1
|
Ehrenfeld M, Segeth F, Mantwill K, Brockhaus C, Zhao Y, Ploner C, Kolk A, Gschwend JE, Nawroth R, Holm PS. Targeting Cell Cycle Facilitates E1A-Independent Adenoviral Replication. J Virol 2023; 97:e0037023. [PMID: 37219458 PMCID: PMC10308897 DOI: 10.1128/jvi.00370-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
DNA replication of E1-deleted first-generation adenoviruses (AdV) in cultured cancer cells has been reported repeatedly and it was suggested that certain cellular proteins could functionally compensate for E1A, leading to the expression of the early region 2 (E2)-encoded proteins and subsequently virus replication. Referring to this, the observation was named E1A-like activity. In this study, we investigated different cell cycle inhibitors with respect to their ability to increase viral DNA replication of dl70-3, an E1-deleted adenovirus. Our analyses of this issue revealed that in particular inhibition of cyclin-dependent kinases 4/6 (CDK4/6i) increased E1-independent adenovirus E2-expression and viral DNA replication. Detailed analysis of the E2-expression in dl70-3 infected cells by RT-qPCR showed that the increase in E2-expression originated from the E2-early promoter. Mutations of the two E2F-binding sites in the E2-early promoter (pE2early-LucM) caused a significant reduction in E2-early promoter activity in trans-activation assays. Accordingly, mutations of the E2F-binding sites in the E2-early promoter in a virus named dl70-3/E2Fm completely abolished CDK4/6i induced viral DNA replication. Thus, our data show that E2F-binding sites in the E2-early promoter are crucial for E1A independent adenoviral DNA replication of E1-deleted vectors in cancer cells. IMPORTANCE E1-deleted AdV vectors are considered replication deficient and are important tools for the study of virus biology, gene therapy, and large-scale vaccine development. However, deletion of the E1 genes does not completely abolish viral DNA replication in cancer cells. Here, we report, that the two E2F-binding sites in the adenoviral E2-early promoter contribute substantially to the so-called E1A-like activity in tumor cells. With this finding, on the one hand, the safety profile of viral vaccine vectors can be increased and, on the other hand, the oncolytic property for cancer therapy might be improved through targeted manipulation of the host cell.
Collapse
Affiliation(s)
- Maximilian Ehrenfeld
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Felicia Segeth
- Department of Oral and Maxillofacial Surgery, Medical University of Innsbruck, Innsbruck, Austria
- Department of Molecular Biology, Leopold-Franzens-Universität Innsbruck, Austria
| | - Klaus Mantwill
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Corinna Brockhaus
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Yuling Zhao
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jürgen E. Gschwend
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Per Sonne Holm
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Oral and Maxillofacial Surgery, Medical University of Innsbruck, Innsbruck, Austria
- XVir Therapeutics GmbH, Munich, Germany
| |
Collapse
|
2
|
Field MG, Kuznetsoff JN, Zhang MG, Dollar JJ, Durante MA, Sayegh Y, Decatur CL, Kurtenbach S, Pelaez D, Harbour JW. RB1 loss triggers dependence on ESRRG in retinoblastoma. SCIENCE ADVANCES 2022; 8:eabm8466. [PMID: 35984874 PMCID: PMC9390996 DOI: 10.1126/sciadv.abm8466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/08/2022] [Indexed: 05/10/2023]
Abstract
Retinoblastoma (Rb) is a deadly childhood eye cancer that is classically initiated by inactivation of the RB1 tumor suppressor. Clinical management continues to rely on nonspecific chemotherapeutic agents that are associated with treatment resistance and toxicity. Here, we analyzed 103 whole exomes, 20 whole transcriptomes, 5 single-cell transcriptomes, and 4 whole genomes from primary Rb tumors to identify previously unknown Rb dependencies. Several recurrent genomic aberrations implicate estrogen-related receptor gamma (ESRRG) in Rb pathogenesis. RB1 directly interacts with and inhibits ESRRG, and RB1 loss uncouples ESRRG from negative regulation. ESRRG regulates genes involved in retinogenesis and oxygen metabolism in Rb cells. ESRRG is preferentially expressed in hypoxic Rb cells in vivo. Depletion or inhibition of ESRRG causes marked Rb cell death, which is exacerbated in hypoxia. These findings reveal a previously unidentified dependency of Rb cells on ESRRG, and they implicate ESRRG as a potential therapeutic vulnerability in Rb.
Collapse
Affiliation(s)
- Matthew G. Field
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffim N. Kuznetsoff
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michelle G. Zhang
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - James J. Dollar
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A. Durante
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yoseph Sayegh
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christina L. Decatur
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Pelaez
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J. William Harbour
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Tessier TM, Dodge MJ, MacNeil KM, Evans AM, Prusinkiewicz MA, Mymryk JS. Almost famous: Human adenoviruses (and what they have taught us about cancer). Tumour Virus Res 2021; 12:200225. [PMID: 34500123 PMCID: PMC8449131 DOI: 10.1016/j.tvr.2021.200225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Papillomaviruses, polyomaviruses and adenoviruses are collectively categorized as the small DNA tumour viruses. Notably, human adenoviruses were the first human viruses demonstrated to be able to cause cancer, albeit in non-human animal models. Despite their long history, no human adenovirus is a known causative agent of human cancers, unlike a subset of their more famous cousins, including human papillomaviruses and human Merkel cell polyomavirus. Nevertheless, seminal research using human adenoviruses has been highly informative in understanding the basics of cell cycle control, gene expression, apoptosis and cell differentiation. This review highlights the contributions of human adenovirus research in advancing our knowledge of the molecular basis of cancer.
Collapse
Affiliation(s)
- Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
4
|
El Dika M. Redirecting E2F1 to TA-p73 improves cancer therapy through apoptotic induction. DNA Repair (Amst) 2020; 90:102858. [PMID: 32388489 DOI: 10.1016/j.dnarep.2020.102858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Mohammed El Dika
- Institut Curie, PSL Research University, CNRS, UMR3348, Orsay, France; Paris Sud University, Paris-Saclay University, CNRS, UMR3348, Orsay, France; London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada; Department of Biochemistry, Western University, London, Ontario, Canada.
| |
Collapse
|
5
|
The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Enhances E1A Functional Activity. mSphere 2015; 1:mSphere00015-15. [PMID: 27303687 PMCID: PMC4863633 DOI: 10.1128/msphere.00015-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 11/20/2022] Open
Abstract
Following our demonstration that adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins is able to mimic the activation of E2F by E1A, we conducted a series of studies to determine if this complex might also promote the ability of E1A to do so. We found that the complex both significantly stabilizes E1A proteins and also enhances their ability to activate E2F. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication by enhancing the action of E1A products. Human adenovirus (Ad) E1A proteins have long been known as the central regulators of virus infection as well as the major source of adenovirus oncogenic potential. Not only do they activate expression of other early viral genes, they make viral replication possible in terminally differentiated cells, at least in part, by binding to the retinoblastoma (Rb) tumor suppressor family of proteins to activate E2F transcription factors and thus viral and cellular DNA synthesis. We demonstrate in an accompanying article (F. Dallaire et al., mSphere 1:00014-15, 2016) that the human adenovirus E3 ubiquitin ligase complex formed by the E4orf6 and E1B55K proteins is able to mimic E1A activation of E2F transactivation factors. Acting alone in the absence of E1A, the Ad5 E4orf6 protein in complex with E1B55K was shown to bind E2F, disrupt E2F/Rb complexes, and induce hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis, as well as stimulation of early and late viral gene expression and production of viral progeny. While these activities were significantly lower than those exhibited by E1A, we report here that this ligase complex appeared to enhance E1A activity in two ways. First, the E4orf6/E1B55K complex was shown to stabilize E1A proteins, leading to higher levels in infected cells. Second, the complex was demonstrated to enhance the activation of E2F by E1A products. These findings indicated a new role of the E4orf6/E1B55K ligase complex in promoting adenovirus replication. IMPORTANCE Following our demonstration that adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins is able to mimic the activation of E2F by E1A, we conducted a series of studies to determine if this complex might also promote the ability of E1A to do so. We found that the complex both significantly stabilizes E1A proteins and also enhances their ability to activate E2F. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication by enhancing the action of E1A products.
Collapse
|
6
|
The retinoblastoma tumor suppressor promotes efficient human cytomegalovirus lytic replication. J Virol 2015; 89:5012-21. [PMID: 25694602 DOI: 10.1128/jvi.00175-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/13/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The retinoblastoma (Rb) tumor suppressor controls cell cycle, DNA damage, apoptotic, and metabolic pathways. DNA tumor virus oncoproteins reduce Rb function by either inducing Rb degradation or physically disrupting complexes between Rb and its myriad binding proteins. Human cytomegalovirus (HCMV), a betaherpesvirus being investigated for potential roles in human cancers, encodes multiple lytic-phase proteins that inactivate Rb in distinct ways, leading to the hypothesis that reduced Rb levels and/or activity would benefit HCMV lytic infection. Paradoxically, we found that Rb knockdown prior to infection, whether transient or constitutive, impaired HCMV lytic infection at multiple stages, notably viral DNA replication, late protein expression, and infectious virion production. The existence of differentially modified forms of Rb, the temporally and functionally distinct means by which HCMV proteins interact with Rb, and the necessity of Rb for efficient HCMV lytic replication combine to highlight the complex relationship between the virus and this critical tumor suppressor. IMPORTANCE Initial work examining viral protein modulation of cell cycle progression and oncogenic transformation revealed that these proteins inactivated the function of cellular tumor suppressor proteins. However, subsequent work, including experiments described here using human cytomegalovirus, demonstrate a more nuanced interaction that includes the necessity of cellular tumor suppressors for efficient viral replication. Understanding the positive impacts that cellular tumor suppressors have on viral infections may reveal new activities of these well-studied yet incompletely understood proteins. The basis for oncolytic viral therapy is the selective replication of viruses in transformed cells in which tumor suppressor function may be compromised. Understanding how tumor suppressors support viral infections may allow for the generation of modified oncolytic viruses with greater selective tumor cell replication and killing.
Collapse
|
7
|
Chen Y, Williams V, Filippova M, Filippov V, Duerksen-Hughes P. Viral carcinogenesis: factors inducing DNA damage and virus integration. Cancers (Basel) 2014; 6:2155-86. [PMID: 25340830 PMCID: PMC4276961 DOI: 10.3390/cancers6042155] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/03/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022] Open
Abstract
Viruses are the causative agents of 10%-15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play an important role in promoting tumor development for several viruses, including HBV and HPV. Because viral integration requires the breakage of both the viral and the host DNA, the integration rate is believed to be linked to the levels of DNA damage. DNA damage can be caused by both endogenous and exogenous factors, including inflammation induced by either the virus itself or by co-infections with other agents, environmental agents and other factors. Typically, cancer develops years to decades following the initial infection. A better understanding of virus-mediated carcinogenesis, the networking of pathways involved in transformation and the relevant risk factors, particularly in those cases where tumorigenesis proceeds by way of virus integration, will help to suggest prophylactic and therapeutic strategies to reduce the risk of virus-mediated cancer.
Collapse
Affiliation(s)
- Yan Chen
- Department of Basic Science, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Vonetta Williams
- Department of Basic Science, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Maria Filippova
- Department of Basic Science, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Valery Filippov
- Department of Basic Science, Loma Linda University, Loma Linda, CA 92354, USA.
| | | |
Collapse
|
8
|
A retinoblastoma allele that is mutated at its common E2F interaction site inhibits cell proliferation in gene-targeted mice. Mol Cell Biol 2014; 34:2029-45. [PMID: 24662053 DOI: 10.1128/mcb.01589-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The retinoblastoma protein (pRB) is best known for regulating cell proliferation through E2F transcription factors. In this report, we investigate the properties of a targeted mutation that disrupts pRB interactions with the transactivation domain of E2Fs. Mice that carry this mutation endogenously (Rb1(ΔG)) are defective for pRB-dependent repression of E2F target genes. Except for an accelerated entry into S phase in response to serum stimulation, cell cycle regulation in Rb1(ΔG/ΔG) mouse embryonic fibroblasts (MEFs) strongly resembles that of the wild type. In a serum deprivation-induced cell cycle exit, Rb1(ΔG/ΔG) MEFs display a magnitude of E2F target gene derepression similar to that of Rb1(-/-) cells, even though Rb1(ΔG/ΔG) cells exit the cell cycle normally. Interestingly, cell cycle arrest in Rb1(ΔG/ΔG) MEFs is responsive to p16 expression and gamma irradiation, indicating that alternate mechanisms can be activated in G1 to arrest proliferation. Some Rb1(ΔG/ΔG) mice die neonatally with a muscle degeneration phenotype, while the others live a normal life span with no evidence of spontaneous tumor formation. Most tissues appear histologically normal while being accompanied by derepression of pRB-regulated E2F targets. This suggests that non-E2F-, pRB-dependent pathways may have a more relevant role in proliferative control than previously identified.
Collapse
|
9
|
Abstract
Inactivation of the RB protein is one of the most fundamental events in cancer. Coming to a molecular understanding of its function in normal cells and how it impedes cancer development has been challenging. Historically, the ability of RB to regulate the cell cycle placed it in a central role in proliferative control, and research focused on RB regulation of the E2F family of transcription factors. Remarkably, several recent studies have found additional tumour-suppressor functions of RB, including alternative roles in the cell cycle, maintenance of genome stability and apoptosis. These advances and new structural studies are combining to define the multifunctionality of RB.
Collapse
|
10
|
Saha A, Lu J, Morizur L, Upadhyay SK, AJ MP, Robertson ES. E2F1 mediated apoptosis induced by the DNA damage response is blocked by EBV nuclear antigen 3C in lymphoblastoid cells. PLoS Pathog 2012; 8:e1002573. [PMID: 22438805 PMCID: PMC3305458 DOI: 10.1371/journal.ppat.1002573] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 01/25/2012] [Indexed: 01/06/2023] Open
Abstract
EBV latent antigen EBNA3C is indispensible for in vitro B-cell immortalization resulting in continuously proliferating lymphoblastoid cell lines (LCLs). EBNA3C was previously shown to target pRb for ubiquitin-proteasome mediated degradation, which facilitates G1 to S transition controlled by the major transcriptional activator E2F1. E2F1 also plays a pivotal role in regulating DNA damage induced apoptosis through both p53-dependent and -independent pathways. In this study, we demonstrate that in response to DNA damage LCLs knocked down for EBNA3C undergo a drastic induction of apoptosis, as a possible consequence of both p53- and E2F1-mediated activities. Importantly, EBNA3C was previously shown to suppress p53-induced apoptosis. Now, we also show that EBNA3C efficiently blocks E2F1-mediated apoptosis, as well as its anti-proliferative effects in a p53-independent manner, in response to DNA damage. The N- and C-terminal domains of EBNA3C form a stable pRb independent complex with the N-terminal DNA-binding region of E2F1 responsible for inducing apoptosis. Mechanistically, we show that EBNA3C represses E2F1 transcriptional activity via blocking its DNA-binding activity at the responsive promoters of p73 and Apaf-1 apoptosis induced genes, and also facilitates E2F1 degradation in an ubiquitin-proteasome dependent fashion. Moreover, in response to DNA damage, E2F1 knockdown LCLs exhibited a significant reduction in apoptosis with higher cell-viability. In the presence of normal mitogenic stimuli the growth rate of LCLs knockdown for E2F1 was markedly impaired; indicating that E2F1 plays a dual role in EBV positive cells and that active engagement of the EBNA3C-E2F1 complex is crucial for inhibition of DNA damage induced E2F1-mediated apoptosis. This study offers novel insights into our current understanding of EBV biology and enhances the potential for development of effective therapies against EBV associated B-cell lymphomas. Aberrant cellular proliferation due to deregulation of E2F1 transcriptional activity as a result of either genetic or functional alterations of its upstream components is a hallmark of human cancer. Interestingly, E2F1 can also promote cellular apoptosis regardless of p53 status by activating a number of pro-apoptotic genes in response to DNA damage stimuli. Epstein-Barr virus (EBV) encoded essential latent antigen EBNA3C can suppress p53-mediated apoptotic activities. This study now demonstrates that EBNA3C can further impede E2F1 mediated apoptosis by inhibiting its transcriptional ability, as well as by facilitating its degradation in an ubiquitin-proteasome dependent manner. This is the first evidence, which shows through targeting EBNA3C function linked to the E2F1-mediated apoptotic pathway, an additional therapeutic platform could be implemented against EBV-associated human B-cell lymphomas.
Collapse
Affiliation(s)
- Abhik Saha
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jie Lu
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lise Morizur
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Santosh K. Upadhyay
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mahadesh Prasad AJ
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
The tumour suppressor ARF (alternative reading frame) is one of the most important oncogenic stress sensors. ARF provides an 'oncogenic checkpoint' function through both p53-dependent and p53-independent mechanisms. In the present study, we demonstrate a novel p53-independent interaction between p14(ARF) and the adenovirus oncoprotein E1A. p14(ARF) inhibits E1A transcriptional function and promotes ubiquitination-dependent degradation of E1A. p14(ARF) overexpression relocalizes E1A into the nucleolus and inhibits E1A-induced cellular DNA replication independent of p53. Knockdown of endogenous p14(ARF) increases E1A transactivation. In addition, E1A can competitively inhibit ARF-Mdm2 (murine double minute 2) complex formation. These results identify a novel binding partner of p14(ARF) and reveal a mutually inhibitory interaction between p14(ARF) and E1A. We speculate that the ARF-E1A interaction may represent an additional host defence mechanism to limit viral replication. Alternatively, the interaction may allow adenovirus to sense the functional state of p53 in host cells, and fine-tune its own replication activity to prevent the triggering of a detrimental host response.
Collapse
|
12
|
Opposing oncogenic activities of small DNA tumor virus transforming proteins. Trends Microbiol 2011; 19:174-83. [PMID: 21330137 DOI: 10.1016/j.tim.2011.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 01/04/2011] [Accepted: 01/12/2011] [Indexed: 01/10/2023]
Abstract
The E1A gene of species C human adenovirus is an intensely investigated model viral oncogene that immortalizes primary cells and mediates oncogenic cell transformation in cooperation with other viral or cellular oncogenes. Investigations using E1A proteins have illuminated important paradigms in cell proliferation and about the functions of cellular proteins such as the retinoblastoma protein. Studies with E1A have led to the unexpected discovery that E1A also suppresses cell transformation and oncogenesis. Here, I review our current understanding of the transforming and tumor-suppressive functions of E1A, and how E1A studies led to the discovery of a related tumor-suppressive function in benign human papillomaviruses. The potential role of these opposing functions in viral replication in epithelial cells is also discussed.
Collapse
|
13
|
An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein. Nat Struct Mol Biol 2010; 17:1051-7. [PMID: 20694007 PMCID: PMC2933323 DOI: 10.1038/nsmb.1868] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 06/11/2010] [Indexed: 01/20/2023]
Abstract
The phosphorylation state and corresponding activity of the retinoblastoma tumor suppressor protein (Rb) are modulated by a balance of kinase and phosphatase activities. Here we characterize the association of Rb with the catalytic subunit of protein phosphatase 1 (PP1c). A crystal structure identifies an enzyme-docking site in the Rb C-terminal domain that is required for efficient PP1c activity towards Rb. The phosphatase-docking site overlaps with the known docking site for Cyclin dependent kinase, and PP1 competition with Cdk-Cyclins for Rb binding is sufficient to retain Rb activity and block cell cycle advancement. These results provide the first detailed molecular insights into Rb activation and establish a novel mechanism for Rb regulation in which kinase and phosphatase compete for substrate docking.
Collapse
|
14
|
Henley SA, Francis SM, Demone J, Ainsworth P, Dick FA. A cancer derived mutation in the retinoblastoma gene with a distinct defect for LXCXE dependent interactions. Cancer Cell Int 2010; 10:8. [PMID: 20298605 PMCID: PMC2859746 DOI: 10.1186/1475-2867-10-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 03/18/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The interaction between viral oncoproteins such as Simian virus 40 TAg, adenovirus E1A, and human papilloma virus E7, and the retinoblastoma protein (pRB) occurs through a well characterized peptide sequence, LXCXE, on the viral protein and a well conserved groove in the pocket domain of pRB. Cellular proteins, such as histone deacetylases, also use this mechanism to interact with the retinoblastoma protein to repress transcription at cell cycle regulated genes. For these reasons this region of the pRB pocket domain is thought to play a critical role in growth suppression. RESULTS In this study, we identify and characterize a tumor derived allele of the retinoblastoma gene (RB1) that possesses a discrete defect in its ability to interact with LXCXE motif containing proteins that compromises proliferative control. To assess the frequency of similar mutations in the RB1 gene in human cancer, we screened blood and tumor samples for similar alleles. We screened almost 700 samples and did not detect additional mutations, indicating that this class of mutation is rare. CONCLUSIONS Our work provides proof of principal that alleles encoding distinct, partial loss of function mutations in the retinoblastoma gene that specifically lose LXCXE dependent interactions, are found in human cancer.
Collapse
|
15
|
Bazan-Peregrino M, Carlisle RC, Hernandez-Alcoceba R, Iggo R, Homicsko K, Fisher KD, Halldén G, Mautner V, Shen Y, Seymour LW. Comparison of molecular strategies for breast cancer virotherapy using oncolytic adenovirus. Hum Gene Ther 2008; 19:873-86. [PMID: 18710328 DOI: 10.1089/hum.2008.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oncolytic viruses are regulated by the tumor phenotype to replicate and lyse cancer cells selectively. To identify optimal strategies for breast cancer we compared five adenoviruses with distinct regulatory mechanisms: Ad-dl922-947 (targets G1-S checkpoint); Ad-Onyx-015 and Ad-Onyx-017 (target p53/mRNA export); Ad-vKH1 (targets Wnt pathway), and AdEHE2F (targets estrogen receptor/G1-S checkpoint/hypoxic signaling). The quantity of virus required to kill 50% of breast cancer cells after 6 days (EC(50), plaque-forming units per cell) was measured. The most potent virus was Ad-dl922-947 (EC(50), 0.01-5.4 in SkBr3, MDA-231, MDA-468, MCF7, and ZR75.1 cells), followed by wild-type (Ad-WT; EC(50), 0.3-5.5) and AdEHE2F (EC(50), 1.4-3.9). Ad-vKH1 (EC(50), 7.2-72.1), Ad-Onyx-017 (EC(50), 8.4-167), and Ad-Onyx-015 (EC(50), 17.7-377) showed less activity. Most viruses showed limited cytotoxicity in normal human cells, including breast epithelium MCF10A (EC(50), >722) and fibroblasts (EC(50), >192) and only moderate cytotoxicity in normal microvascular endothelial cells (HMVECs; EC(50), 42.8-149), except Ad-dl922-947, which was active in HMVECs (EC(50), 1.6). After injection into MDA-231 xenografts, Ad-WT, AdEHE2F, and Ad-dl922-947 showed replication, assessed by hexon staining and quantitative polymerase chain reaction measurement of viral DNA, and significantly inhibited tumor growth, leading to extended survival. After intravenous injection Ad-dl922-947 showed DNA replication (233% of the injected dose was measured in liver after 3 days) whereas AdEHE2F did not. Overall, AdEHE2F showed the best combination of low toxicity in normal cells and high activity in breast cancer in vitro and in vivo, suggesting that molecular targeting using estrogen response elements, hypoxia response elements, and a dysregulated G1-S checkpoint is a promising strategy for virotherapy of breast cancer.
Collapse
Affiliation(s)
- M Bazan-Peregrino
- Department of Clinical Pharmacology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang C, Chen P, Jin H, Yan X, Gan L, Li Y, Zhou S, Chang J, Wang Y, Yang G, He G. Nidus vespae protein inhibiting proliferation of HepG2 hepatoma cells through extracellular signal-regulated kinase signaling pathways and inducing G1 cell cycle arrest. Acta Biochim Biophys Sin (Shanghai) 2008; 40:970-8. [PMID: 18989579 DOI: 10.1111/j.1745-7270.2008.00476.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A protein named NVP(1) was isolated from Nidus vespae. The aim of the present study was to elucidate whether and how NVP(1) modulates the proliferation of HepG2 cells. NVP(1) at a concentration of 6.6 microg/ml could arrest the cell cycle at stage G1 and inhibit the mRNA expression of cyclinB, cyclinD1 and cyclinE. NVP(1) suppressed cdk2 protein expression, but increased p27 and p21 protein expression. However, NVP(1) did not alter p16 protein expression levels. NVP(1) promoted apoptosis in HepG2 cells as indicated by nuclear chromatin condensation, and in addition, the extracellular signal-regulated kinase (ERK) signaling pathway was activated. Moreover, the p-ERK protein expression level was attenuated when the HepG2 cells were pretreated with ERK inhibitor PD98059. These results demonstrate that NVP(1) inhibits proliferation of HepG2 through ERK signaling pathway. NVP(1) could be a potential drug for liver cancer.
Collapse
Affiliation(s)
- Changdong Wang
- China-UK HUST-RRes Genetic Engineering and Genomics Joint Laboratory, the Key Laboratory of Molecular Biophysics of Ministry of Education, College of life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The retinoblastoma (RB) tumour suppressor gene is functionally inactivated in a broad range of paediatric and adult cancers, and a plethora of cellular functions and partners have been identified for the RB protein. Data from human tumours and studies from mouse models indicate that loss of RB function contributes to both cancer initiation and progression. However, we still do not know the identity of the cell types in which RB normally prevents cancer initiation in vivo, and the specific functions of RB that suppress distinct aspects of the tumorigenic process are poorly understood.
Collapse
Affiliation(s)
- Deborah L Burkhart
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
18
|
Abstract
It is widely accepted that adenoviral E1A exerts its influence on recipient cells through binding to the retinoblastoma (Rb) family proteins, followed by a global release of E2F factors from pocket-protein control. Our study challenges this simple paradigm by demonstrating previously unappreciated complexity. We show that E1A-expressing primary and transformed cells are characterized by the persistence of Rb-E2F1 complexes. We provide evidence that E1A causes Rb stabilization by interfering with its proteasomal degradation. Functional experiments supported by biochemical data reveal not only a dramatic increase in Rb and E2F1 protein levels in E1A-expressing cells but also demonstrate their activation throughout the cell cycle. We further show that E1A activates an Rb- and E2F1-dependent S-phase checkpoint that attenuates the growth of cells that became hyperploid through errors in mitosis and supports the fidelity DNA replication even in the absence of E2F complexes with other Rb family proteins, thereby functionally substituting for the loss of p53. Our results support the essential role of Rb and E2F1 in the regulation of genomic stability and DNA damage checkpoints.
Collapse
|