1
|
Angelova A, Pierrard K, Detje CN, Santiago E, Grewenig A, Nüesch JPF, Kalinke U, Ungerechts G, Rommelaere J, Daeffler L. Oncolytic Rodent Protoparvoviruses Evade a TLR- and RLR-Independent Antiviral Response in Transformed Cells. Pathogens 2023; 12:pathogens12040607. [PMID: 37111493 PMCID: PMC10144674 DOI: 10.3390/pathogens12040607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The oncolytic rodent protoparvoviruses (PVs) minute virus of mice (MVMp) and H-1 parvovirus (H-1PV) are promising cancer viro-immunotherapy candidates capable of both exhibiting direct oncolytic activities and inducing anticancer immune responses (AIRs). Type-I interferon (IFN) production is instrumental for the activation of an efficient AIR. The present study aims at characterizing the molecular mechanisms underlying PV modulation of IFN induction in host cells. MVMp and H-1PV triggered IFN production in semi-permissive normal mouse embryonic fibroblasts (MEFs) and human peripheral blood mononuclear cells (PBMCs), but not in permissive transformed/tumor cells. IFN production triggered by MVMp in primary MEFs required PV replication and was independent of the pattern recognition receptors (PRRs) Toll-like (TLR) and RIG-like (RLR) receptors. PV infection of (semi-)permissive cells, whether transformed or not, led to nuclear translocation of the transcription factors NFĸB and IRF3, hallmarks of PRR signaling activation. Further evidence showed that PV replication in (semi-)permissive cells resulted in nuclear accumulation of dsRNAs capable of activating mitochondrial antiviral signaling (MAVS)-dependent cytosolic RLR signaling upon transfection into naïve cells. This PRR signaling was aborted in PV-infected neoplastic cells, in which no IFN production was detected. Furthermore, MEF immortalization was sufficient to strongly reduce PV-induced IFN production. Pre-infection of transformed/tumor but not of normal cells with MVMp or H-1PV prevented IFN production by classical RLR ligands. Altogether, our data indicate that natural rodent PVs regulate the antiviral innate immune machinery in infected host cells through a complex mechanism. In particular, while rodent PV replication in (semi-)permissive cells engages a TLR-/RLR-independent PRR pathway, in transformed/tumor cells this process is arrested prior to IFN production. This virus-triggered evasion mechanism involves a viral factor(s), which exert(s) an inhibitory action on IFN production, particularly in transformed/tumor cells. These findings pave the way for the development of second-generation PVs that are defective in this evasion mechanism and therefore endowed with increased immunostimulatory potential through their ability to induce IFN production in infected tumor cells.
Collapse
Affiliation(s)
- Assia Angelova
- Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kristina Pierrard
- Program Infection, Inflammation and Cancer, Division Viral Transformation Mechanisms (F030), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Claudia N Detje
- Institute for Experimental Infection Research, TWICNORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Estelle Santiago
- CNRS, IPHC UMR 7178, Université de Strasbourg, F-67000 Strasbourg, France
| | - Annabel Grewenig
- Program Infection, Inflammation and Cancer, Division DNA Vectors (F160), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürg P F Nüesch
- Program Infection, Inflammation and Cancer, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWICNORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Guy Ungerechts
- Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jean Rommelaere
- Program Infection, Inflammation and Cancer, Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Laurent Daeffler
- CNRS, IPHC UMR 7178, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
2
|
Nikolai-Yogerst A, White P, Iwashima M. IFN-β reduces NRP-1 expression on human cord blood monocytes and inhibits VEGF-induced chemotaxis. Cytokine 2021; 143:155519. [PMID: 33858750 DOI: 10.1016/j.cyto.2021.155519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Type I interferons (IFNs) inhibit angiogenesis, the sprouting of new blood vessels, during tissue development, remodeling, and tumor growth. One of the major targets type I IFNs inhibit are circulating monocytes, which promote vascular development by secreting growth factors, chemokines, and proteases. This study tested the hypothesis that IFN-β directly inhibits monocyte chemotaxis towards VEGF. We were interested in looking at chemotaxis towards VEGF because VEGF is known to create a pro-angiogenesis environment by acting as a stimulator and chemotactic factor for endothelial cells and monocytes. Here, we demonstrate that IFN-β, a type I IFN, downregulates neuropilin-1 (NRP-1) expression by human monocytes and inhibits chemotaxis induced by vascular endothelial growth factor (VEGF), a NRP-1 ligand. Together, the data suggest that IFN-β directly downregulates NRP-1 expression in monocytes, thus inhibiting monocyte chemotaxis toward a VEGF enriched environment.
Collapse
Affiliation(s)
- Anya Nikolai-Yogerst
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States; Van Kampen Cardiopulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States
| | - Paula White
- Department of Obstetrics and Gynecology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States
| | - Makio Iwashima
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States; Van Kampen Cardiopulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States.
| |
Collapse
|
3
|
Chen S, Fang T, Xiao S, Lin F, Cheng X, Wang S, Zhu X, Chen X, Zheng M, Munir M, Huang M, Yu F, Chen S. Duckling short beak and dwarfism syndrome virus infection activates host innate immune response involving both DNA and RNA sensors. Microb Pathog 2019; 138:103816. [PMID: 31655218 DOI: 10.1016/j.micpath.2019.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 11/27/2022]
Abstract
Duckling short beak and dwarfism syndrome virus (SBDSV), a newly identified goose parvovirus, causes devastating disease in domestic waterfowl and considerable economic losses to Chinese waterfowl industry. The molecular pathogenesis of SBDSV infection, nature and dynamics of host immune responses against SBDSV infection remained elusive. In this study, we systematically explored the relative mRNA expression profiles of major innate immune-related genes in SBDSV infected duck embryo fibroblasts. We found that SBDSV infection effectively activated host innate immune responses and resulted in significant up-regulation of IFN-β and several vital IFN-stimulated genes (ISGs). These up-regulation responses were mainly attributed to viral genomic DNA and dsRNA replication intermediates. Importantly, the expression of cGAS was significantly induced, whereas the expression of other DNA receptors including DDX41, STING, ZBP1, LSM14A and LRRFIP1 have no significant change. Furthermore, SBDSV infection also activates the up-regulation of TLR3 and inhibited the expression of TLR2 and TLR4; however, no effect was observed on the expression of TLR1, TLR5, TLR7, TLR15 and TLR21. Intriguingly, SBDSV infection significantly up-regulated the expression of RNA sensors such as MDA5 and LGP2, and resulted in a delayed but significant up-regulation of RIG-I gene. Taken together, these data indicate that host multiple sensors including DNA sensor (cGAS) and RNA sensors (TLR3, MDA5 and LGP2) are involved in recognizing a variety of different pathogen associated molecular patterns (PAMPs) including viral genomic ssDNA and dsRNA replication intermediates, which trigger an effective antiviral innate immune response.
Collapse
Affiliation(s)
- Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Longyan University and Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, 364012, China
| | - Tiehui Fang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shifeng Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Fengqiang Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Xiaoxia Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Xiaoli Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Xiuqin Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Min Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Meiqing Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Fusong Yu
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China.
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.
| |
Collapse
|
4
|
Yun K, Hurwitz AA, Perantoni AO. Constitutive metanephric mesenchyme-specific expression of interferon-gamma causes renal dysplasia by regulating Sall1 expression. PLoS One 2018; 13:e0197356. [PMID: 29771971 PMCID: PMC5957351 DOI: 10.1371/journal.pone.0197356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/01/2018] [Indexed: 11/19/2022] Open
Abstract
Transplacental viral and parasitic infections have been shown to initiate an innate response in the mammalian embryo by increasing the expression of pro-inflammatory cytokines such as interferon-gamma (Ifng). However, the developmental consequences of an activated innate immunity and, in particular, the effects of induction of Ifng expression independent of infection have been largely overlooked. Here, we demonstrate in vivo that the conditional overexpression of Ifng in metanephric mesenchymal (MM) progenitors results in renal agenesis or hypoplasia. Cell death was observed in and around the MM region of E10.5-11.5 mutants where Ifng was constitutively expressed during early kidney development and resulted in a retardation of branching morphogenesis. Furthermore, isolated mutant or normal Ifng-treated metanephroi replicated this phenotype in culture, demonstrating the inherent nature of the aberrant morphogenesis. The expression of renal progenitor marker Sall1 was significantly decreased in the MM of mutant kidneys, suggesting that a reduction in Sall1 may be the cause of cell death in the MM during early kidney development and that, in turn, retards UB branching in the mutants. Therefore, the aberrant induction of Ifng expression, as part of an innate immune response, may contribute to renal agenesis or hypoplasia during early metanephric development by regulating the MM progenitor population.
Collapse
Affiliation(s)
- Kangsun Yun
- National Cancer Institute/NIH, Cancer and Developmental Biology Laboratory, Frederick, MD, United States of America
| | - Arthur A. Hurwitz
- National Cancer Institute/NIH, Laboratory of Molecular Immunoregulation, Frederick, MD, United States of America
| | - Alan O. Perantoni
- National Cancer Institute/NIH, Cancer and Developmental Biology Laboratory, Frederick, MD, United States of America
- * E-mail:
| |
Collapse
|
5
|
Winkler CW, Peterson KE. Using immunocompromised mice to identify mechanisms of Zika virus transmission and pathogenesis. Immunology 2018; 153:443-454. [PMID: 29266213 DOI: 10.1111/imm.12883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is responsible for a recent global epidemic that has been associated with congenital brain malformations in fetuses and with Guillain-Barré syndrome in adults. Within the last 2 years, a major effort has been made to develop murine models to study the mechanism of viral transmission, pathogenesis and the host immune response. Here, we discuss the findings from these models regarding the role that the innate and adaptive immune responses have in controlling ZIKV infection and pathogenesis. Additionally, we examine how innate and adaptive immune responses influence sexual and vertical transmission of ZIKV infection as well as how these responses can influence the ability of ZIKV to cross the placenta and to induce damage in the developing brain.
Collapse
Affiliation(s)
- Clayton W Winkler
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Karin E Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| |
Collapse
|
6
|
The MVMp P4 promoter is a host cell-type range determinant in vivo. Virology 2017; 506:141-151. [PMID: 28391161 DOI: 10.1016/j.virol.2017.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022]
Abstract
The protoparvovirus early promoters, e.g. P4 of Minute Virus of Mice (MVM), play a critical role during infection. Initial P4 activity depends on the host transcription machinery only. Since this is cell-type dependent, it is hypothesized that P4 is a host cell-type range determinant. Yet host range determinants have mapped mostly to capsid, never P4. Here we test the hypothesis using the mouse embryo as a model system. Disruption of the CRE element of P4 drastically decreased infection levels without altering range. However, when we swapped promoter elements of MVM P4 with those from equivalent regions of the closely related H1 virus, we observed elimination of infection in fibroblasts and chondrocytes and the acquisition of infection in skeletal muscle. We conclude that P4 is a host range determinant and a target for modifying the productive infection potential of the virus - an important consideration in adapting these viruses for oncotherapy.
Collapse
|