 protein. An open reading frame similar in size to the one encoding A30.5 is at the same genome location in representatives of all chordopoxvirus genera. A30.5 has a putative transmembrane domain and colocalized with markers of the endoplasmic reticulum and with L2. By constructing a complementing cell line expressing A30.5, we isolated a deletion mutant virus that exhibits a defect in morphogenesis in normal cells. Large electron-dense cytoplasmic inclusions and clusters of scaffold protein-coated membranes that resemble crescents and immature virions devoid of viroplasm were seen in place of normal structures. Crescent-shaped membranes were continuous with the endoplasmic reticulum membrane and oriented with the convex scaffold protein-coated side facing the lumen, while clusters of completed spherical immature-virion-like forms were trapped within the expanded lumen. Immature-virion-like structures were more abundant in infected RK-13 cells than in BS-C-1 or HeLa cells, in which cytoplasmic inclusions were decorated with scaffold protein-coated membrane arcs. We suggest that the outer surface of the poxvirus virion is derived from the luminal side of the ER membrane.
Collapse
|
28
|
Maruri-Avidal L, Weisberg AS, Moss B. Association of the vaccinia virus A11 protein with the endoplasmic reticulum and crescent precursors of immature virions. J Virol 2013; 87:10195-206. [PMID: 23864611 PMCID: PMC3754016 DOI: 10.1128/jvi.01601-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/03/2013] [Indexed: 12/17/2022] Open
Abstract
The apparent de novo formation of viral membranes within cytoplasmic factories is a mysterious, poorly understood first step in poxvirus morphogenesis. Genetic studies identified several viral proteins essential for membrane formation and the assembly of immature virus particles. Their repression results in abortive replication with the accumulation of dense masses of viroplasm. In the present study, we further characterized one of these proteins, A11, and investigated its association with cellular and viral membranes under normal and abortive replication conditions. We discovered that A11 colocalized in cytoplasmic factories with the endoplasmic reticulum (ER) and L2, another viral protein required for morphogenesis. Confocal microscopy and subcellular fractionation indicated that A11 was not membrane associated in uninfected cells, whereas L2 still colocalized with the ER. Cell-free transcription and translation experiments indicated that both A11 and L2 are tail-anchored proteins that associate posttranslationally with membranes and likely require specific cytoplasmic targeting chaperones. Transmission electron microscopy indicated that A11, like L2, associated with crescent membranes and immature virions during normal infection and with vesicles and tubules near masses of dense viroplasm during abortive infection in the absence of the A17 or A14 protein component of viral membranes. When the synthesis of A11 was repressed, "empty" immature-virion-like structures formed in addition to masses of viroplasm. The immature-virion-like structures were labeled with antibodies to A17 and to the D13 scaffold protein and were closely associated with calnexin-labeled ER. These studies revealed similarities and differences between A11 and L2, both of which may be involved in the recruitment of the ER for virus assembly.
Collapse
Affiliation(s)
- Liliana Maruri-Avidal
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | | |
Collapse
|
29
|
Vaccinia virus A19 protein participates in the transformation of spherical immature particles to barrel-shaped infectious virions. J Virol 2013; 87:10700-9. [PMID: 23885081 DOI: 10.1128/jvi.01258-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The A19L open reading frame of vaccinia virus encodes a 9-kDa protein that is conserved in all sequenced chordopoxviruses, yet until now it has not been specifically characterized in any species. We appended an epitope tag after the start codon of the A19L open reading frame without compromising infectivity. The protein was synthesized after viral DNA replication and was phosphorylated independently of the vaccinia virus F10 kinase. The A19 protein was present in purified virions and was largely resistant to nonionic detergent extraction, suggesting a location within the core. A conditional lethal mutant virus was constructed by placing the A19 open reading frame under the control of the Escherichia coli lac repressor system. A19 synthesis and infectious virus formation were dependent on inducer. In the absence of inducer, virion morphogenesis was interrupted, and spherical dense particles that had greatly reduced amounts of the D13 scaffold accumulated in place of barrel-shaped mature virions. The infectivity of purified A19-deficient particles was more than 2 log units less than that of A19-containing virions. Nevertheless, the A19-deficient particles contained DNA, and except for the absence of A19 and decreased core protein processing, they appeared to have a similar protein composition as A19-containing virions. Thus, the A19 protein participates in the maturation of immature vaccinia virus virions to infectious particles.
Collapse
|