1
|
Chen J, Wang X, Li J, Sun L, Chen X, Chu Z, Zhang Z, Wu H, Zhao X, Li H, Zhang X. Influenza A Virus Weakens the Immune Response of Mice to Toxoplasma gondii, Thereby Aggravating T. gondii Infection. Vet Sci 2023; 10:vetsci10050354. [PMID: 37235437 DOI: 10.3390/vetsci10050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to investigate the relationship between the T. gondii type II strain (Pru) and respiratory viral infections, specifically focusing on the co-infection with PR8 (influenza A/Puerto Rico/8/34). In this study, we found that the number of T. gondii (Pru) in the lungs of co-infected mice was significantly higher and lesions were more severe than those in the group infected with T. gondii (Pru) alone, whereas IAV (influenza A virus) copy numbers of co-infected and PR8 alone infected groups were negligible, suggesting that infection with IAV increased the pathogenicity of T. gondii (Pru) in mice. The invasion and proliferation assays demonstrated no significant effect of co-infection on T. gondii (Pru) infection or replication in vitro. To further explore the factors causing the altered pathogenicity of T. gondii (Pru) caused by co-infection, we found that decreased expression levels of IL-1β, IL-6, and IL-12 in the co-infected group were associated with the early immune responses against T. gondii (Pru), which affected the division of T. gondii (Pru). Moreover, the significant decrease in the CD4+/CD8+ ratio indicated a weakened long-term immune killing ability of the host against T. gondii (Pru) following IAV infection. In conclusion, a T. gondii type II strain (Pru) could not be properly cleared by the host immune system after IAV infection, resulting in toxoplasmosis and even death in mice.
Collapse
Affiliation(s)
- Junpeng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Xiaoli Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Jinxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Xiao Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Ziyu Chu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Zhenzhao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Hongxia Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271002, China
| |
Collapse
|
2
|
Xiao J, Savonenko A, Yolken RH. Strain-specific pre-existing immunity: A key to understanding the role of chronic Toxoplasma infection in cognition and Alzheimer's diseases? Neurosci Biobehav Rev 2022; 137:104660. [PMID: 35405182 DOI: 10.1016/j.neubiorev.2022.104660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022]
Abstract
Toxoplasma exposure can elicit cellular and humoral immune responses. In the case of chronic Toxoplasma infection, these immune responses are long-lasting. Some studies suggest that pre-existing immunity from Toxoplasma infection can shape immune responses and resistance to other pathogens and brain insults later in life. Much evidence has been generated suggesting Toxoplasma infection may contribute to cognitive impairment in the elderly. However, there have also been studies that disagree with the conclusion. Toxoplasma has many strain types, with virulence being the most notable difference. There is also considerable variation in the outcomes following Toxoplasma exposure ranging from resolved to persistent infection. Therefore, the brain microenvironment, particularly cellular constituents, differs based on the infecting strain (virulent versus hypovirulent) and infection stage (resolved versus persistent). Such difference might play a critical role in determining the outcome of the host on subsequent challengings to the brain. The ability of Toxoplasma strains to set up distinct stages for neurodegenerative pathology through varying degrees of virulence provides unique experimental tools for characterizing these pathways.
Collapse
Affiliation(s)
- Jianchun Xiao
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Dual transcriptomics to determine interferon-gamma independent host response to intestinal Cryptosporidium parvum infection. Infect Immun 2021; 90:e0063821. [PMID: 34928716 PMCID: PMC8852703 DOI: 10.1128/iai.00638-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Animals with a chronic infection of the parasite Toxoplasma gondii are protected against lethal secondary infection with other pathogens. Our group previously determined that soluble T. gondii antigens (STAg) can mimic this protection and be used as a treatment against several lethal pathogens. Because treatments are limited for the parasite Cryptosporidium parvum, we tested STAg as a C. parvum therapeutic. We determined that STAg treatment reduced C. parvum Iowa II oocyst shedding in gamma interferon knockout (IFN-γ-KO) mice. Murine intestinal sections were then sequenced to define the IFN-γ-independent transcriptomic response to C. parvum infection. Gene Ontology and transcript abundance comparisons showed host immune response and metabolism changes. Transcripts for type I interferon-responsive genes were more abundant in C. parvum-infected mice treated with STAg. Comparisons between phosphate-buffered saline (PBS) and STAg treatments showed no significant differences in C. parvum gene expression. C. parvum transcript abundance was highest in the ileum and mucin-like glycoproteins and the GDP-fucose transporter were among the most abundant. These results will assist the field in determining both host- and parasite-directed future therapeutic targets.
Collapse
|
4
|
Novel Murine Pancreatic Tumor Model Demonstrates Immunotherapeutic Control of Tumor Progression by a Toxoplasma gondii Protein. Infect Immun 2021; 89:e0050821. [PMID: 34543124 DOI: 10.1128/iai.00508-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer-related death in the United States, with few effective treatments available and only 10% of those diagnosed surviving 5 years. Although immunotherapeutics is a growing field of study in cancer biology, there has been little progress in its use for the treatment of pancreatic cancer. Pancreatic cancer is considered a nonimmunogenic tumor because the tumor microenvironment does not easily allow for the immune system, even when stimulated, to attack the cancer. Infection with the protozoan parasite Toxoplasma gondii has been shown to enhance the immune response to clear cancer tumors. A subset of T. gondii proteins called soluble Toxoplasma antigen (STAg) contains an immunodominant protein called profilin. Both STAg and profilin have been shown to stimulate an immune response that reduces viral, bacterial, and parasitic burdens. Here, we use STAg and profilin to treat pancreatic cancer in a KPC mouse-derived allograft murine model. These mice exhibit pancreatic cancer with both Kras and P53 mutations as subcutaneous tumors. Pancreatic cancer tumors in C57BL/6J mice with a wild-type background showed a significant response to treatment with either profilin or STAg, exhibiting a decrease in tumor volume accompanied by an influx of CD4+ and CD8+ T cells into the tumors. Both IFN-γ-/- mice and Batf3-/- mice, which lack conventional dendritic cells, failed to show significant decreases in tumor volumes when treated. These results indicate that gamma interferon (IFN-γ) and dendritic cells may play critical roles in the immune response necessary to treat pancreatic cancer.
Collapse
|
5
|
Li X, Jiang S, Wang X, Jia B. Intestinal transcriptomes in Kazakh sheep with different haplotypes after experimental Echinococcus granulosus infection. Parasite 2021; 28:14. [PMID: 33666549 PMCID: PMC7934610 DOI: 10.1051/parasite/2021011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/04/2021] [Indexed: 11/20/2022] Open
Abstract
Cystic echinococcosis (CE) is a chronic zoonosis caused by infection with the larval stage of the cestode Echinococcus granulosus. As the intermediate host, sheep are highly susceptible to this disease. Our previous studies have shown that sheep with haplotype MHC Mva Ibc-Sac IIab-Hin1I ab were resistant to CE infection, while their counterparts without this haplotype were not. In order to reveal the molecular mechanism of resistance in Kazakh sheep, after selecting the differential miRNA in our previous study, herein, transcriptome analyses were conducted to detect the differential expression genes in the intestinal tissue of Kazakh sheep with resistant and non-resistant MHC haplotypes, after peroral infection with E. granulosus eggs. A total of 3835 differentially expressed genes were identified between the two groups, with 2229 upregulated and 1606 downregulated. Further function analysis showed that the most significant genes were related to both innate immune response and adaptive response participating in the defense against E. granulosus infection and the metabolic changes associated with it. The results suggest that genes related to lectin receptors, NK cells activation, chemokines, and tumor necrosis factor, may play important roles in the response of intestinal tissue to E. granulosus.
Collapse
Affiliation(s)
- Xin Li
- College of Life Sciences, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China - College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Song Jiang
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Xuhai Wang
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Bin Jia
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| |
Collapse
|
6
|
Aging with Toxoplasma gondii results in pathogen clearance, resolution of inflammation, and minimal consequences to learning and memory. Sci Rep 2020; 10:7979. [PMID: 32409672 PMCID: PMC7224383 DOI: 10.1038/s41598-020-64823-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
Persistent inflammation has been identified as a contributor to aging-related neurodegenerative disorders such as Alzheimer's disease. Normal aging, in the absence of dementia, also results in gradual cognitive decline and is thought to arise, in part, because of a chronic pro-inflammatory state in the brain. Toxoplasma gondii is an obligate intracellular parasite that establishes a persistent, asymptomatic infection of the central nervous system (CNS) accompanied by a pro-inflammatory immune response in many of its hosts, including humans and rodents. Several studies have suggested that the inflammation generated by certain strains of T. gondii infection can be neuroprotective in the context of a secondary insult like beta-amyloid accumulation or stroke. Given these neuroprotective studies, we hypothesized that a prolonged infection with T. gondii may protect against age-associated decline in cognition. To test this hypothesis, we infected young adult mice with either of two genetically distinct, persistent T. gondii strains (Prugniaud/type II/haplogroup 2 and CEP/type III/haplogroup 3) and monitored mouse weight, survival, and learning and memory over the ensuing 20 months. At the end of the study, we evaluated CNS inflammation and parasite burden in the surviving mice. We found that parasite infection had no impact on age-associated decline in learning and memory and that by 20 months post infection, in the surviving mice, we found no evidence of parasite DNA, cysts, or inflammation in the CNS. In addition, we found that mice infected with type III parasites, which are supposed to be less virulent than the type II parasites, had a lower rate of long-term survival. Collectively, these data indicate that T. gondii may not cause a life-long CNS infection. Rather, parasites are likely slowly cleared from the CNS and infection and parasite clearance neither positively nor negatively impacts learning and memory in aging.
Collapse
|
7
|
Gao P, Fan L, Du H, Xiang B, Li Y, Sun M, Kang Y, Chen L, Xu C, Li Y, Ren T. Recombinant Duck Interferon Gamma Inhibits H5N1 Influenza Virus Replication In Vitro and In Vivo. J Interferon Cytokine Res 2019; 38:290-297. [PMID: 30016179 DOI: 10.1089/jir.2018.0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The highly pathogenic H5N1 avian influenza virus (AIV) is widespread in waterfowl, causing enormous economic losses and posing a significant threat to public health. An increasing number of reagents have been identified to prevent the spread of influenza; however, there have been no reports on the anti-H5N1 effects of duck interferons, which exhibit antiviral activity against other viruses. Our aim was to investigate the antiviral effects of purified duck interferons. In this study, we successfully cloned and expressed duck interferon gamma (IFN-γ) in Escherichia coli. The antiviral effects of this recombinant duck IFN-γ (rDuIFN-γ) was assessed in vitro and in vivo. rDuIFN-γ displayed antiviral activity against vesicular stomatitis virus and AIV in duck embryo fibroblasts. Pretreating ducks with 3.4 × 104 U rDuIFN-γ also partially decreased mortality from 70% to 30% and delayed onset in 2-day-old Peking ducks. Virus titers in tissues and viral shedding decreased, and the expression of interferon-stimulated genes increased in brain and spleen in rDuIFN-γ-treated ducks. These results indicate that duck IFN-γ has the potential to inhibit viral replication in ducks.
Collapse
Affiliation(s)
- Pei Gao
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Lei Fan
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Haoyun Du
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Bin Xiang
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Yulian Li
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Minhua Sun
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Yinfeng Kang
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Libin Chen
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Chenggang Xu
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| | - Yaling Li
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China .,5 College of Animal Science and Technology, Shihezi University , Shihezi, Xinjiang, China
| | - Tao Ren
- 1 College of Veterinary Medicine, South China Agricultural University , Guangzhou, China .,2 National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control , Guangzhou, China .,3 Key Laboratory of Animal Vaccine Development, Ministry of Agriculture , Guangzhou, China .,4 Key Laboratory of Zoonosis Prevention and Control of Guangdong Province , Guangzhou, China
| |
Collapse
|
8
|
Transcriptional Analysis Shows a Robust Host Response to Toxoplasma gondii during Early and Late Chronic Infection in Both Male and Female Mice. Infect Immun 2019; 87:IAI.00024-19. [PMID: 30858341 DOI: 10.1128/iai.00024-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/01/2019] [Indexed: 01/01/2023] Open
Abstract
The long-term host effects caused by the protozoan parasite Toxoplasma gondii are poorly understood. High-throughput RNA sequencing analysis previously determined that the host response in the brain was greater and more complex at 28 days than at 10 days postinfection. Here, we analyzed the host transcriptional profile of age- and sex-matched mice during very early (21 days), early (28 days), mid (3 months), and late (6 months) chronic infection. We found that a majority of the host genes which increase in abundance at day 21 postinfection are still increased at 6 months postinfection for both male and female mice. While most of the differentially expressed genes were similar between sexes, females had far fewer genes that were significantly less abundant, which may have led to the slightly increased cyst burden in males. Transcripts for C-X-C motif chemokine ligand 13 and a C-C motif chemokine receptor 2 (CCR2) were significantly higher in females than in males during infection. As T. gondii chronic infection and profilin (PRF) confer resistance to Listeria monocytogenes infection in a CCR2-dependent manner, the differences in CCR2 expression led us to retest the protection of PRF in both sexes. Male mice were nearly as effective as female mice at reducing the bacterial burden either with a chronic infection or when treated with PRF. These data show that most of the host genes differentially expressed in response to T. gondii infection are similar between males and females. While differences in transcript abundance exist between the sexes, the infection phenotypes tested here did not show significant differences.
Collapse
|
9
|
Seon SH, Choi JA, Yang E, Pyo S, Song MK, Rhee DK. Intranasal Immunization With an Attenuated pep27 Mutant Provides Protection From Influenza Virus and Secondary Pneumococcal Infections. J Infect Dis 2017; 217:637-640. [DOI: 10.1093/infdis/jix594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/13/2017] [Indexed: 01/14/2023] Open
|
10
|
Choi JG, Jin YH, Lee H, Oh TW, Yim NH, Cho WK, Ma JY. Protective Effect of Panax notoginseng Root Water Extract against Influenza A Virus Infection by Enhancing Antiviral Interferon-Mediated Immune Responses and Natural Killer Cell Activity. Front Immunol 2017; 8:1542. [PMID: 29181006 PMCID: PMC5693858 DOI: 10.3389/fimmu.2017.01542] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/30/2017] [Indexed: 01/27/2023] Open
Abstract
Influenza is an acute respiratory illness caused by the influenza A virus, which causes economic losses and social disruption mainly by increasing hospitalization and mortality rates among the elderly and people with chronic diseases. Influenza vaccines are the most effective means of preventing seasonal influenza, but can be completely ineffective if there is an antigenic mismatch between the seasonal vaccine virus and the virus circulating in the community. In addition, influenza viruses resistant to antiviral drugs are emerging worldwide. Thus, there is an urgent need to develop new vaccines and antiviral drugs against these viruses. In this study, we conducted in vitro and in vivo analyses of the antiviral effect of Panax notoginseng root (PNR), which is used as an herbal medicine and nutritional supplement in Korea and China. We confirmed that PNR significantly prevented influenza virus infection in a concentration-dependent manner in mouse macrophages. In addition, PNR pretreatment inhibited viral protein (PB1, PB2, HA, NA, M1, PA, M2, and NP) and viral mRNA (NS1, HA, PB2, PA, NP, M1, and M2) expression. PNR pretreatment also increased the secretion of pro-inflammatory cytokines [tumor necrosis factor alpha and interleukin 6] and interferon (IFN)-beta and the phosphorylation of type-I IFN-related proteins (TANK-binding kinase 1, STAT1, and IRF3) in vitro. In mice exposed to the influenza A H1N1 virus, PNR treatment decreased mortality by 90% and prevented weight loss (by approximately 10%) compared with the findings in untreated animals. In addition, splenocytes from PNR-administered mice displayed significantly enhanced natural killer (NK) cell activity against YAC-1 cells. Taking these findings together, PNR stimulates an antiviral response in murine macrophages and mice that protects against viral infection, which may be attributable to its ability to stimulate NK cell activity. Further investigations are needed to reveal the molecular mechanisms underlying the protective effects of PNR and its components against influenza virus A infection.
Collapse
Affiliation(s)
- Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Young-Hee Jin
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Heeeun Lee
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Tae Woo Oh
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Nam-Hui Yim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Won-Kyung Cho
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| |
Collapse
|
11
|
Long-Term Relationships: the Complicated Interplay between the Host and the Developmental Stages of Toxoplasma gondii during Acute and Chronic Infections. Microbiol Mol Biol Rev 2016; 79:387-401. [PMID: 26335719 DOI: 10.1128/mmbr.00027-15] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Toxoplasma gondii represents one of the most common parasitic infections in the world. The asexual cycle can occur within any warm-blooded animal, but the sexual cycle is restricted to the feline intestinal epithelium. T. gondii is acquired through consumption of tissue cysts in undercooked meat as well as food and water contaminated with oocysts. Once ingested, it differentiates into a rapidly replicating asexual form and disseminates throughout the body during acute infection. After stimulation of the host immune response, T. gondii differentiates into a slow-growing, asexual cyst form that is the hallmark of chronic infection. One-third of the human population is chronically infected with T. gondii cysts, which can reactivate and are especially dangerous to individuals with reduced immune surveillance. Serious complications can also occur in healthy individuals if infected with certain T. gondii strains or if infection is acquired congenitally. No drugs are available to clear the cyst form during the chronic stages of infection. This therapeutic gap is due in part to an incomplete understanding of both host and pathogen responses during the progression of T. gondii infection. While many individual aspects of T. gondii infection are well understood, viewing the interconnections between host and parasite during acute and chronic infection may lead to better approaches for future treatment. The aim of this review is to provide an overview of what is known and unknown about the complex relationship between the host and parasite during the progression of T. gondii infection, with the ultimate goal of bridging these events.
Collapse
|
12
|
Affiliation(s)
- Jason P Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
13
|
Kingstad-Bakke B, Kamlangdee A, Osorio JE. Mucosal administration of raccoonpox virus expressing highly pathogenic avian H5N1 influenza neuraminidase is highly protective against H5N1 and seasonal influenza virus challenge. Vaccine 2015; 33:5155-62. [PMID: 26271828 DOI: 10.1016/j.vaccine.2015.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/29/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
We previously generated recombinant poxviruses expressing influenza antigens and studied their efficacy as potential highly pathogenic avian influenza (HPAI) vaccines in mice. While both modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) expressing hemagglutinin (HA) provided strong protection when administered by parenteral routes, only RCN-neuraminidase (NA) showed promise as a mucosal vaccine. In the present study we evaluated the efficacy of RCN-NA constructs by both intradermal (ID) and intranasal (IN) routes. Surprisingly, while RCN-NA completely protected mice when administered by the IN route, it failed to protect mice when administered by the ID route. After challenge, significantly less virus induced pathology was observed in the lungs of mice vaccinated with RCN-NA by the IN route as compared to the ID route. Furthermore, IN administration of RCN-NA elicited neutralizing antibodies detected in bronchoalveolar lavage (BAL) samples. We also determined the role of cellular immune responses in protection elicited by RCN-NA by depleting CD4 and CD8 T cells prior to challenge. Finally, we demonstrated for the first time that antibodies against NA can block viral entry in addition to viral spread in vitro. These studies demonstrate the importance of mucosal administration of RCN viral vectors for eliciting protective immune responses against the NA antigen.
Collapse
Affiliation(s)
- Brock Kingstad-Bakke
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Attapon Kamlangdee
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Pittman KJ, Aliota MT, Knoll LJ. Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection. BMC Genomics 2014; 15:806. [PMID: 25240600 PMCID: PMC4177681 DOI: 10.1186/1471-2164-15-806] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 09/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The obligate intracellular parasite Toxoplasma gondii establishes a life-long chronic infection within any warm-blooded host. After ingestion of an encysted parasite, T. gondii disseminates throughout the body as a rapidly replicating form during acute infection. Over time and after stimulation of the host immune response, T. gondii differentiates into a slow growing, cyst form that is the hallmark of chronic infection. Global transcriptome analysis of both host and parasite during the establishment of chronic T. gondii infection has not yet been performed. Here, we conducted a dual RNA-seq analysis of T. gondii and its rodent host to better understand host and parasite responses during acute and chronic infection. RESULTS We obtained nearly one billion paired-end RNA sequences from the forebrains of uninfected, acutely and chronically infected mice, then aligned them to the genomic reference files of both T. gondii and Mus musculus. Gene ontology (GO) analysis of the 100 most highly expressed T. gondii genes showed less than half were shared between acute and chronic infection. The majority of the highly expressed genes common in both acute and chronic infection were involved in transcription and translation, underscoring that parasites in both stages are actively synthesizing proteins. Similarly, most of the T. gondii genes highly expressed during chronic infection were involved in metabolic processes, again highlighting the activity of the cyst stage at 28 days post-infection. Comparative analyses of host genes using uninfected forebrain revealed over twice as many immune regulatory genes were more abundant during chronic infection compared to acute. This demonstrates the influence of parasite development on host gene transcription as well as the influence of the host environment on parasite gene transcription. CONCLUSIONS RNA-seq is a valuable tool to simultaneously analyze host and microbe transcriptomes. Our data shows that T. gondii is metabolically active and synthesizing proteins at 28 days post-infection and that a distinct subset of host genes associated with the immune response are more abundant specifically during chronic infection. These data suggest host and pathogen interplay is still present during chronic infection and provides novel T. gondii targets for future drug and vaccine development.
Collapse
Affiliation(s)
| | | | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
15
|
Neal LM, Knoll LJ. Toxoplasma gondii profilin promotes recruitment of Ly6Chi CCR2+ inflammatory monocytes that can confer resistance to bacterial infection. PLoS Pathog 2014; 10:e1004203. [PMID: 24945711 PMCID: PMC4055779 DOI: 10.1371/journal.ppat.1004203] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 05/07/2014] [Indexed: 01/21/2023] Open
Abstract
Ly6C+ inflammatory monocytes are essential to host defense against Toxoplasma gondii, Listeria monocytogenes and other infections. During T. gondii infection impaired inflammatory monocyte emigration results in severe inflammation and failure to control parasite replication. However, the T. gondii factors that elicit these monocytes are unknown. Early studies from the Remington laboratory showed that mice with a chronic T. gondii infection survive lethal co-infections with unrelated pathogens, including L. monocytogenes, but a mechanistic analysis was not performed. Here we report that this enhanced survival against L. monocytogenes is due to early reduction of bacterial burdens and elicitation of Ly6C+ inflammatory monocytes. We demonstrate that a single TLR11/TLR12 ligand profilin (TgPRF) was sufficient to reduce bacterial burdens similar to T. gondii chronic infection. Stimulation with TgPRF was also sufficient to enhance animal survival when administered either pre- or post-Listeria infection. The ability of TgPRF to reduce L. monocytogenes burdens was dependent on TLR11 and required IFN-γ but was not dependent on IL-12 signaling. TgPRF induced rapid production of MCP-1 and resulted in trafficking of Ly6Chi CCR2+ inflammatory monocytes and Ly6G+ neutrophils into the blood and spleen. Stimulation with TgPRF reduced L. monocytogenes burdens in mice depleted with the Ly6G specific MAb 1A8, but not in Ly6C/Ly6G specific RB6-8C5 depleted or CCR2−/− mice, indicating that only inflammatory monocytes are required for TgPRF-induced reduction in bacterial burdens. These results demonstrate that stimulation of TLR11 by TgPRF is a mechanism to promote the emigration of Ly6Chi CCR2+ monocytes, and that TgPRF recruited inflammatory monocytes can provide an immunological benefit against an unrelated pathogen. Toxoplasma gondii is an apicomplexan parasite that can infect all warm blooded animals, but rodent species are considered the primary reservoirs. Mice that are infected with T. gondii become more resistant to lethal infection with other pathogens. Ly6C+ inflammatory monocytes are innate immune cells that are critical for defense against T. gondii and other infections. Mice with defects in the ability to recruit inflammatory monocytes fail to control T. gondii replication and succumb to overwhelming inflammation. In this study we used a co-infection model to explain why T. gondii-infected mice are more resistant to the bacterium Listeria monocytogenes. We show that stimulation of the rodent specific Toll-like receptor TLR11 by the T. gondii ligand profilin can recruit inflammatory monocytes, and that these monocytes can protect the host against L. monocytogenes. These findings make profilin an important tool for the study of monocyte biology during T. gondii infection of rodents and are especially interesting given that TLR11 is nonfunctional in humans and other vertebrates.
Collapse
Affiliation(s)
- Lori M. Neal
- Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
16
|
Toxoplasma gondii upregulates interleukin-12 to prevent Plasmodium berghei-induced experimental cerebral malaria. Infect Immun 2014; 82:1343-53. [PMID: 24396042 DOI: 10.1128/iai.01259-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A chronic infection with the parasite Toxoplasma gondii has previously been shown to protect mice against subsequent viral, bacterial, or protozoal infections. Here we have shown that a chronic T. gondii infection can prevent Plasmodium berghei ANKA-induced experimental cerebral malaria (ECM) in C57BL/6 mice. Treatment with soluble T. gondii antigens (STAg) reduced parasite sequestration and T cell infiltration in the brains of P. berghei-infected mice. Administration of STAg also preserved blood-brain barrier function, reduced ECM symptoms, and significantly decreased mortality. STAg treatment 24 h post-P. berghei infection led to a rapid increase in serum levels of interleukin 12 (IL-12) and gamma interferon (IFN-γ). By 5 days after P. berghei infection, STAg-treated mice had reduced IFN-γ levels compared to those of mock-treated mice, suggesting that reductions in IFN-γ at the time of ECM onset protected against lethality. Using IL-10- and IL-12βR-deficient mice, we found that STAg-induced protection from ECM is IL-10 independent but IL-12 dependent. Treatment of P. berghei-infected mice with recombinant IL-12 significantly decreased parasitemia and mortality. These data suggest that IL-12, either induced by STAg or injected as a recombinant protein, mediates protection from ECM-associated pathology potentially through early induction of IFN-γ and reduction in parasitemia. These results highlight the importance of early IL-12 induction in protection against ECM.
Collapse
|
17
|
Abstract
Within days after infection, natural killer (NK) cells are recruited to the lungs and play an essential role in the immune response against influenza infection. Through interactions with the virus itself, as well as viral-infected cells, NK cells secrete a variety of cytokines and can contain viral replication by killing infected cells early after influenza infection. However, the virus has means of evading NK cell responses, including escaping NK cell recognition through mutation of the viral hemagglutinin (HA) protein, regulating HA levels, and by directly infecting and destroying NK cells. Although much of our understanding of NK cell role in influenza infection has come from animal models, there is increasing information from human infection. Studies conducted during the 2009 H1N1 pandemic provided much needed information on the importance of NK cells during human infection and suggest that NK lymphopenia may correlate with increased disease severity. However, more information on how different influenza virus subtypes influence NK cell levels and activities, the role of the different NK cell receptors in infection, and the impact of NK cells on human infection, particularly in high risk populations is needed.
Collapse
|
18
|
Hussa EA, Goodrich-Blair H. It Takes a Village: Ecological and Fitness Impacts of Multipartite Mutualism. Annu Rev Microbiol 2013; 67:161-78. [DOI: 10.1146/annurev-micro-092412-155723] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elizabeth A. Hussa
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706; ,
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706; ,
| |
Collapse
|
19
|
Belser JA, Tumpey TM. H5N1 pathogenesis studies in mammalian models. Virus Res 2013; 178:168-85. [PMID: 23458998 DOI: 10.1016/j.virusres.2013.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/14/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
H5N1 influenza viruses are capable of causing severe disease and death in humans, and represent a potential pandemic subtype should they acquire a transmissible phenotype. Due to the expanding host and geographic range of this virus subtype, there is an urgent need to better understand the contribution of both virus and host responses following H5N1 virus infection to prevent and control human disease. The use of mammalian models, notably the mouse and ferret, has enabled the detailed study of both complex virus-host interactions as well as the contribution of individual viral proteins and point mutations which influence virulence. In this review, we describe the behavior of H5N1 viruses which exhibit high and low virulence in numerous mammalian species, and highlight the contribution of inoculation route to virus pathogenicity. The involvement of host responses as studied in both inbred and outbred mammalian models is discussed. The roles of individual viral gene products and molecular determinants which modulate the severity of H5N1 disease in vivo are presented. This research contributes not only to our understanding of influenza virus pathogenesis, but also identifies novel preventative and therapeutic targets to mitigate the disease burden caused by avian influenza viruses.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | | |
Collapse
|
20
|
Current world literature. Curr Opin Infect Dis 2012; 25:718-28. [PMID: 23147811 DOI: 10.1097/qco.0b013e32835af239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Swedin L, Arrighi R, Andersson-Willman B, Murray A, Chen Y, Karlsson MCI, Georén SK, Tkach AV, Shvedova AA, Fadeel B, Barragan A, Scheynius A. Pulmonary exposure to single-walled carbon nanotubes does not affect the early immune response against Toxoplasma gondii. Part Fibre Toxicol 2012; 9:16. [PMID: 22621311 PMCID: PMC3495637 DOI: 10.1186/1743-8977-9-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/05/2012] [Indexed: 01/28/2023] Open
Abstract
Background Single-walled carbon nanotubes (SWCNT) trigger pronounced inflammation and fibrosis in the lungs of mice following administration via pharyngeal aspiration or inhalation. Human exposure to SWCNT in an occupational setting may occur in conjunction with infections and this could yield enhanced or suppressed responses to the offending agent. Here, we studied whether the sequential exposure to SWCNT via pharyngeal aspiration and infection of mice with the ubiquitous intracellular parasite Toxoplasma gondii would impact on the immune response of the host against the parasite. Methods C57BL/6 mice were pre-exposed by pharyngeal administration of SWCNT (80 + 80 μg/mouse) for two consecutive days followed by intravenous injection with either 1x103 or 1x104 green fluorescence protein and luciferase-expressing T. gondii tachyzoites. The dissemination of T. gondii was monitored by in vivo bioluminescence imaging in real time for 7 days and by plaque formation. The inflammatory response was analysed in bronchoalveolar lavage (BAL) fluid, and by assessment of morphological changes and immune responses in lung and spleen. Results There were no differences in parasite distribution between mice only inoculated with T. gondii or those mice pre-exposed for 2 days to SWCNT before parasite inoculum. Lung and spleen histology and inflammation markers in BAL fluid reflected the effects of SWCNT exposure and T. gondii injection, respectively. We also noted that CD11c positive dendritic cells but not F4/80 positive macrophages retained SWCNT in the lungs 9 days after pharyngeal aspiration. However, co-localization of T. gondii with CD11c or F4/80 positive cells could not be observed in lungs or spleen. Pre-exposure to SWCNT did not affect the splenocyte response to T. gondii. Conclusions Taken together, our data indicate that pre-exposure to SWCNT does not enhance or suppress the early immune response to T. gondii in mice.
Collapse
Affiliation(s)
- Linda Swedin
- Institute of Environmental Medicine, Division of Molecular Toxicology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|