1
|
Gai Y, Duan S, Wang S, Liu K, Yu X, Yang C, Li G, Zhou Y, Yu B, Wu J, Wang C, Yu X. Design of Vif-Derived Peptide Inhibitors with Anti-HIV-1 Activity by Interrupting Vif-CBFβ Interaction. Viruses 2024; 16:490. [PMID: 38675833 PMCID: PMC11053914 DOI: 10.3390/v16040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
One of the major functions of the accessory protein Vif of human immunodeficiency virus type 1 (HIV-1) is to induce the degradation of APOBEC3 (A3) family proteins by recruiting a Cullin5-ElonginB/C-CBFβ E3 ubiquitin ligase complex to facilitate viral replication. Therefore, the interactions between Vif and the E3 complex proteins are promising targets for the development of novel anti-HIV-1 drugs. Here, peptides are designed for the Vif-CBFβ interaction based on the sequences of Vif mutants with higher affinity for CBFβ screened by a yeast surface display platform. We identified two peptides, VMP-63 and VMP-108, that could reduce the infectivity of HIV-1 produced from A3G-positive cells with IC50 values of 49.4 μM and 55.1 μM, respectively. They protected intracellular A3G from Vif-mediated degradation in HEK293T cells, consequently increasing A3G encapsulation into the progeny virions. The peptides could rapidly enter cells after addition to HEK293T cells and competitively inhibit the binding of Vif to CBFβ. Homology modeling analysis demonstrated the binding advantages of VMP-63 and VMP-108 with CBFβ over their corresponding wild-type peptides. However, only VMP-108 effectively restricted long-term HIV-1 replication and protected A3 functions in non-permissive T lymphocytes. Our findings suggest that competitive Vif-derived peptides targeting the Vif-CBFβ interaction are promising for the development of novel therapeutic strategies for acquired immune deficiency syndrome.
Collapse
Affiliation(s)
- Yanxin Gai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Sizhu Duan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Shiqi Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Xin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Chumeng Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Guoqing Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (S.D.); (S.W.); (X.Y.); (C.Y.); (G.L.); (Y.Z.); (B.Y.); (J.W.)
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
2
|
Dominant Negative Mutants of Human Immunodeficiency Virus Type 1 Viral Infectivity Factor (Vif) Disrupt Core-Binding Factor Beta-Vif Interaction. J Virol 2022; 96:e0055522. [PMID: 35950859 PMCID: PMC9472641 DOI: 10.1128/jvi.00555-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B mRNA-editing catalytic polypeptide-like 3 family members (APOBEC3s) are host restriction factors that inhibit viral replication. Viral infectivity factor (Vif), a human immunodeficiency virus type 1 (HIV-1) accessory protein, mediates the degradation of APOBEC3s by forming the Vif-E3 complex, in which core-binding factor beta (CBFβ) is an essential molecular chaperone. Here, we screened nonfunctional Vif mutants with high affinity for CBFβ to inhibit HIV-1 in a dominant negative manner. We applied the yeast surface display technology to express Vif random mutant libraries, and mutants showing high CBFβ affinity were screened using flow cytometry. Most of the screened Vif mutants containing random mutations of different frequencies were able to rescue APOBEC3G (A3G). In the subsequent screening, three of the mutants restricted HIV-1, recovered G-to-A hypermutation, and rescued APOBEC3s. Among them, Vif-6M showed a cross-protection effect toward APOBEC3C, APOBEC3F, and African green monkey A3G. Stable expression of Vif-6M in T lymphocytes inhibited the viral replication in newly HIV-1-infected cells and the chronically infected cell line H9/HXB2. Furthermore, the expression of Vif-6M provided a survival advantage to T lymphocytes infected with HIV-1. These results suggest that dominant negative Vif mutants acting on the Vif-CBFβ target potently restrict HIV-1. IMPORTANCE Antiviral therapy cannot eliminate HIV and exhibits disadvantages such as drug resistance and toxicity. Therefore, novel strategies for inhibiting viral replication in patients with HIV are urgently needed. APOBEC3s in host cells are able to inhibit viral replication but are antagonized by HIV-1 Vif-mediated degradation. Therefore, we screened nonfunctional Vif mutants with high affinity for CBFβ to compete with the wild-type Vif (wtVif) as a potential strategy to assist with HIV-1 treatment. Most screened mutants rescued the expression of A3G in the presence of wtVif, especially Vif-6M, which could protect various APOBEC3s and improve the incorporation of A3G into HIV-1 particles. Transduction of Vif-6M into T lymphocytes inhibited the replication of the newly infected virus and the chronically infected virus. These data suggest that Vif mutants targeting the Vif-CBFβ interaction may be promising in the development of a new AIDS therapeutic strategy.
Collapse
|
3
|
Hu Y, Knecht KM, Shen Q, Xiong Y. Multifaceted HIV-1 Vif interactions with human E3 ubiquitin ligase and APOBEC3s. FEBS J 2021; 288:3407-3417. [PMID: 32893454 PMCID: PMC8172064 DOI: 10.1111/febs.15550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
APOBEC3 (A3) proteins are a family of host antiviral restriction factors that potently inhibit various retroviral infections, including human immunodeficiency virus (HIV)-1. To overcome this restriction, HIV-1 virion infectivity factor (Vif) recruits the cellular cofactor CBFβ to assist in targeting A3 proteins to a host E3 ligase complex for polyubiquitination and subsequent proteasomal degradation. Intervention of the Vif-A3 interactions could be a promising therapeutic strategy to facilitate A3-mediated suppression of HIV-1 in patients. In this structural snapshot, we review the structural features of the recently determined structure of human A3F in complex with HIV-1 Vif and its cofactor CBFβ, discuss insights into the molecular principles of Vif-A3 interplay during the arms race between the virus and host, and highlight the therapeutic implications.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kirsten M. Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Qi Shen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Degradation-Independent Inhibition of APOBEC3G by the HIV-1 Vif Protein. Viruses 2021; 13:v13040617. [PMID: 33916704 PMCID: PMC8066197 DOI: 10.3390/v13040617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin–proteasome system plays an important role in the cell under normal physiological conditions but also during viral infections. Indeed, many auxiliary proteins from the (HIV-1) divert this system to its own advantage, notably to induce the degradation of cellular restriction factors. For instance, the HIV-1 viral infectivity factor (Vif) has been shown to specifically counteract several cellular deaminases belonging to the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC3 or A3) family (A3A to A3H) by recruiting an E3-ubiquitin ligase complex and inducing their polyubiquitination and degradation through the proteasome. Although this pathway has been extensively characterized so far, Vif has also been shown to impede A3s through degradation-independent processes, but research on this matter remains limited. In this review, we describe our current knowledge regarding the degradation-independent inhibition of A3s, and A3G in particular, by the HIV-1 Vif protein, the molecular mechanisms involved, and highlight important properties of this small viral protein.
Collapse
|
5
|
Potential APOBEC-mediated RNA editing of the genomes of SARS-CoV-2 and other coronaviruses and its impact on their longer term evolution. Virology 2021; 556:62-72. [PMID: 33545556 PMCID: PMC7831814 DOI: 10.1016/j.virol.2020.12.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022]
Abstract
Members of the APOBEC family of cytidine deaminases show antiviral activities in mammalian cells through lethal editing in the genomes of small DNA viruses, herpesviruses and retroviruses, and potentially those of RNA viruses such as coronaviruses. Consistent with the latter, APOBEC-like directional C→U transitions of genomic plus-strand RNA are greatly overrepresented in SARS-CoV-2 genome sequences of variants emerging during the COVID-19 pandemic. A C→U mutational process may leave evolutionary imprints on coronavirus genomes, including extensive homoplasy from editing and reversion at targeted sites and the occurrence of driven amino acid sequence changes in viral proteins. If sustained over longer periods, this process may account for the previously reported marked global depletion of C and excess of U bases in human seasonal coronavirus genomes. This review synthesizes the current knowledge on APOBEC evolution and function and the evidence of their role in APOBEC-mediated genome editing of SARS-CoV-2 and other coronaviruses. SARS-CoV-2 sequence variants contain an overabundance of C- > U transitions C- > U transitions are the hallmark of the activity of APOBEC cytosine deaminases Further work is needed to determine APOBEC's role in coronavirus evolution
Collapse
|
6
|
Knecht KM, Hu Y, Rubene D, Cook M, Ziegler SJ, Jónsson SR, Xiong Y. Maedi-visna virus Vif protein uses motifs distinct from HIV-1 Vif to bind zinc and the cofactor required for A3 degradation. J Biol Chem 2021; 296:100045. [PMID: 33465707 PMCID: PMC7949081 DOI: 10.1074/jbc.ra120.015828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 11/06/2022] Open
Abstract
The mammalian apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3 or A3) family of cytidine deaminases restrict viral infections by mutating viral DNA and impeding reverse transcription. To overcome this antiviral activity, most lentiviruses express a viral accessory protein called the virion infectivity factor (Vif), which recruits A3 proteins to cullin-RING E3 ubiquitin ligases such as cullin-5 (Cul5) for ubiquitylation and subsequent proteasomal degradation. Although Vif proteins from primate lentiviruses such as HIV-1 utilize the transcription factor core-binding factor subunit beta as a noncanonical cofactor to stabilize the complex, the maedi-visna virus (MVV) Vif hijacks cyclophilin A (CypA) instead. Because core-binding factor subunit beta and CypA are both highly conserved among mammals, the requirement for two different cellular cofactors suggests that these two A3-targeting Vif proteins have different biochemical and structural properties. To investigate this topic, we used a combination of in vitro biochemical assays and in vivo A3 degradation assays to study motifs required for the MVV Vif to bind zinc ion, Cul5, and the cofactor CypA. Our results demonstrate that although some common motifs between the HIV-1 Vif and MVV Vif are involved in recruiting Cul5, different determinants in the MVV Vif are required for cofactor binding and stabilization of the E3 ligase complex, such as the zinc-binding motif and N- and C-terminal regions of the protein. Results from this study advance our understanding of the mechanism of MVV Vif recruitment of cellular factors and the evolution of lentiviral Vif proteins.
Collapse
Affiliation(s)
- Kirsten M Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Diana Rubene
- Institute for Experimental Pathology, University of Iceland, Keldur, Iceland
| | - Matthew Cook
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Samantha J Ziegler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Stefán R Jónsson
- Institute for Experimental Pathology, University of Iceland, Keldur, Iceland
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
7
|
Duan S, Wang S, Song Y, Gao N, Meng L, Gai Y, Zhang Y, Wang S, Wang C, Yu B, Wu J, Yu X. A novel HIV-1 inhibitor that blocks viral replication and rescues APOBEC3s by interrupting vif/CBFβ interaction. J Biol Chem 2020; 295:14592-14605. [PMID: 32817167 PMCID: PMC7586213 DOI: 10.1074/jbc.ra120.013404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/18/2020] [Indexed: 11/06/2022] Open
Abstract
HIV remains a health challenge worldwide, partly because of the continued development of resistance to drugs. Therefore, it is urgent to find new HIV inhibitors and targets. Apolipoprotein B mRNA-editing catalytic polypeptide-like 3 family members (APOBEC3) are important host restriction factors that inhibit HIV-1 replication by their cytidine deaminase activity. HIV-1 viral infectivity factor (Vif) promotes proteasomal degradation of APOBEC3 proteins by recruiting the E3 ubiquitin ligase complex, in which core-binding factor β (CBFβ) is a necessary molecular chaperone. Interrupting the interaction between Vif and CBFβ can release APOBEC3 proteins to inhibit HIV-1 replication and may be useful for developing new drug targets for HIV-1. In this study, we identified a potent small molecule inhibitor CBFβ/Vif-3 (CV-3) of HIV-1 replication by employing structure-based virtual screening using the crystal structure of Vif and CBFβ (PDB: 4N9F) and validated CV-3's antiviral activity. We found that CV-3 specifically inhibited HIV-1 replication (IC50 = 8.16 µm; 50% cytotoxic concentration >100 µm) in nonpermissive lymphocytes. Furthermore, CV-3 treatment rescued APOBEC3 family members (human APOBEC3G (hA3G), hA3C, and hA3F) in the presence of Vif and enabled hA3G packaging into HIV-1 virions, which resulted in Gly-to-Ala hypermutations in viral genomes. Finally, we used FRET to demonstrate that CV-3 inhibited the interaction between Vif and CBFβ by simultaneously forming hydrogen bonds with residues Gln-67, Ile-102, and Arg-131 of CBFβ. These findings demonstrate that CV-3 can effectively inhibit HIV-1 by blocking the interaction between Vif and CBFβ and that this interaction can serve as a new target for developing HIV-1 inhibitors.
Collapse
Affiliation(s)
- Sizhu Duan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Shiqi Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yanan Song
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Nan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Lina Meng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yanxin Gai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Ying Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
8
|
Delviks-Frankenberry KA, Desimmie BA, Pathak VK. Structural Insights into APOBEC3-Mediated Lentiviral Restriction. Viruses 2020; 12:E587. [PMID: 32471198 PMCID: PMC7354603 DOI: 10.3390/v12060587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 01/18/2023] Open
Abstract
Mammals have developed clever adaptive and innate immune defense mechanisms to protect against invading bacterial and viral pathogens. Human innate immunity is continuously evolving to expand the repertoire of restriction factors and one such family of intrinsic restriction factors is the APOBEC3 (A3) family of cytidine deaminases. The coordinated expression of seven members of the A3 family of cytidine deaminases provides intrinsic immunity against numerous foreign infectious agents and protects the host from exogenous retroviruses and endogenous retroelements. Four members of the A3 proteins-A3G, A3F, A3H, and A3D-restrict HIV-1 in the absence of virion infectivity factor (Vif); their incorporation into progeny virions is a prerequisite for cytidine deaminase-dependent and -independent activities that inhibit viral replication in the host target cell. HIV-1 encodes Vif, an accessory protein that antagonizes A3 proteins by targeting them for polyubiquitination and subsequent proteasomal degradation in the virus producing cells. In this review, we summarize our current understanding of the role of human A3 proteins as barriers against HIV-1 infection, how Vif overcomes their antiviral activity, and highlight recent structural and functional insights into A3-mediated restriction of lentiviruses.
Collapse
Affiliation(s)
| | | | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; (K.A.D.-F.); (B.A.D.)
| |
Collapse
|
9
|
Inhibition of Vif-Mediated Degradation of APOBEC3G through Competitive Binding of Core-Binding Factor Beta. J Virol 2020; 94:JVI.01708-19. [PMID: 31941780 DOI: 10.1128/jvi.01708-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/27/2019] [Indexed: 12/31/2022] Open
Abstract
Vif counteracts the host restriction factor APOBEC3G (A3G) and other APOBEC3s by preventing the incorporation of A3G into progeny virions. We previously identified Vif mutants with a dominant-negative (D/N) phenotype that interfered with the function of wild-type Vif, inhibited the degradation of A3G, and reduced the infectivity of viral particles by increased packaging of A3G. However, the mechanism of interference remained unclear, in particular since all D/N Vif mutants were unable to bind Cul5 and some mutants additionally failed to bind A3G, ruling out competitive binding to A3G or the E3 ubiquitin ligase complex as the sole mechanism. The goal of the current study was to revisit the mechanism of D/N interference by Vif mutants and analyze the possible involvement of core binding factor beta (CBFβ) in this process. We found a clear correlation of D/N properties of Vif mutants with their ability to engage CBFβ. Only mutants that retained the ability to bind CBFβ exhibited the D/N phenotype. Competition studies revealed that D/N Vif mutants directly interfered with the association of CBFβ and wild-type Vif. Furthermore, overexpression of CBFβ counteracted the interference of D/N Vif mutants with A3G degradation by wild-type Vif. Finally, overexpression of Runx1 mimicked the effect of D/N Vif mutants and inhibited the degradation of A3G by wild-type Vif. Taken together, we identified CBFβ as the key player involved in D/N interference by Vif.IMPORTANCE Of all the accessory proteins encoded by HIV-1 and other primate lentiviruses, Vif has arguably the strongest potential as a target for antiviral therapy. This conclusion is based on the observation that replication of HIV-1 in vivo is critically dependent on Vif. Thus, inhibiting the function of Vif via small-molecule inhibitors or other approaches has significant therapeutic potential. We previously identified dominant-negative (D/N) Vif variants whose expression interferes with the function of virus-encoded wild-type Vif. We now show that D/N interference involves competitive binding of D/N Vif variants to the transcriptional cofactor core binding factor beta (CBFβ), which is expressed in cells in limiting quantities. Overexpression of CBFβ neutralized the D/N phenotype of Vif. In contrast, overexpression of Runx1, a cellular binding partner of CBFβ, phenocopied the D/N Vif phenotype by sequestering endogenous CBFβ. Thus, our results provide proof of principle that D/N Vif variants could have therapeutic potential.
Collapse
|
10
|
Azimi FC, Lee JE. Structural perspectives on HIV-1 Vif and APOBEC3 restriction factor interactions. Protein Sci 2020; 29:391-406. [PMID: 31518043 PMCID: PMC6954718 DOI: 10.1002/pro.3729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 11/06/2022]
Abstract
Human immunodeficiency virus (HIV) is a retroviral pathogen that targets human immune cells such as CD4+ T cells, macrophages, and dendritic cells. The human apolipoprotein B mRNA- editing catalytic polypeptide 3 (APOBEC3 or A3) cytidine deaminases are a key class of intrinsic restriction factors that inhibit replication of HIV. When HIV-1 enters the cell, the immune system responds by inducing the activation of the A3 family proteins, which convert cytosines to uracils in single-stranded DNA replication intermediates, neutralizing the virus. HIV counteracts this intrinsic immune response by encoding a protein termed viral infectivity factor (Vif). Vif targets A3 to an E3 ubiquitin ligase complex for poly-ubiquitination and proteasomal degradation. Vif is unique in that it can recognize and counteract multiple A3 restriction factor substrates. Structural biology studies have provided significant insights into the overall architectures and functions of Vif and A3 proteins; however, a structure of the Vif-A3 complex has remained elusive. In this review, we summarize and reanalyze experimental data from recent structural, biochemical, and functional studies to provide key perspectives on the residues involved in Vif-A3 protein-protein interactions.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Laboratory Medicine and Pathobiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
11
|
Hu Y, Desimmie BA, Nguyen HC, Ziegler SJ, Cheng TC, Chen J, Wang J, Wang H, Zhang K, Pathak VK, Xiong Y. Structural basis of antagonism of human APOBEC3F by HIV-1 Vif. Nat Struct Mol Biol 2019; 26:1176-1183. [PMID: 31792451 PMCID: PMC6899190 DOI: 10.1038/s41594-019-0343-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/28/2019] [Indexed: 01/15/2023]
Abstract
HIV-1 Vif promotes degradation of the antiviral APOBEC3 (A3) proteins through the host ubiquitin-proteasome pathway to enable viral immune evasion. Disrupting Vif-A3 interactions to reinstate the A3-catalyzed suppression of HIV-1 replication is a potential approach for antiviral therapeutics. However, the molecular mechanisms by which Vif recognizes A3 proteins remain elusive. Here we report a cryo-EM structure of the Vif-targeted C-terminal domain of human A3F in complex with HIV-1 Vif and its cellular cofactor CBFβ, at 3.9 Å resolution. The structure shows that Vif and CBFβ form a platform to recruit A3F, revealing a direct A3F-recruiting role of CBFβ beyond Vif stabilization, and captures multiple independent A3F-Vif interfaces. Together with our biochemical and cellular studies, our structural findings establish the molecular determinants that are critical for Vif-mediated neutralization of A3F and provide a comprehensive framework of how HIV-1 Vif hijacks the host protein degradation machinery to counteract viral restriction by A3F.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Belete A Desimmie
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Henry C Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Samantha J Ziegler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Tat Cheung Cheng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,IGBMC, CNRS, Illkirch, France
| | - John Chen
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Jia Wang
- School of Life Sciences, Tsinghua University, Haidian District, Beijing, China
| | - Hongwei Wang
- School of Life Sciences, Tsinghua University, Haidian District, Beijing, China
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
12
|
Zhao Z, Li Z, Huan C, Wang H, Su X, Zhang W. CAEV Vif Hijacks ElonginB/C, CYPA and Cullin5 to Assemble the E3 Ubiquitin Ligase Complex Stepwise to Degrade oaA3Z2-Z3. Front Microbiol 2019; 10:565. [PMID: 30941116 PMCID: PMC6434172 DOI: 10.3389/fmicb.2019.00565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/05/2019] [Indexed: 12/17/2022] Open
Abstract
Caprine arthritis encephalitis virus (CAEV) is a lentivirus that causes multisystemic chronic disorders in sheep and goats. It encodes Vif to counteract the restriction of Ovis aries A3Z2-Z3 (oaA3Z2-Z3) by inducing their degradation. Nevertheless, the mechanisms underlying the interplay between CAEV Vif and OaA3Z2-Z3 have yet to be elucidated. Here, we identified the cellular factors ElonginB/C, CYPA and Cullin5 as being hijacked by CAEV Vif as well as several functional domains of CAEV Vif required for degrading oaA3Z2-Z3. Moreover, we determined that CAEV Vif assembled E3 ubiquitin ligase stepwise via its SLE motif (170SLE172) to recruit ElonginB/C, the P21 site and the zinc finger motif (C132-C134-C154-C157) to recruit CYPA, as well as the hydrophobic domain (141IR142) to recruit Cullin5. And this CAEV Vif-mediated E3 ligase triggers the proteasomal degradation of oaA3Z2-Z3, which directly bind CAEV Vif through residues Y39 and L44. In particular, CYPA played an essential role in the process to regulate ligase assembly, which was analogous to CBF-β, the essential regulator for HIV-1 and SIV-mediated E3 ligase, indicating that there is a modular conservation and lineage-specific preference for cellular partners required by Vifs from different subgroups of lentiviruses. Taken together, these findings provide important insights regarding the CAEV Vif function and deepen our understanding of the arms race between the lentiviruses and their hosts.
Collapse
Affiliation(s)
- Zhilei Zhao
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Chen Huan
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Xing Su
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Chen C, Ma X, Hu Q, Li X, Huang F, Zhang J, Pan T, Xia J, Liu C, Zhang H. Moloney leukemia virus 10 (MOV10) inhibits the degradation of APOBEC3G through interference with the Vif-mediated ubiquitin-proteasome pathway. Retrovirology 2017; 14:56. [PMID: 29258557 PMCID: PMC5735797 DOI: 10.1186/s12977-017-0382-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022] Open
Abstract
Background MOV10 protein has ATP-dependent 5′–3′ RNA helicase activity and belongs to the UPF1p superfamily. It can inhibit human immunodeficiency virus type 1 (HIV-1) replication at multiple stages and interact with apolipoprotein-B-mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G or A3G), a member of the cytidine deaminase family that exerts potent inhibitory effects against HIV-1 infection. However, HIV-1-encoded virion infectivity factor (Vif) protein specifically mediates the degradation of A3G via the ubiquitin–proteasome system (UPS). Results We demonstrate that MOV10 counteracts Vif-mediated degradation of A3G by inhibiting the assembly of the Vif-CBF-β-Cullin 5-ElonginB-ElonginC complex. Through interference with UPS, MOV10 enhances the level of A3G in HIV-1-infected cells and virions, and synergistically inhibits the replication and infectivity of HIV-1. In addition, the DEAG-box of MOV10 is required for inhibition of Vif-mediated A3G degradation as the DEAG-box mutant significantly loses this ability. Conclusions Our results demonstrate a novel mechanism involved in the anti-HIV-1 function of MOV10. Given that both MOV10 and A3G belong to the interferon antiviral system, their synergistic inhibition of HIV-1 suggests that these proteins may play complicated roles in antiviral functions.
Collapse
Affiliation(s)
- Cancan Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaocao Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qifei Hu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinghua Li
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Feng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Junsong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jinyu Xia
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
14
|
Ai Y, Ma J, Wang X. Clues for two-step virion infectivity factor regulation by core binding factor beta. J Gen Virol 2017; 98:1113-1121. [PMID: 28516844 PMCID: PMC5656798 DOI: 10.1099/jgv.0.000749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Lentiviruses threaten human and animal health. Virion infectivity factor (Vif) is essential for the infectivity of most lentiviruses, except for the equine infectious anaemia virus (EIAV). Vif promotes viral infectivity by recruiting a Cullin-based E3 ligase to induce the degradation of a class of host restriction factors, named APOBEC3. Core binding factor beta (CBF-β) is necessary for several primate lentiviral Vif functions, including HIV-1 Vif. Although much progress has been made in understanding the contribution of CBF-β to Vif function, the precise mechanism has not yet been fully elucidated. In this study, we found that an interaction with CBF-β altered the oligomerization and subcellular distribution pattern and increased the stability of two primate lentiviral Vifs, HIV-1 Vif and Macaca simian immunodeficiency virus (SIVmac) Vif. Moreover, using a CBF-β loss-of-function mutant, we demonstrated that the interaction between CBF-β and Vif was not sufficient for Vif assistance; a region including F68 in CBF-β was also required for the stability and function of Vif. For the first time, this study separates the binding and regulating processes of CBF-β when it is promoting Vif function, which further extends our understanding of the biochemical regulation of Vif by CBF-β.
Collapse
Affiliation(s)
- Youwei Ai
- Present address: National Institute of Biological Sciences, Beijing, PR China.,College of Wildlife Resources, Northeast Forestry University, Hexing Road, Harbin 150040, PR China
| | - Jianzhang Ma
- College of Wildlife Resources, Northeast Forestry University, Hexing Road, Harbin 150040, PR China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| |
Collapse
|
15
|
Inhibition of Vpx-Mediated SAMHD1 and Vpr-Mediated Host Helicase Transcription Factor Degradation by Selective Disruption of Viral CRL4 (DCAF1) E3 Ubiquitin Ligase Assembly. J Virol 2017; 91:JVI.00225-17. [PMID: 28202763 DOI: 10.1128/jvi.00225-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/21/2022] Open
Abstract
The lentiviral accessory proteins Vpx and Vpr are known to utilize CRL4 (DCAF1) E3 ligase to induce the degradation of the host restriction factor SAMHD1 or host helicase transcription factor (HLTF), respectively. Selective disruption of viral CRL4 (DCAF1) E3 ligase could be a promising antiviral strategy. Recently, we have determined that posttranslational modification (neddylation) of Cullin-4 is required for the activation of Vpx-CRL4 (DCAF1) E3 ligase. However, the mechanism of Vpx/Vpr-CRL4 (DCAF1) E3 ligase assembly is still poorly understood. Here, we report that zinc coordination is an important regulator of Vpx-CRL4 E3 ligase assembly. Residues in a conserved zinc-binding motif of Vpx were essential for the recruitment of the CRL4 (DCAF1) E3 complex and Vpx-induced SAMHD1 degradation. Importantly, altering the intracellular zinc concentration by treatment with the zinc chelator N,N,N'-tetrakis-(2'-pyridylmethyl)ethylenediamine (TPEN) potently blocked Vpx-mediated SAMHD1 degradation and inhibited wild-type SIVmac (simian immunodeficiency virus of macaques) infection of myeloid cells, even in the presence of Vpx. TPEN selectively inhibited Vpx and DCAF1 binding but not the Vpx-SAMHD1 interaction or Vpx virion packaging. Moreover, we have shown that zinc coordination is also important for the assembly of the HIV-1 Vpr-CRL4 E3 ligase. In particular, Vpr zinc-binding motif mutation or TPEN treatment efficiently inhibited Vpr-CRL4 (DCAF1) E3 ligase assembly and Vpr-mediated HLTF degradation or Vpr-induced G2 cell cycle arrest. Collectively, our study sheds light on a conserved strategy by the viral proteins Vpx and Vpr to recruit host CRL4 (DCAF1) E3 ligase, which represents a target for novel anti-human immunodeficiency virus (HIV) drug development.IMPORTANCE The Vpr and its paralog Vpx are accessory proteins encoded by different human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) lentiviruses. To facilitate viral replication, Vpx has evolved to induce SAMHD1 degradation and Vpr to mediate HLTF degradation. Both Vpx and Vpr perform their functions by recruiting CRL4 (DCAF1) E3 ligase. In this study, we demonstrate that the assembly of the Vpx- or Vpr-CRL4 E3 ligase requires a highly conserved zinc-binding motif. This motif is specifically required for the DCAF1 interaction but not for the interaction of Vpx or Vpr with its substrate. Selective disruption of Vpx- or Vpr-CRL4 E3 ligase function was achieved by zinc sequestration using N,N,N'-tetrakis-(2'-pyridylmethyl)ethylenediamine (TPEN). At the same time, zinc sequestration had no effect on zinc-dependent cellular protein functions. Therefore, information obtained from this study may be important for novel anti-HIV drug development.
Collapse
|
16
|
Nakashima M, Tsuzuki S, Awazu H, Hamano A, Okada A, Ode H, Maejima M, Hachiya A, Yokomaku Y, Watanabe N, Akari H, Iwatani Y. Mapping Region of Human Restriction Factor APOBEC3H Critical for Interaction with HIV-1 Vif. J Mol Biol 2017; 429:1262-1276. [PMID: 28336404 DOI: 10.1016/j.jmb.2017.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/30/2022]
Abstract
The APOBEC3 (A3) family of cellular cytidine deaminases comprises seven members (A, B, C, D, F, G, and H) that potently inhibit retroviral replication. Human immunodeficiency virus type 1 (HIV-1) Vif is a small pleiotropic protein that specifically inactivates these enzymes, targeting them for ubiquitin-mediated proteasomal degradation. A3 Vif-interaction sites are presumed to fall into three distinct types: A3C/D/F, A3G, and A3H. To date, two types of A3G and A3C/D/F sites have been well characterized, whereas the A3H Vif-binding site remains poorly defined. Here, we explore the residues critical for the A3H-type Vif interaction. To avoid technical difficulties in performing experiments with human A3H haplotype II (hapII), which is relatively resistant to HIV-1 Vif, we employed its ortholog chimpanzee A3H (cA3H), which displays high Vif sensitivity, for a comparison of sensitivity with that of A3H hapII. The Vif susceptibility of A3H hapII-cA3H chimeras and their substitution mutants revealed a single residue at position 97 as a major determinant for the difference in their Vif sensitivities. We further surveyed critical residues by structure-guided mutagenesis using an A3H structural model and thus identified eight additional residues important for Vif sensitivity, which mapped to the α3 and α4 helices of A3H. Interestingly, this area is located on a surface adjacent to the A3G and A3C/D/F interfaces and is composed of negatively charged and hydrophobic patches. These findings suggest that HIV-1 Vif has evolved to utilize three dispersed surfaces for recognizing three types of interfaces on A3 proteins under certain structural constraints.
Collapse
Affiliation(s)
- Masaaki Nakashima
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Shinya Tsuzuki
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan; Department of Biotechnology, Nagoya University Graduate School of Engineering, Nagoya, Aichi 464-8603, Japan
| | - Hiroaki Awazu
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan; Department of Biotechnology, Nagoya University Graduate School of Engineering, Nagoya, Aichi 464-8603, Japan
| | - Akiko Hamano
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Ayaka Okada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Masami Maejima
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Atsuko Hachiya
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Yoshiyuki Yokomaku
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Nobuhisa Watanabe
- Department of Biotechnology, Nagoya University Graduate School of Engineering, Nagoya, Aichi 464-8603, Japan; Synchrotron Radiation Research Center, Nagoya University, Nagoya, Aichi, 489-0965, Japan
| | - Hirofumi Akari
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; Institute for Virus Research, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan; Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.
| |
Collapse
|
17
|
Desimmie BA, Smith JL, Matsuo H, Hu WS, Pathak VK. Identification of a tripartite interaction between the N-terminus of HIV-1 Vif and CBFβ that is critical for Vif function. Retrovirology 2017; 14:19. [PMID: 28302150 PMCID: PMC5356271 DOI: 10.1186/s12977-017-0346-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background HIV-1 Vif interacts with the cellular core-binding factor β (CBFβ) and counteracts the protective roles of certain human APOBEC3 (A3) proteins by targeting them for proteasomal degradation. Previous studies have identified some amino acids important for Vif–CBFβ interactions, and recently a co-crystal structure of a pentameric complex of HIV-1 Vif, CBFβ, Cul5, EloB, and EloC was resolved. However, a comprehensive analysis of Vif–CBFβ interactions that are important for Vif function has not been performed. Results Here, we carried out double-alanine scanning mutagenesis of the first 60 amino acids of Vif and determined their effects on interaction with CBFβ and their ability to induce A3G degradation as well as rescue HIV-1 replication in the presence of A3G. We found that multiple Vif residues are involved in the extensive N-terminal Vif–CBFβ interaction and that the 5WQVMIVW11 region of Vif is the major determinant. A minimum of three alanine substitutions are required to completely abrogate the Vif–CBFβ interaction and Vif’s ability to rescue HIV-1 infectivity in the presence of A3G. Mutational analysis of CBFβ revealed that F68 and I55 residues are important and participate in a tripartite hydrophobic interaction with W5 of Vif to maintain a stable and functional Vif–CBFβ complex. We also determined that CBFβ amino acids 73WQGEQR78, which are not resolved in the structure of the pentameric complex, are not involved in interaction with HIV-1 Vif. Conclusions Our results provide detailed insight into the Vif–CBFβ interactions that are critical for Vif function and may contribute to the rational design of HIV-1 inhibitors that block Vif-mediated degradation of A3 proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0346-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Belete A Desimmie
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jessica L Smith
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hiroshi Matsuo
- Basic Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
18
|
Conserved Interaction of Lentiviral Vif Molecules with HIV-1 Gag and Differential Effects of Species-Specific Vif on Virus Production. J Virol 2017; 91:JVI.00064-17. [PMID: 28122978 DOI: 10.1128/jvi.00064-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 01/05/2023] Open
Abstract
The virion infectivity factor (Vif) open reading frame is conserved among most lentiviruses. Vif molecules contribute to viral replication by inactivating host antiviral factors, the APOBEC3 cytidine deaminases. However, various species of lentiviral Vif proteins have evolved different strategies for overcoming host APOBEC3. Whether different species of lentiviral Vif proteins still preserve certain common features has not been reported. Here, we show for the first time that diverse lentiviral Vif molecules maintain the ability to interact with the human immunodeficiency virus type 1 (HIV-1) Gag precursor (Pr55Gag) polyprotein. Surprisingly, bovine immunodeficiency virus (BIV) Vif, but not HIV-1 Vif, interfered with HIV-1 production and viral infectivity even in the absence of APOBEC3. Further analysis revealed that BIV Vif demonstrated an enhanced interaction with Pr55Gag compared to that of HIV-1 Vif, and BIV Vif defective for the Pr55Gag interaction lost its ability to inhibit HIV-1. The C-terminal region of capsid (CA) and the p2 region of Pr55Gag, which are important for virus assembly and maturation, were involved in the interaction. Transduction of CD4+ T cells with BIV Vif blocked HIV-1 replication. Thus, the conserved Vif-Pr55Gag interaction provides a potential target for the future development of antiviral strategies.IMPORTANCE The conserved Vif accessory proteins of primate lentiviruses HIV-1, simian immunodeficiency virus (SIV), and BIV all form ubiquitin ligase complexes to target host antiviral APOBEC3 proteins for degradation, with different cellular requirements and using different molecular mechanisms. Here, we demonstrate that BIV Vif can interfere with HIV-1 Gag maturation and suppress HIV-1 replication through interaction with the precursor of the Gag (Pr55Gag) of HIV-1 in virus-producing cells. Moreover, the HIV-1 and SIV Vif proteins are conserved in terms of their interactions with HIV-1 Pr55Gag although HIV-1 Vif proteins bind Pr55Gag less efficiently than those of BIV Vif. Our research not only sheds new light on this feature of these conserved lentiviral Vif proteins but also provides a formerly unrecognized target for the development of antiviral strategies. Since increasing the Vif-Pr55Gag interaction could potentially suppress virus proliferation, this approach could offer a new strategy for the development of HIV inhibitors.
Collapse
|
19
|
Abstract
Ubiquitination is a highly conserved post-translational modification in eukaryotes, well known for targeting proteins for degradation by the 26S proteasome. Proteins destined for proteasomal degradation are selected by E3 ubiquitin ligases. Cullin-RING E3 ubiquitin ligases (CRLs) are the largest superfamily of E3 ubiquitin ligases, with over 400 members known in mammals. These modular complexes are tightly regulated in the cell. In this chapter, we highlight recent structural and biochemical advances shedding light on the assembly and architecture of cullin-RING ligases, their dynamic regulation by a variety of host factors, and their manipulation by viral pathogens and small molecules.
Collapse
Affiliation(s)
- Henry C Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Wei Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
20
|
Translational regulation of APOBEC3G mRNA by Vif requires its 5'UTR and contributes to restoring HIV-1 infectivity. Sci Rep 2016; 6:39507. [PMID: 27996044 PMCID: PMC5171582 DOI: 10.1038/srep39507] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
The essential HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells expressing cytidine deaminases APOBEC3G (A3G) and A3F by decreasing their cellular level, and preventing their incorporation into virions. Unlike the Vif-induced degradation of A3G, the functional role of the inhibition of A3G translation by Vif remained unclear. Here, we show that two stem-loop structures within the 5′-untranslated region of A3G mRNA are crucial for translation inhibition by Vif in cells, and most Vif alleles neutralize A3G translation efficiently. Interestingly, K26R mutation in Vif abolishes degradation of A3G by the proteasome but has no effect at the translational level, indicating these two pathways are independent. These two mechanisms, proteasomal degradation and translational inhibition, similarly contribute to decrease the cellular level of A3G by Vif and to prevent its incorporation into virions. Importantly, inhibition of A3G translation is sufficient to partially restore viral infectivity in the absence of proteosomal degradation. These findings demonstrate that HIV-1 has evolved redundant mechanisms to specifically inhibit the potent antiviral activity of A3G.
Collapse
|
21
|
Matsui Y, Shindo K, Nagata K, Yoshinaga N, Shirakawa K, Kobayashi M, Takaori-Kondo A. Core Binding Factor β Protects HIV, Type 1 Accessory Protein Viral Infectivity Factor from MDM2-mediated Degradation. J Biol Chem 2016; 291:24892-24899. [PMID: 27758855 DOI: 10.1074/jbc.m116.734673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/08/2016] [Indexed: 12/13/2022] Open
Abstract
HIV, type 1 overcomes host restriction factor apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins by organizing an E3 ubiquitin ligase complex together with viral infectivity factor (Vif) and a host transcription cofactor core binding factor β (CBFβ). CBFβ is essential for Vif to counteract APOBEC3 by enabling the recruitment of cullin 5 to the complex and increasing the steady-state level of Vif protein; however, the mechanisms by which CBFβ up-regulates Vif protein remains unclear. Because we have reported previously that mouse double minute 2 homolog (MDM2) is an E3 ligase for Vif, we hypothesized that CBFβ might protect Vif from MDM2-mediated degradation. Co-immunoprecipitation analyses showed that Vif mutants that do not bind to CBFβ preferentially interact with MDM2 and that overexpression of CBFβ disrupts the interaction between MDM2 and Vif. Knockdown of CBFβ reduced the steady-state level of Vif in MDM2-proficient cells but not in MDM2-null cells. Cycloheximide chase analyses revealed that Vif E88A/W89A, which does not interact with CBFβ, degraded faster than wild-type Vif in MDM2-proficient cells but not in MDM2-null cells, suggesting that Vif stabilization by CBFβ is mainly caused by impairing MDM2-mediated degradation. We identified Vif R93E as a Vif variant that does not bind to MDM2, and the virus with this substitution mutation was more resistant to APOBEC3G than the parental virus. Combinatory substitution of Vif residues required for CBFβ binding and MDM2 binding showed full recovery of Vif steady-state levels, supporting our hypothesis. Our data provide new insights into the mechanism of Vif augmentation by CBFβ.
Collapse
Affiliation(s)
- Yusuke Matsui
- From the Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Keisuke Shindo
- From the Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kayoko Nagata
- From the Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Noriyoshi Yoshinaga
- From the Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kotaro Shirakawa
- From the Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masayuki Kobayashi
- From the Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Akifumi Takaori-Kondo
- From the Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
22
|
Greenwood EJD, Matheson NJ, Wals K, van den Boomen DJH, Antrobus R, Williamson JC, Lehner PJ. Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants. eLife 2016; 5:e18296. [PMID: 27690223 PMCID: PMC5085607 DOI: 10.7554/elife.18296] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022] Open
Abstract
Viruses manipulate host factors to enhance their replication and evade cellular restriction. We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a comprehensive time course analysis of >6500 viral and cellular proteins during HIV infection. To enable specific functional predictions, we categorized cellular proteins regulated by HIV according to their patterns of temporal expression. We focussed on proteins depleted with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and conserved Vif function.
Collapse
Affiliation(s)
- Edward JD Greenwood
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas J Matheson
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kim Wals
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Dick JH van den Boomen
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - James C Williamson
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul J Lehner
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Jia X, Zhao Q, Xiong Y. HIV suppression by host restriction factors and viral immune evasion. Curr Opin Struct Biol 2015; 31:106-14. [PMID: 25939065 DOI: 10.1016/j.sbi.2015.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/01/2015] [Accepted: 04/15/2015] [Indexed: 01/30/2023]
Abstract
Antiviral restriction factors are an integral part of the host innate immune system that protects cells from viral pathogens, such as human immunodeficiency virus (HIV). Studies of the interactions between restriction factors and HIV have greatly advanced our understanding of both the viral life cycle and basic cell biology, as well as provided new opportunities for therapeutic intervention of viral infection. Here we review the recent developments towards establishing the structural and biochemical bases of HIV inhibition by, and viral countermeasures of, the restriction factors TRIM5, MxB, APOBEC3, SAMHD1, and BST2/tetherin.
Collapse
Affiliation(s)
- Xiaofei Jia
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Qi Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
24
|
The Road Less Traveled: HIV's Use of Alternative Routes through Cellular Pathways. J Virol 2015; 89:5204-12. [PMID: 25762730 DOI: 10.1128/jvi.03684-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pathogens such as HIV-1, with their minimalist genomes, must navigate cellular networks and rely on hijacking and manipulating the host machinery for successful replication. Limited overlap of host factors identified as vital for pathogen replication may be explained by considering that pathogens target, rather than specific cellular factors, crucial cellular pathways by targeting different, functionally equivalent, protein-protein interactions within that pathway. The ability to utilize alternative routes through cellular pathways may be essential for pathogen survival when restricted and provide flexibility depending on the viral replication stage and the environment in the infected host. In this minireview, we evaluate evidence supporting this notion, discuss specific HIV-1 examples, and consider the molecular mechanisms which allow pathogens to flexibly exploit different routes.
Collapse
|
25
|
Ai Y, Ma J. Multiple lysines combined in HIV-1 Vif determines the responsiveness to CBF-β. Biochem Biophys Res Commun 2015; 457:385-90. [PMID: 25582776 DOI: 10.1016/j.bbrc.2015.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/05/2015] [Indexed: 11/28/2022]
Abstract
The Vif (viral infectivity factor) protein of human immunodeficiency virus type-1 (HIV-1) is critical for HIV-1 infectivity. CBF-β is required for HIV-1 Vif function, as it increases the steady-state level of the HIV-1 Vif protein to promote host restriction factor APOBEC3 degradation. However, the precise mechanism by which CBF-β promotes HIV-1 Vif levels remains unclear. In the present study, we provided evidences that CBF-β promoted steady-state levels of HIV-1 Vif by inhibiting the degradation of HIV-1 Vif through the proteasome pathway. Our results reveal a new mechanism by which a cellular protein supports viral infectivity by inhibiting viral protein degradation.
Collapse
Affiliation(s)
- Youwei Ai
- College of Wildlife Resources, Northeast Forestry University, Hexing Road, Harbin 150040, PR China.
| | - Jianzhang Ma
- College of Wildlife Resources, Northeast Forestry University, Hexing Road, Harbin 150040, PR China.
| |
Collapse
|
26
|
Wang H, Lv G, Zhou X, Li Z, Liu X, Yu XF, Zhang W. Requirement of HIV-1 Vif C-terminus for Vif-CBF-β interaction and assembly of CUL5-containing E3 ligase. BMC Microbiol 2014; 14:290. [PMID: 25424878 PMCID: PMC4265484 DOI: 10.1186/s12866-014-0290-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/07/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) Vif hijacks an E3 ligase to suppress natural APOBEC3 restriction factors, and core binding factor β (CBF-β) is required for this process. Although an extensive region of Vif spanning most of its N-terminus is known to be critical for binding with CBF-β, involvement of the Vif C-terminus in the interaction with CBF-β has not been fully investigated. RESULTS Here, through immunoprecipitation analysis of Vif C-terminal truncated mutants of various lengths, we identified that CBF-β binding requires not only certain amino acids (G126A, E134A, Y135A and G138A) in the HCCH region but also the HCCH motif itself, which also affects the Vif-mediated suppression of APOBEC3G/APOBEC3F (A3G/A3F). These mutants still maintained interactions with substrate A3G or A3F as well as other cellular factors ElonginB/C (ELOB/C), indicating that their structures were not functionally affected. Moreover, by determining that the BC box also is necessary for CBF-β interaction in vivo, we speculate that binding to ELOB/C induces conformational changes in Vif, facilitating its interaction with CBF-β and consequent interaction with CUL5. CONCLUSIONS These results provide important information on the assembly of the Vif-CUL5-E3 ubiquitin ligase. Identification of the new binding interface with CBF-β at the C-terminus of HIV-1 Vif also provides novel targets for the development of HIV-1 inhibitors.
Collapse
Affiliation(s)
- Hong Wang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, No 519. East Minzhu Avenue, Changchun, Jilin Province, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, No 519. East Minzhu Avenue, Changchun, Jilin Province, China.
| | - Xiaohong Zhou
- Institute of Virology and AIDS Research, First Hospital of Jilin University, No 519. East Minzhu Avenue, Changchun, Jilin Province, China.
| | - Zhaolong Li
- Institute of Virology and AIDS Research, First Hospital of Jilin University, No 519. East Minzhu Avenue, Changchun, Jilin Province, China.
| | - Xin Liu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, No 519. East Minzhu Avenue, Changchun, Jilin Province, China.
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, No 519. East Minzhu Avenue, Changchun, Jilin Province, China. .,Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, USA.
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, No 519. East Minzhu Avenue, Changchun, Jilin Province, China.
| |
Collapse
|
27
|
Ai Y, Zhu D, Wang C, Su C, Ma J, Ma J, Wang X. Core-binding factor subunit beta is not required for non-primate lentiviral Vif-mediated APOBEC3 degradation. J Virol 2014; 88:12112-22. [PMID: 25122780 PMCID: PMC4178706 DOI: 10.1128/jvi.01924-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/05/2014] [Indexed: 01/08/2023] Open
Abstract
Viral infectivity factor (Vif) is required for lentivirus fitness and pathogenicity, except in equine infectious anemia virus (EIAV). Vif enhances viral infectivity by a Cullin5-Elongin B/C E3 complex to inactivate the host restriction factor APOBEC3. Core-binding factor subunit beta (CBF-β) is a cell factor that was recently shown to be important for the primate lentiviral Vif function. Non-primate lentiviral Vif also degrades APOBEC3 through the proteasome pathway. However, it is unclear whether CBF-β is required for the non-primate lentiviral Vif function. In this study, we demonstrated that the Vifs of non-primate lentiviruses, including feline immunodeficiency virus (FIV), bovine immunodeficiency virus (BIV), caprine arthritis encephalitis virus (CAEV), and maedi-visna virus (MVV), do not interact with CBF-β. In addition, CBF-β did not promote the stability of FIV, BIV, CAEV, and MVV Vifs. Furthermore, CBF-β silencing or overexpression did not affect non-primate lentiviral Vif-mediated APOBEC3 degradation. Our results suggest that non-primate lentiviral Vif induces APOBEC3 degradation through a different mechanism than primate lentiviral Vif. Importance: The APOBEC3 protein family members are host restriction factors that block retrovirus replication. Vif, an accessory protein of lentivirus, degrades APOBEC3 to rescue viral infectivity by forming Cullin5-Elongin B/C-based E3 complex. CBF-β was proved to be a novel regulator of primate lentiviral Vif function. In this study, we found that CBF-β knockdown or overexpression did not affect FIV Vif's function, which induced polyubiquitination and degradation of APOBEC3 by recruiting the E3 complex in a manner similar to that of HIV-1 Vif. We also showed that other non-primate lentiviral Vifs did not require CBF-β to degrade APOBEC3. CBF-β did not interact with non-primate lentiviral Vifs or promote their stability. These results suggest that a different mechanism exists for the Vif-APOBEC interaction and that non-primates are not suitable animal models for exploring pharmacological interventions that disrupt Vif-CBF-β interaction.
Collapse
Affiliation(s)
- Youwei Ai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Dantong Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Cuihui Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Su
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianzhang Ma
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
28
|
Feng Y, Baig TT, Love RP, Chelico L. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif. Front Microbiol 2014; 5:450. [PMID: 25206352 PMCID: PMC4144255 DOI: 10.3389/fmicb.2014.00450] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/06/2014] [Indexed: 12/21/2022] Open
Abstract
The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-)DNA, APOBEC3 enzymes deaminate cytosines to form uracils in single-stranded (-)DNA regions. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite to the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but also by several degradation-independent mechanisms, such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| | - Tayyba T Baig
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| | - Robin P Love
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| |
Collapse
|
29
|
Cellular requirements for bovine immunodeficiency virus Vif-mediated inactivation of bovine APOBEC3 proteins. J Virol 2014; 88:12528-40. [PMID: 25142583 DOI: 10.1128/jvi.02072-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) viral infectivity factor (Vif) form a CRL5 E3 ubiquitin ligase complex to suppress virus restriction by host APOBEC3 (A3) proteins. The primate lentiviral Vif complex is composed of the unique cofactor core binding factor β (CBF-β) and canonical ligase components Cullin 5 (CUL5), Elongin B/C (ELOB/C), and RBX2. However, the mechanism by which the Vif protein of the related lentivirus bovine immunodeficiency virus (BIV) overcomes its host A3 proteins is less clear. In this study, we show that BIV Vif interacts with Cullin 2 (CUL2), ELOB/C, and RBX1, but not with CBF-β or CUL5, to form a CRL2 E3 ubiquitin ligase and degrade the restrictive bovine A3 proteins (A3Z2Z3 and A3Z3). RNA interference-mediated knockdown of ELOB or CUL2 inhibited BIV Vif-mediated degradation of these A3 proteins, whereas knockdown of CUL5 or CBF-β did not. BIV Vif with mutations in the BC box (Vif SLQ-AAA) or putative VHL box (Vif YI-AA), which cannot interact with ELOB/C or CUL2, respectively, lost the ability to counteract bovine A3 proteins. Moreover, CUL2 and UBE2M dominant negative mutants competitively inhibited the BIV Vif-mediated degradation mechanism. Thus, although the general strategy for inhibiting A3 proteins is conserved between HIV-1/SIV and BIV, the precise mechanisms can differ substantially, with only the HIV-1/SIV Vif proteins requiring CBF-β as a cofactor, HIV-1/SIV Vif using CUL5-RBX2, and BIV Vif using CUL2-RBX1. IMPORTANCE Primate lentivirus HIV-1 and SIV Vif proteins form a ubiquitin ligase complex to target host antiviral APOBEC3 proteins for degradation. However, the mechanism by which the nonprimate lentivirus BIV Vif inhibits bovine APOBEC3 proteins is unclear. In the present study, we determined the mechanism for BIV Vif-mediated degradation of bovine APOBEC3 proteins and found that it differs from the mechanism of HIV-1/SIV Vif by being CBF-β independent and requiring different ubiquitin ligase scaffolding proteins (CUL2-RBX1 instead of CUL5-RBX2). BIV Vif is the only known retroviral protein that can interact with CUL2. This information broadens our understanding of the distinct mechanisms by which the Vif proteins of different lentiviruses facilitate viral infection. This novel mechanism for assembly of the BIV Vif-APOBEC3 ubiquitin ligase complex advances our understanding of viral hijacking of host E3 ubiquitin ligases and illustrates the evolutionary flexibility of lentiviruses.
Collapse
|
30
|
Salter JD, Morales GA, Smith HC. Structural insights for HIV-1 therapeutic strategies targeting Vif. Trends Biochem Sci 2014; 39:373-80. [PMID: 25124760 DOI: 10.1016/j.tibs.2014.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 11/20/2022]
Abstract
HIV-1 viral infectivity factor (Vif) is a viral accessory protein that is required for HIV-1 infection due largely to its role in recruiting antiretroviral factors of the APOBEC3 (apolipoprotein B editing catalytic subunit-like 3) family to an E3 ubiquitin ligase complex for polyubiquitylation and proteasomal degradation. The crystal structure of the (near) full-length Vif protein in complex with Elongin (Elo)B/C, core-binding factor (CBF)β and Cullin (Cul)5 revealed that Vif has a novel structural fold. In our opinion the structural data revealed not only the protein-protein interaction sites that determine Vif stability and interaction with cellular proteins, but also motifs driving Vif homodimerization, which are essential in Vif functionality and HIV-1 infection. Vif-mediated protein-protein interactions are excellent targets for a new class of antiretroviral therapeutics to combat AIDS.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY 14623, USA
| | - Guillermo A Morales
- Cogent Professionals, 101 West Ohio Street, Suite 2000, Indianapolis, IN 46204, USA
| | - Harold C Smith
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY 14623, USA; University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
31
|
Wang H, Liu B, Liu X, Li Z, Yu XF, Zhang W. Identification of HIV-1 Vif regions required for CBF-β interaction and APOBEC3 suppression. PLoS One 2014; 9:e95738. [PMID: 24810617 PMCID: PMC4014475 DOI: 10.1371/journal.pone.0095738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/29/2014] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Vif requires core binding factor β (CBF-β) to degrade the host APOBEC3 restriction factors. Although a minimum domain and certain amino acids of HIV-1 Vif, including hydrophobic residues at the N-terminal, have been identified as critical sites for binding with CBF-β, other regions that potentially mediate this interaction need to be further investigated. Here, we mapped two new regions of HIV-1 Vif that are required for interaction with CBF-β by generating a series of single-site or multiple-site Vif mutants and testing their effect on the suppression of APOBEC3G (A3G) and APOBEC3F (A3F). A number of the mutants, including G84A/SIEW86-89AAAA (84/86-89), E88A/W89A (88/89), G84A, W89A, L106S and I107S in the 84GxSIEW89 and L102ADQLI107 regions, affected Vif function by disrupting CBF-β binding. These Vif mutants also had altered interactions with CUL5, since CBF-β is known to facilitate the binding of Vif to CUL5. We further showed that this effect was not due to misfolding or conformational changes in Vif, as the mutants still maintained their interactions with other factors such as ElonginB, A3G and A3F. Notably, G84D and D104A had stronger effects on the Vif-CUL5 interaction than on the Vif-CBF-β interaction, indicating that they mainly influenced the CUL5 interaction and implying that the interaction of Vif with CUL5 contributes to the binding of Vif to CBF-β. These new binding interfaces with CBF-β in HIV-1 Vif provide novel targets for the development of HIV-1 inhibitors.
Collapse
Affiliation(s)
- Hong Wang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bin Liu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
- Department of Hand Surgery, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xin Liu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
32
|
Aydin H, Taylor MW, Lee JE. Structure-guided analysis of the human APOBEC3-HIV restrictome. Structure 2014; 22:668-84. [PMID: 24657093 DOI: 10.1016/j.str.2014.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/20/2014] [Indexed: 01/03/2023]
Abstract
Human APOBEC3 (A3) proteins are host-encoded intrinsic restriction factors that inhibit the replication of many retroviral pathogens. Restriction is believed to occur as a result of the DNA cytosine deaminase activity of the A3 proteins; this activity converts cytosines into uracils in single-stranded DNA retroviral replication intermediates. A3 proteins are also equipped with deamination-independent means to restrict retroviruses that work cooperatively with deamination-dependent restriction pathways. A3 proteins substantially bolster the intrinsic immune system by providing a powerful block to the transmission of retroviral pathogens; however, most retroviruses are able to subvert this replicative restriction in their natural host. HIV-1, for instance, evades A3 proteins through the activity of its accessory protein Vif. Here, we summarize data from recent A3 structural and functional studies to provide perspectives into the interactions between cellular A3 proteins and HIV-1 macromolecules throughout the viral replication cycle.
Collapse
Affiliation(s)
- Halil Aydin
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew W Taylor
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|