1
|
Pontremoli C, Forni D, Clerici M, Cagliani R, Sironi M. Alternation between taxonomically divergent hosts is not the major determinant of flavivirus evolution. Virus Evol 2021; 7:veab040. [PMID: 33976907 PMCID: PMC8093920 DOI: 10.1093/ve/veab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Flaviviruses display diverse epidemiological and ecological features. Tick-borne and mosquito-borne flaviviruses (TBFV and MBFV, respectively) are important human pathogens that alternate replication in invertebrate vectors and vertebrate hosts. The Flavivirus genus also includes insect-specific viruses (ISFVs) and viruses with unknown invertebrate hosts. It is generally accepted that viruses that alternate between taxonomically different hosts evolve slowly and that the evolution of MBFVs and TBFVs is dominated by strong constraints, with limited episodes of positive selection. We exploited the availability of flavivirus genomes to test these hypotheses and to compare their rates and patterns of evolution. We estimated the substitution rates of CFAV and CxFV (two ISFVs) and, by taking into account the time-frame of measurement, compared them with those of other flaviviruses. Results indicated that CFAV and CxFV display relatively different substitution rates. However, these data, together with estimates for single-host members of the Flaviviridae family, indicated that MBFVs do not display relatively slower evolution. Conversely, TBFVs displayed some of lowest substitution rates among flaviviruses. Analysis of selective patterns over longer evolutionary time-frames confirmed that MBFVs evolve under strong purifying selection. Interestingly, TBFVs and ISFVs did not show extremely different levels of constraint, although TBFVs alternate among hosts, whereas ISFVs do not. Additional results showed that episodic positive selection drove the evolution of MBFVs, despite their high constraint. Positive selection was also detected on two branches of the TBFVs phylogeny that define the seabird clade. Thus, positive selection was much more common during the evolution of arthropod-borne flaviviruses than previously thought. Overall, our data indicate that flavivirus evolutionary patterns are complex and most likely determined by multiple factors, not limited to the alternation between taxonomically divergent hosts. The frequency of both positive and purifying selection, especially in MBFVs, suggests that a minority of sites in the viral polyprotein experience weak constraint and can evolve to generate new viral phenotypes and possibly promote adaptation to new hosts.
Collapse
Affiliation(s)
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan 20122, Italy,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan 20121, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini 23842, Italy
| |
Collapse
|
2
|
Warmbrod KL, Patterson EI, Kautz TF, Stanton A, Rockx-Brouwer D, Kalveram BK, Khanipov K, Thangamani S, Fofanov Y, Forrester NL. Viral RNA-dependent RNA polymerase mutants display an altered mutation spectrum resulting in attenuation in both mosquito and vertebrate hosts. PLoS Pathog 2019; 15:e1007610. [PMID: 30947291 PMCID: PMC6467425 DOI: 10.1371/journal.ppat.1007610] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/16/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
The presence of bottlenecks in the transmission cycle of many RNA viruses leads to a severe reduction of number of virus particles and this occurs multiple times throughout the viral transmission cycle. Viral replication is then necessary for regeneration of a diverse mutant swarm. It is now understood that any perturbation of the mutation frequency either by increasing or decreasing the accumulation of mutations in an RNA virus results in attenuation of the virus. To determine if altering the rate at which a virus accumulates mutations decreases the probability of a successful virus infection due to issues traversing host bottlenecks, a series of mutations in the RNA-dependent RNA polymerase of Venezuelan equine encephalitis virus (VEEV), strain 68U201, were tested for mutation rate changes. All RdRp mutants were attenuated in both the mosquito and vertebrate hosts, while showing no attenuation during in vitro infections. The rescued viruses containing these mutations showed some evidence of change in fidelity, but the phenotype was not sustained following passaging. However, these mutants did exhibit changes in the frequency of specific types of mutations. Using a model of mutation production, these changes were shown to decrease the number of stop codons generated during virus replication. This suggests that the observed mutant attenuation in vivo may be due to an increase in the number of unfit genomes, which may be normally selected against by the accumulation of stop codons. Lastly, the ability of these attenuated viruses to transition through a bottleneck in vivo was measured using marked virus clones. The attenuated viruses showed an overall reduction in the number of marked clones for both the mosquito and vertebrate hosts, as well as a reduced ability to overcome the known bottlenecks in the mosquito. This study demonstrates that any perturbation of the optimal mutation frequency whether through changes in fidelity or by alterations in the mutation frequency of specific nucleotides, has significant deleterious effects on the virus, especially in the presence of host bottlenecks.
Collapse
Affiliation(s)
- K. Lane Warmbrod
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Edward I. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tiffany F. Kautz
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Adam Stanton
- School of Computing and Mathematics, University of Keele, Keele, United Kingdom
| | - Dedeke Rockx-Brouwer
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Birte K. Kalveram
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kamil Khanipov
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yuriy Fofanov
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Naomi L. Forrester
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
3
|
Population bottlenecks in multicomponent viruses: first forays into the uncharted territory of genome-formula drift. Curr Opin Virol 2018; 33:184-190. [DOI: 10.1016/j.coviro.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
|
4
|
Patterson EI, Khanipov K, Rojas MM, Kautz TF, Rockx-Brouwer D, Golovko G, Albayrak L, Fofanov Y, Forrester NL. Mosquito bottlenecks alter viral mutant swarm in a tissue and time-dependent manner with contraction and expansion of variant positions and diversity. Virus Evol 2018; 4:vey001. [PMID: 29479479 PMCID: PMC5814806 DOI: 10.1093/ve/vey001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Viral diversity is theorized to play a significant role during virus infections, particularly for arthropod-borne viruses (arboviruses) that must infect both vertebrate and invertebrate hosts. To determine how viral diversity influences mosquito infection and dissemination Culex taeniopus mosquitoes were infected with the Venezuelan equine encephalitis virus endemic strain 68U201. Bodies and legs/wings of the mosquitoes were collected individually and subjected to multi-parallel sequencing. Virus sequence diversity was calculated for each tissue. Greater diversity was seen in mosquitoes with successful dissemination versus those with no dissemination. Diversity across time revealed that bottlenecks influence diversity following dissemination to the legs/wings, but levels of diversity are restored by Day 12 post-dissemination. Specific minority variants were repeatedly identified across the mosquito cohort, some in nearly every tissue and time point, suggesting that certain variants are important in mosquito infection and dissemination. This study demonstrates that the interaction between the mosquito and the virus results in changes in diversity and the mutational spectrum and may be essential for successful transition of the bottlenecks associated with arbovirus infection.
Collapse
Affiliation(s)
- Edward I Patterson
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Mark M Rojas
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Tiffany F Kautz
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| | - Dedeke Rockx-Brouwer
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| | - Georgiy Golovko
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Levent Albayrak
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Naomi L Forrester
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| |
Collapse
|
5
|
Evolutionary dynamics of dengue virus populations within the mosquito vector. Curr Opin Virol 2016; 21:47-53. [DOI: 10.1016/j.coviro.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 02/05/2023]
|
6
|
Grubaugh ND, Rückert C, Armstrong PM, Bransfield A, Anderson JF, Ebel GD, Brackney DE. Transmission bottlenecks and RNAi collectively influence tick-borne flavivirus evolution. Virus Evol 2016; 2:vew033. [PMID: 28058113 PMCID: PMC5210029 DOI: 10.1093/ve/vew033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arthropod-borne RNA viruses exist within hosts as heterogeneous populations of viral variants and, as a result, possess great genetic plasticity. Understanding the micro-evolutionary forces shaping these viruses can provide insights into how they emerge, adapt, and persist in new and changing ecological niches. While considerable attention has been directed toward studying the population dynamics of mosquito-borne viruses, little is known about tick-borne virus populations. Therefore, using a mouse and Ixodes scapularis tick transmission model, we examined Powassan virus (POWV; Flaviviridae, Flavivirus) populations in and between both the vertebrate host and arthropod vector. We found that genetic bottlenecks, RNAi-mediated diversification, and selective constraints collectively influence POWV evolution. Together, our data provide a mechanistic explanation for the slow, long-term evolutionary trends of POWV, and suggest that all arthropod-borne viruses encounter similar selective pressures at the molecular level (i.e. RNAi), yet evolve much differently due to their unique rates and modes of transmission.
Collapse
Affiliation(s)
- Nathan D Grubaugh
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA
| | - Claudia Rückert
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA
| | - Philip M Armstrong
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - Angela Bransfield
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - John F Anderson
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - Gregory D Ebel
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA
| | - Doug E Brackney
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| |
Collapse
|
7
|
Dynamics of West Nile virus evolution in mosquito vectors. Curr Opin Virol 2016; 21:132-138. [PMID: 27788400 DOI: 10.1016/j.coviro.2016.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 01/24/2023]
Abstract
West Nile virus remains the most common cause of arboviral encephalitis in North America. Since it was introduced, it has undergone adaptive genetic change as it spread throughout the continent. The WNV transmission cycle is relatively tractable in the laboratory. Thus the virus serves as a convenient model system for studying the population biology of mosquito-borne flaviviruses as they undergo transmission to and from mosquitoes and vertebrates. This review summarizes the current knowledge regarding the population dynamics of this virus within mosquito vectors.
Collapse
|
8
|
A real-time RT-PCR for rapid detection and quantification of mosquito-borne alphaviruses. Arch Virol 2016; 161:3171-7. [DOI: 10.1007/s00705-016-3019-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
|
9
|
Lequime S, Fontaine A, Ar Gouilh M, Moltini-Conclois I, Lambrechts L. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes. PLoS Genet 2016; 12:e1006111. [PMID: 27304978 PMCID: PMC4909269 DOI: 10.1371/journal.pgen.1006111] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/17/2016] [Indexed: 01/15/2023] Open
Abstract
Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. During infection of their arthropod vectors, arthropod-borne viruses (arboviruses) such as dengue viruses traverse several anatomical barriers that are believed to cause dramatic reductions in population size. Such population bottlenecks challenge the maintenance of viral genetic diversity, which is considered critical for fitness and adaptability of arboviruses. Anatomical barriers in the vector were previously associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. However, the relative role of random processes and natural selection, and the influence of vector genetic heterogeneity have not been elucidated. In this study, we used high-throughput sequencing to monitor dengue virus genetic diversity during infection of several genetic backgrounds of their mosquito vector. Our results show that initial infection of the vector is randomly founded by only a few tens of individual virus genomes. The overall level of viral genetic diversity generated during infection was predominantly under purifying selection but differed significantly between mosquito genetic backgrounds. Thus, in addition to random evolutionary forces and the purging of deleterious mutations that shape dengue virus genetic diversity during vector infection, our results also point to a novel role for vector genetic factors in the genetic breadth of virus populations.
Collapse
Affiliation(s)
- Sebastian Lequime
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
- Université Pierre et Marie Curie, Cellule Pasteur UPMC, Paris, France
- * E-mail: (SL); (LL)
| | - Albin Fontaine
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
- Equipe Résidente de Recherche d’Infectiologie Tropicale, Division Expertise, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Meriadeg Ar Gouilh
- Unité Environnement et Risques Infectieux, Cellule d’Intervention Biologique d’Urgence, Department of Infection and Epidemiology, Institut Pasteur, Paris, France
- EA4655, Unité Risques Microbiens U2RM, Université de Caen Normandie, Caen, France
| | - Isabelle Moltini-Conclois
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
- * E-mail: (SL); (LL)
| |
Collapse
|
10
|
Coffey LL, Reisen WK. West Nile Virus Fitness Costs in Different Mosquito Species. Trends Microbiol 2016; 24:429-430. [PMID: 27108207 DOI: 10.1016/j.tim.2016.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 11/25/2022]
Abstract
West Nile virus (WNV) remains an important public health problem causing annual epidemics in the United States. Grubaugh et al. observed that WNV genetic divergence is dependent on the vector mosquito species. This suggests that specific WNV vector-bird species pairings may generate novel genotypes that could promote outbreaks.
Collapse
Affiliation(s)
- Lark L Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - William K Reisen
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Grubaugh ND, Weger-Lucarelli J, Murrieta RA, Fauver JR, Garcia-Luna SM, Prasad AN, Black WC, Ebel GD. Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching. Cell Host Microbe 2016; 19:481-92. [PMID: 27049584 DOI: 10.1016/j.chom.2016.03.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 11/30/2022]
Abstract
The emergence of mosquito-borne RNA viruses, such as West Nile virus (WNV), is facilitated by genetically complex virus populations within hosts. Here, we determine whether WNV enzootic (Culex tarsalis, Cx. quinquefasciatus, and Cx. pipiens) and bridge vectors (Aedes aegypti) have differential impacts on viral mutational diversity and fitness. During systemic mosquito infection, WNV faced stochastic reductions in genetic diversity that rapidly was recovered during intra-tissue population expansions. Interestingly, this intrahost selection and diversification was mosquito species dependent with Cx. tarsalis and Cx. quinquefasciatus exhibiting greater WNV divergence. However, recovered viral populations contained a preponderance of potentially deleterious mutations (i.e., high mutational load) and had lower relative fitness in avian cells compared to input virus. These findings demonstrate that the adaptive potential associated with mosquito transmission varies depending on the mosquito species and carries a significant fitness cost in vertebrates.
Collapse
Affiliation(s)
- Nathan D Grubaugh
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Reyes A Murrieta
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph R Fauver
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Selene M Garcia-Luna
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Abhishek N Prasad
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - William C Black
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
12
|
The Multiplicity of Cellular Infection Changes Depending on the Route of Cell Infection in a Plant Virus. J Virol 2015; 89:9665-75. [PMID: 26178988 DOI: 10.1128/jvi.00537-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED The multiplicity of cellular infection (MOI) is the number of virus genomes of a given virus species that infect individual cells. This parameter chiefly impacts the severity of within-host population bottlenecks as well as the intensity of genetic exchange, competition, and complementation among viral genotypes. Only a few formal estimations of the MOI currently are available, and most theoretical reports have considered this parameter as constant within the infected host. Nevertheless, the colonization of a multicellular host is a complex process during which the MOI may dramatically change in different organs and at different stages of the infection. We have used both qualitative and quantitative approaches to analyze the MOI during the colonization of turnip plants by Turnip mosaic virus. Remarkably, different MOIs were observed at two phases of the systemic infection of a leaf. The MOI was very low in primary infections from virus circulating within the vasculature, generally leading to primary foci founded by a single genome. Each lineage then moved from cell to cell at a very high MOI. Despite this elevated MOI during cell-to-cell progression, coinfection of cells by lineages originating in different primary foci is severely limited by the rapid onset of a mechanism inhibiting secondary infection. Thus, our results unveil an intriguing colonization pattern where individual viral genomes initiate distinct lineages within a leaf. Kin genomes then massively coinfect cells, but coinfection by two distinct lineages is strictly limited. IMPORTANCE The MOI is the size of the viral population colonizing cells and defines major phenomena in virus evolution, like the intensity of genetic exchange and the size of within-host population bottlenecks. However, few studies have quantified the MOI, and most consider this parameter as constant during infection. Our results reveal that the MOI can depend largely on the route of cell infection in a systemically infected leaf. The MOI is usually one genome per cell when cells are infected from virus particles moving long distances in the vasculature, whereas it is much higher during subsequent cell-to-cell movement in mesophyll. However, a fast-acting superinfection exclusion prevents cell coinfection by merging populations originating from different primary foci within a leaf. This complex colonization pattern results in a situation where within-cell interactions are occurring almost exclusively among kin and explains the common but uncharacterized phenomenon of genotype spatial segregation in infected plants.
Collapse
|