1
|
Ly J, Xiang K, Su KC, Sissoko GB, Bartel DP, Cheeseman IM. Nuclear release of eIF1 globally increases stringency of start-codon selection to preserve mitotic arrest physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588385. [PMID: 38617206 PMCID: PMC11014515 DOI: 10.1101/2024.04.06.588385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Regulated start-codon selection has the potential to reshape the proteome through the differential production of uORFs, canonical proteins, and alternative translational isoforms. However, conditions under which start-codon selection is altered remain poorly defined. Here, using transcriptome-wide translation initiation site profiling, we reveal a global increase in the stringency of start-codon selection during mammalian mitosis. Low-efficiency initiation sites are preferentially repressed in mitosis, resulting in pervasive changes in the translation of thousands of start sites and their corresponding protein products. This increased stringency of start-codon selection during mitosis results from increased interactions between the key regulator of start-codon selection, eIF1, and the 40S ribosome. We find that increased eIF1-40S ribosome interactions during mitosis are mediated by the release of a nuclear pool of eIF1 upon nuclear envelope breakdown. Selectively depleting the nuclear pool of eIF1 eliminates the changes to translational stringency during mitosis, resulting in altered mitotic proteome composition. In addition, preventing mitotic translational rewiring results in substantially increased cell death and decreased mitotic slippage following treatment with anti-mitotic chemotherapeutics. Thus, cells globally control translation initiation stringency with critical roles during the mammalian cell cycle to preserve mitotic cell physiology.
Collapse
|
2
|
Gonzalez CE, Ben Abdeljelil N, Pearson A. The Disruption of a Nuclear Export Signal in the C-Terminus of the Herpes Simplex Virus 1 Determinant of Pathogenicity UL24 Protein Leads to a Syncytial Plaque Phenotype. Viruses 2023; 15:1971. [PMID: 37766377 PMCID: PMC10535440 DOI: 10.3390/v15091971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
UL24 of herpes simplex virus 1 (HSV-1) has been shown to be a determinant of pathogenesis in mouse models of infection. The N-terminus of UL24 localizes to the nucleus and drives the redistribution of nucleolin and B23. In contrast, when expressed alone, the C-terminal domain of UL24 accumulates in the Golgi apparatus; its importance during infection is unknown. We generated a series of mammalian expression vectors encoding UL24 with nested deletions in the C-terminal domain. Interestingly, enhanced nuclear staining was observed for several UL24-deleted forms in transient transfection assays. The substitution of a threonine phosphorylation site had no effect on UL24 localization or viral titers in cell culture. In contrast, mutations targeting a predicted nuclear export signal (NES) significantly enhanced nuclear localization, indicating that UL24 is able to shuttle between the nucleus and the cytoplasm. Recombinant viruses that encode UL24-harboring substitutions in the NES led to the accumulation of UL24 in the nucleus. Treatment with the CRM-1-specific inhibitor leptomycin B blocked the nuclear export of UL24 in transfected cells but not in the context of infection. Viruses encoding UL24 with NES mutations resulted in a syncytial phenotype, but viral yield was unaffected. These results are consistent with a role for HSV-1 UL24 in late cytoplasmic events in HSV-1 replication.
Collapse
Affiliation(s)
| | | | - Angela Pearson
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC H7V 1B7, Canada
| |
Collapse
|
3
|
Marchand C, Lemay G, Archambault D. Identification of the nuclear and nucleolar localization signals of the Feline immunodeficiency virus Rev protein. Virus Res 2020; 290:198153. [PMID: 33010374 DOI: 10.1016/j.virusres.2020.198153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Lentivirus genomes code for a regulatory protein essential for virus replication termed Rev. The Rev protein binds to partially spliced and unspliced viral RNAs and mediates their nuclear export. Therefore, Rev possesses functional domains that enable its shuttling between the cytoplasm and the nucleus. The Feline immunodeficiency virus (FIV), a lentivirus, can lead to an immunodeficiency syndrome after a long incubation period, similar to that associated with the human immunodeficiency virus type 1 (HIV-1). The FIV Rev functional domains have been predicted only by homology with those of HIV-1 Rev. In the present study, the nuclear and nucleolar localization signals (NLS and NoLS, respectively) of the FIV Rev were examined. A series of FIV Rev deletion mutants fused to the enhanced green fluorescent protein (EGFP) were used to localize the NLS in a region spanning amino acids (aa) 81-100. By using alanine substitution mutants, basic residues present between the amino acids (aa) 84-99 of the FIV Rev protein sequence were identified to form the NLS, whereas those between aa 82-95 were associated with the NoLS function. These results further enhance our understanding of how Rev exerts its role in the replication cycle of lentiviruses.
Collapse
Affiliation(s)
- Claude Marchand
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Guy Lemay
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Denis Archambault
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.
| |
Collapse
|
4
|
Labrecque M, Marchand C, Archambault D. Characterization of Signal Sequences Determining the Nuclear/Nucleolar Import and Nuclear Export of the Caprine Arthritis-Encephalitis Virus Rev Protein. Viruses 2020; 12:v12080900. [PMID: 32824614 PMCID: PMC7471974 DOI: 10.3390/v12080900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Caprine arthritis-encephalitis virus (CAEV), a lentivirus, relies on the action of the Rev protein for its replication. The CAEV Rev fulfills its function by allowing the nuclear exportation of partially spliced or unspliced viral mRNAs. In this study, we characterized the nuclear and nucleolar localization signals (NLS and NoLS, respectively) and the nuclear export signal (NES) of the CAEV Rev protein. These signals are key actors in the nucleocytoplasmic shuttling of a lentiviral Rev protein. Several deletion and alanine substitution mutants were generated from a plasmid encoding the CAEV Rev wild-type protein that was fused to the enhanced green fluorescent protein (EGFP). Following cell transfection, images were captured by confocal microscopy and the fluorescence was quantified in the different cell compartments. The results showed that the NLS region is localized between amino acids (aa) 59 to 75, has a monopartite-like structure and is exclusively composed of arginine residues. The NoLS was found to be partially associated with the NLS. Finally, the CAEV Rev protein’s NES mapped between aa 89 to 101, with an aa spacing between the hydrophobic residues that was found to be unconventional as compared to that of other retroviral Rev/Rev-like proteins.
Collapse
Affiliation(s)
- Marlène Labrecque
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Claude Marchand
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Denis Archambault
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
5
|
The Jembrana disease virus Rev protein: Identification of nuclear and novel lentiviral nucleolar localization and nuclear export signals. PLoS One 2019; 14:e0221505. [PMID: 31437223 PMCID: PMC6706053 DOI: 10.1371/journal.pone.0221505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/08/2019] [Indexed: 11/19/2022] Open
Abstract
The lentiviral Rev protein, which is a regulatory protein essential for virus replication, has been first studied in the human immunodeficiency virus type 1 (HIV-1). The main function of Rev is to mediate the nuclear exportation of viral RNAs. To fulfill its function, Rev shuttles between the cytoplasm and the nucleus. The Jembrana disease virus (JDV), a lentivirus, is the etiologic agent of the Jembrana disease which was first described in Bali cattle in Indonesia in 1964. Despite the high mortality rate associated with JDV, this virus remains poorly studied. Herein the subcellular distribution of JDV Rev, the nuclear and nucleolar localization signals (NLS and NoLS, respectively) and the nuclear export signal (NES) of the protein were examined. JDV Rev fused to the enhanced green fluorescent protein (EGFP) predominantly localized to the cytoplasm and nucleolus of transfected cells, as determined by fluorescence microscopy analyses. Through transfection of a series of deletion mutants of JDV Rev, it was possible to localize the NLS/NoLS region between amino acids (aa) 74 to 105. By substituting basic residues with alanine within this sequence, we demonstrated that the JDV Rev NLS encompasses aa 76 to 86, and is exclusively composed of arginine residues, whereas a bipartite NoLS was observed for the first time in any retroviral Rev/Rev-like proteins. Finally, a NES was identified downstream of the NLS/NoLS and encompasses aa 116 to 128 of the JDV Rev protein. The JDV Rev NES was found to be of the protein kinase A inhibitor (PKI) class instead of the HIV-1 Rev class. It also corresponds to the most optimal consensus sequence of PKI NES and, as such, is novel among lentiviral Rev NES.
Collapse
|
6
|
Passos-Castilho AM, Marchand C, Archambault D. B23/nucleophosmin interacts with bovine immunodeficiency virus Rev protein and facilitates viral replication. Virology 2018; 515:158-164. [DOI: 10.1016/j.virol.2017.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
|
7
|
Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export. J Virol 2017; 91:JVI.02107-16. [PMID: 27852860 DOI: 10.1128/jvi.02107-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/14/2016] [Indexed: 12/28/2022] Open
Abstract
HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. IMPORTANCE HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide, thereby biasing its trafficking to and retention within the nucleus. Targeted pharmacological disruption of Rev-Rev interactions should perturb multiple Rev activities, both Rev-RNA binding and Rev's trafficking to the nucleus in the first place.
Collapse
|
8
|
Wu DT, Roth MJ. MLV based viral-like-particles for delivery of toxic proteins and nuclear transcription factors. Biomaterials 2014; 35:8416-26. [PMID: 24997480 DOI: 10.1016/j.biomaterials.2014.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 12/17/2022]
Abstract
We have developed nanoparticles based on Murine Leukemia Virus virus-like-particles (VLPs) that efficiently deliver therapeutic bioactive proteins in their native state into target cells. Nuclear transcription factors and toxic proteins were incorporated into the VLPs from stable producer cells without transducing viral-encoded genetic material. Delivery of nuclear transcription factors required incorporation of nuclear export signals (NESs) into the vector backbone for the efficient formation of VLPs. In the presence of an appropriate targeting Env glycoprotein, transcription factors delivered and activated nuclear transcription in the target cells. Additionally, we show delivery of the bacterial toxin, MazF, which is an ACA-specific mRNA interferase resulted in the induction of cell death. The stable producer cells are protected from the toxin through co-expression of the anti-toxin MazE and continuously released MazF incorporating VLPs. This highly adaptable platform can be harnessed to alter and regulate cellular processes by bioactive protein delivery.
Collapse
Affiliation(s)
- Dai-Tze Wu
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane Rm 636, Piscataway, NJ, USA
| | - Monica J Roth
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane Rm 636, Piscataway, NJ, USA.
| |
Collapse
|
9
|
Nuclear trafficking of retroviral RNAs and Gag proteins during late steps of replication. Viruses 2013; 5:2767-95. [PMID: 24253283 PMCID: PMC3856414 DOI: 10.3390/v5112767] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 10/31/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022] Open
Abstract
Retroviruses exploit nuclear trafficking machinery at several distinct stages in their replication cycles. In this review, we will focus primarily on nucleocytoplasmic trafficking events that occur after the completion of reverse transcription and proviral integration. First, we will discuss nuclear export of unspliced viral RNA transcripts, which serves two essential roles: as the mRNA template for the translation of viral structural proteins and as the genome for encapsidation into virions. These full-length viral RNAs must overcome the cell's quality control measures to leave the nucleus by co-opting host factors or encoding viral proteins to mediate nuclear export of unspliced viral RNAs. Next, we will summarize the most recent findings on the mechanisms of Gag nuclear trafficking and discuss potential roles for nuclear localization of Gag proteins in retrovirus replication.
Collapse
|
10
|
Roques E, Girard A, Gagnon CA, Archambault D. Antibody responses induced in mice immunized with recombinant adenovectors expressing chimeric proteins of various porcine pathogens. Vaccine 2013; 31:2698-704. [DOI: 10.1016/j.vaccine.2013.03.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/18/2013] [Accepted: 03/28/2013] [Indexed: 01/19/2023]
|
11
|
Reply to “Nuclear Export Signal and Immunodominant CD8
+
T Cell Epitope in Influenza A Virus Matrix Protein 1”. J Virol 2012. [DOI: 10.1128/jvi.01245-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|