1
|
Neghabi Hajigha M, Hajikhani B, Vaezjalali M, Samadi Kafil H, Kazemzadeh Anari R, Goudarzi M. Antiviral and antibacterial peptides: Mechanisms of action. Heliyon 2024; 10:e40121. [PMID: 39748995 PMCID: PMC11693924 DOI: 10.1016/j.heliyon.2024.e40121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 01/04/2025] Open
Abstract
Antimicrobial peptides (AMPs) present promising alternatives for addressing bacterial and viral multidrug resistance due to their distinctive properties. Understanding the mechanisms of these compounds is essential for achieving this objective. Therefore, this comprehensive review aims to highlight primary natural sources of AMPs and elucidate various aspects of the modes of action of antiviral and antibacterial peptides (ABPs). It emphasizes that antiviral peptides (AVPs) can disrupt the replication cycle of both enveloped and non-enveloped viruses at several stages, including pre-fusion, fusion, and post-entry into the host cell. Additionally, the review discusses the inhibitory effects of ABPs on bacterial growth, outlining their extracellular actions as well as their intracellular activities following membrane translocation. Factors such as structure, size, electric charge, environmental factors, degrading enzymes, and microbial resistance against AMPs can affect the function of AMPs.
Collapse
Affiliation(s)
- Mahdyeh Neghabi Hajigha
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vaezjalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raana Kazemzadeh Anari
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Chen T, Grauffel C, Yang WZ, Chen YP, Yuan HS, Lim C. Efficient Strategy to Design Protease Inhibitors: Application to Enterovirus 71 2A Protease. ACS BIO & MED CHEM AU 2022; 2:437-449. [PMID: 37102167 PMCID: PMC10125330 DOI: 10.1021/acsbiomedchemau.2c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
One strategy to counter viruses that persistently cause outbreaks is to design molecules that can specifically inhibit an essential multifunctional viral protease. Herein, we present such a strategy using well-established methods to first identify a region present only in viral (but not human) proteases and find peptides that can bind specifically to this "unique" region by maximizing the protease-peptide binding free energy iteratively using single-point mutations starting with the substrate peptide. We applied this strategy to discover pseudosubstrate peptide inhibitors for the multifunctional 2A protease of enterovirus 71 (EV71), a key causative pathogen for hand-foot-and-mouth disease affecting young children, along with coxsackievirus A16. Four peptide candidates predicted to bind EV71 2A protease more tightly than the natural substrate were experimentally validated and found to inhibit protease activity. Furthermore, the crystal structure of the best pseudosubstrate peptide bound to the EV71 2A protease was determined to provide a molecular basis for the observed inhibition. Since the 2A proteases of EV71 and coxsackievirus A16 share nearly identical sequences and structures, our pseudosubstrate peptide inhibitor may prove useful in inhibiting the two key pathogens of hand-foot-and-mouth disease.
Collapse
Affiliation(s)
- Ting Chen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Cédric Grauffel
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Zen Yang
- Institute
of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Ping Chen
- Institute
of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hanna S. Yuan
- Institute
of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300 Taiwan
| |
Collapse
|
3
|
Freitas ED, Bataglioli RA, Oshodi J, Beppu MM. Antimicrobial peptides and their potential application in antiviral coating agents. Colloids Surf B Biointerfaces 2022; 217:112693. [PMID: 35853393 PMCID: PMC9262651 DOI: 10.1016/j.colsurfb.2022.112693] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
Coronavirus pandemic has evidenced the importance of creating bioactive materials to mitigate viral infections, especially in healthcare settings and public places. Advances in antiviral coatings have led to materials with impressive antiviral performance; however, their application may face health and environmental challenges. Bio-inspired antimicrobial peptides (AMPs) are suitable building blocks for antimicrobial coatings due to their versatile design, scalability, and environmentally friendly features. This review presents the advances and opportunities on the AMPs to create virucidal coatings. The review first describes the fundamental characteristics of peptide structure and synthesis, highlighting the recent findings on AMPs and the role of peptide structure (α-helix, β-sheet, random, and cyclic peptides) on the virucidal mechanism. The following section presents the advances in AMPs coating on medical devices with a detailed description of the materials coated and the targeted pathogens. The use of peptides in vaccine formulations is also reported, emphasizing the molecular interaction of peptides with different viruses and the current clinical stage of each formulation. The role of several materials (metallic particles, inorganic materials, and synthetic polymers) in the design of antiviral coatings is also presented, discussing the advantages and the drawbacks of each material. The final section offers future directions and opportunities for using AMPs on antiviral coatings to prevent viral outbreaks.
Collapse
Affiliation(s)
- Emanuelle D Freitas
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, São Paulo 13083-852, Brazil
| | - Rogério A Bataglioli
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, São Paulo 13083-852, Brazil
| | - Josephine Oshodi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Marisa M Beppu
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, São Paulo 13083-852, Brazil.
| |
Collapse
|
4
|
Anasir MI, Zarif F, Poh CL. Antivirals blocking entry of enteroviruses and therapeutic potential. J Biomed Sci 2021; 28:10. [PMID: 33451326 PMCID: PMC7811253 DOI: 10.1186/s12929-021-00708-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/08/2021] [Indexed: 01/26/2023] Open
Abstract
Viruses from the genus Enterovirus (EV) of the Picornaviridae family are known to cause diseases such as hand foot and mouth disease (HFMD), respiratory diseases, encephalitis and myocarditis. The capsid of EV is an attractive target for the development of direct-acting small molecules that can interfere with viral entry. Some of the capsid binders have been evaluated in clinical trials but the majority have failed due to insufficient efficacy or unacceptable off-target effects. Furthermore, most of the capsid binders exhibited a low barrier to resistance. Alternatively, host-targeting inhibitors such as peptides derived from the capsid of EV that can recognize cellular receptors have been identified. However, the majority of these peptides displayed low anti-EV potency (µM range) as compared to the potency of small molecule compounds (nM range). Nonetheless, the development of anti-EV peptides is warranted as they may complement the small-molecules in a drug combination strategy to treat EVs. Lastly, structure-based approach to design antiviral peptides should be utilized to unearth potent anti-EV peptides.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Faisal Zarif
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
5
|
Basnet S, Palmenberg AC, Gern JE. Rhinoviruses and Their Receptors. Chest 2019; 155:1018-1025. [PMID: 30659817 DOI: 10.1016/j.chest.2018.12.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Accepted: 12/28/2018] [Indexed: 01/14/2023] Open
Abstract
Human rhinoviruses (RVs) are picornaviruses that can cause a variety of upper and lower respiratory tract illnesses, including the common cold, bronchitis, pneumonia, and exacerbations of chronic respiratory diseases such as asthma. There are currently > 160 known types of RVs classified into three species (A, B, and C) that use three different cellular membrane glycoproteins expressed in the respiratory epithelium to enter the host cell. These viral receptors are intercellular adhesion molecule 1 (used by the majority of RV-A and all RV-B types), low-density lipoprotein receptor family members (used by 12 RV-A types), and cadherin-related family member 3 (CDHR3; used by RV-C). RV-A and RV-B interactions with intercellular adhesion molecule 1 and low-density lipoprotein receptor glycoproteins are well defined and their cellular functions have been described, whereas the mechanisms of the RV-C interaction with CDHR3 and its cellular functions are being studied. A single nucleotide polymorphism (rs6967330) in CDHR3 increases cell surface expression of this protein and, as a result, also promotes RV-C infections and illnesses. There are currently no approved vaccines or antiviral therapies available to treat or prevent RV infections, which is a major unmet medical need. Understanding interactions between RV and cellular receptors could lead to new insights into the pathogenesis of respiratory illnesses as well as lead to new approaches to control respiratory illnesses caused by RV infections.
Collapse
Affiliation(s)
- Sarmila Basnet
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI.
| | - Ann C Palmenberg
- Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI
| | - James E Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
6
|
Yang X, Cheng A, Wang M, Jia R, Sun K, Pan K, Yang Q, Wu Y, Zhu D, Chen S, Liu M, Zhao XX, Chen X. Structures and Corresponding Functions of Five Types of Picornaviral 2A Proteins. Front Microbiol 2017; 8:1373. [PMID: 28785248 PMCID: PMC5519566 DOI: 10.3389/fmicb.2017.01373] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/06/2017] [Indexed: 11/27/2022] Open
Abstract
Among the few non-structural proteins encoded by the picornaviral genome, the 2A protein is particularly special, irrespective of structure or function. During the evolution of the Picornaviridae family, the 2A protein has been highly non-conserved. We believe that the 2A protein in this family can be classified into at least five distinct types according to previous studies. These five types are (A) chymotrypsin-like 2A, (B) Parechovirus-like 2A, (C) hepatitis-A-virus-like 2A, (D) Aphthovirus-like 2A, and (E) 2A sequence of the genus Cardiovirus. We carried out a phylogenetic analysis and found that there was almost no homology between each type. Subsequently, we aligned the sequences within each type and found that the functional motifs in each type are highly conserved. These different motifs perform different functions. Therefore, in this review, we introduce the structures and functions of these five types of 2As separately. Based on the structures and functions, we provide suggestions to combat picornaviruses. The complexity and diversity of the 2A protein has caused great difficulties in functional and antiviral research. In this review, researchers can find useful information on the 2A protein and thus conduct improved antiviral research.
Collapse
Affiliation(s)
- Xiaoyao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
7
|
Da Costa L, Roche M, Scheers E, Coluccia A, Neyts J, Terme T, Leyssen P, Silvestri R, Vanelle P. VP1 crystal structure-guided exploration and optimization of 4,5-dimethoxybenzene-based inhibitors of rhinovirus 14 infection. Eur J Med Chem 2016; 115:453-62. [PMID: 27049678 DOI: 10.1016/j.ejmech.2016.03.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 01/26/2023]
Abstract
Human rhinoviruses (HRV) are the predominant cause of common colds and flu-like illnesses, but are also responsible for virus-induced exacerbations of asthma and chronic obstructive pulmonary disease. However, to date, no drug has been approved yet for clinical use. In this study, we present the results of the structure-based lead optimization of a class of new small-molecule inhibitors that we previously reported to bind into the pocket beneath the canyon of the VP1 protein. A small series of analogues that we designed based on the available structure and interaction data were synthesized and evaluated for their potency to inhibit the replication of HRV serotype 14. 2-(4,5-Dimethoxy-2-nitrophenyl)-1-(4-(pyridin-4-yl)phenyl)ethanol (3v) was found to be a potent inhibitor exhibiting micromolar activity (EC50 = 3.4 ± 1.0 μM) with a toxicity for HeLa cells that was significantly lower than that of our previous hit (LPCRW_0005, CC50 = 104.0 ± 22.2 μM; 3v, CC50 > 263 μM).
Collapse
Affiliation(s)
- Laurène Da Costa
- Aix-Marseille Université, Institut de Chimie Radicalaire, UMR 7273 CNRS, 27 Boulevard Jean Moulin, Marseille, France
| | - Manon Roche
- Aix-Marseille Université, Institut de Chimie Radicalaire, UMR 7273 CNRS, 27 Boulevard Jean Moulin, Marseille, France
| | - Els Scheers
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Antonio Coluccia
- Institut Pasteur Italy, Department of Drug Chemistry and Technologies, Sapienza University, I-00185 Rome, Italy
| | - Johan Neyts
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Thierry Terme
- Aix-Marseille Université, Institut de Chimie Radicalaire, UMR 7273 CNRS, 27 Boulevard Jean Moulin, Marseille, France
| | - Pieter Leyssen
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Romano Silvestri
- Institut Pasteur Italy, Department of Drug Chemistry and Technologies, Sapienza University, I-00185 Rome, Italy.
| | - Patrice Vanelle
- Aix-Marseille Université, Institut de Chimie Radicalaire, UMR 7273 CNRS, 27 Boulevard Jean Moulin, Marseille, France.
| |
Collapse
|
8
|
Poelman R, Schuffenecker I, Van Leer-Buter C, Josset L, Niesters HGM, Lina B. European surveillance for enterovirus D68 during the emerging North-American outbreak in 2014. J Clin Virol 2015; 71:1-9. [PMID: 26364237 DOI: 10.1016/j.jcv.2015.07.296] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/13/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND In August and September 2014, unexpected clusters of enterovirus-D68 (EV-D68) infections associated with severe respiratory disease emerged from North-America. In September, the European Centre for Disease Prevention and Control (ECDC) asked European countries to strengthen respiratory sample screening for enterovirus detection and typing in cases with severe respiratory presentations. OBJECTIVES To provide a detailed picture of EV-D68 epidemiology in Europe by conducting a retrospective and prospective laboratory analysis of clinical specimens. STUDY DESIGN An initiative supported by the European Society for Clinical Virology (ESCV) and ECDC was launched to screen for EV-D68 in respiratory specimens between July 1st and December 1st 2014 in Europe and to sequence the VP1 region of detected viruses for phylogenetic analytic purposes. RESULTS Forty-two institutes, representing 51 laboratories from 17 European countries, analyzed 17,248 specimens yielding 389 EV-D68 positive samples (2.26%) in 14 countries. The proportion of positive samples ranged between 0 and 25% per country. These infections resulted primarily in mild respiratory disease, mainly detected in young children presenting with wheezing and in immuno-compromised adults. The viruses detected in Europe are genetically very similar to those of the North-American epidemic and the majority (83%) could be assigned to clade B. Except for 3 acute flaccid paralysis (AFP) cases, one death and limited ICU admissions, no severe cases were reported. CONCLUSIONS The European study showed that EV-D68 circulated in Europe during summer and fall of 2014 with a moderate disease burden and different pathogenic profile compared to the North-American epidemic.
Collapse
Affiliation(s)
- Randy Poelman
- The University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Division of Clinical Virology, Groningen, The Netherlands.
| | - Isabelle Schuffenecker
- National Enterovirus Reference Centre, Laboratoire de Virologie, Centre de Biologie Est des Hospices Civils de Lyon, Bron, France
| | - Coretta Van Leer-Buter
- The University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Division of Clinical Virology, Groningen, The Netherlands
| | - Laurence Josset
- National Enterovirus Reference Centre, Laboratoire de Virologie, Centre de Biologie Est des Hospices Civils de Lyon, Bron, France; Virpath Lab, EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Université de Lyon, Lyon, France
| | - Hubert G M Niesters
- The University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Division of Clinical Virology, Groningen, The Netherlands
| | - Bruno Lina
- National Enterovirus Reference Centre, Laboratoire de Virologie, Centre de Biologie Est des Hospices Civils de Lyon, Bron, France; Virpath Lab, EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Université de Lyon, Lyon, France
| | | |
Collapse
|
9
|
Identification of luteolin as enterovirus 71 and coxsackievirus A16 inhibitors through reporter viruses and cell viability-based screening. Viruses 2014; 6:2778-95. [PMID: 25036464 PMCID: PMC4113793 DOI: 10.3390/v6072778] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/28/2014] [Accepted: 07/07/2014] [Indexed: 12/11/2022] Open
Abstract
Hand, foot and mouth disease (HFMD) is a common pediatric illness mainly caused by infection with enterovirus 71 (EV71) and coxsackievirus A16 (CA16). The frequent HFMD outbreaks have become a serious public health problem. Currently, no vaccine or antiviral drug for EV71/CA16 infections has been approved. In this study, a two-step screening platform consisting of reporter virus-based assays and cell viability‑based assays was developed to identify potential inhibitors of EV71/CA16 infection. Two types of reporter viruses, a pseudovirus containing luciferase-encoding RNA replicons encapsidated by viral capsid proteins and a full-length reporter virus containing enhanced green fluorescent protein, were used for primary screening of 400 highly purified natural compounds. Thereafter, a cell viability-based secondary screen was performed for the identified hits to confirm their antiviral activities. Three compounds (luteolin, galangin, and quercetin) were identified, among which luteolin exhibited the most potent inhibition of viral infection. In the cell viability assay and plaque reduction assay, luteolin showed similar 50% effective concentration (EC50) values of about 10 μM. Luteolin targeted the post-attachment stage of EV71 and CA16 infection by inhibiting viral RNA replication. This study suggests that luteolin may serve as a lead compound to develop potent anti-EV71 and CA16 drugs.
Collapse
|
10
|
An open conformation determined by a structural switch for 2A protease from coxsackievirus A16. Protein Cell 2013; 4:782-92. [PMID: 24026848 DOI: 10.1007/s13238-013-3914-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/10/2013] [Indexed: 01/23/2023] Open
Abstract
Coxsackievirus A16 belongs to the family Picornaviridae, and is a major agent of hand-foot-and-mouth disease that infects mostly children, and to date no vaccines or antiviral therapies are available. 2A protease of enterovirus is a nonstructural protein and possesses both self-cleavage activity and the ability to cleave the eukaryotic translation initiation factor 4G. Here we present the crystal structure of coxsackievirus A16 2A protease, which interestingly forms hexamers in crystal as well as in solution. This structure shows an open conformation, with its active site accessible, ready for substrate binding and cleavage activity. In conjunction with a previously reported "closed" state structure of human rhinovirus 2, we were able to develop a detailed hypothesis for the conformational conversion triggered by two "switcher" residues Glu88 and Tyr89 located within the bll2-cII loop. Substrate recognition assays revealed that amino acid residues P1', P2 and P4 are essential for substrate specificity, which was verified by our substrate binding model. In addition, we compared the in vitro cleavage efficiency of 2A proteases from coxsackievirus A16 and enterovirus 71 upon the same substrates by fluorescence resonance energy transfer (FRET), and observed higher protease activity of enterovirus 71 compared to that of coxsackievirus A16. In conclusion, our study shows an open conformation of coxsackievirus A16 2A protease and the underlying mechanisms for conformational conversion and substrate specificity. These new insights should facilitate the future rational design of efficient 2A protease inhibitors.
Collapse
|
11
|
Shang B, Deng C, Ye H, Xu W, Yuan Z, Shi PY, Zhang B. Development and characterization of a stable eGFP enterovirus 71 for antiviral screening. Antiviral Res 2012; 97:198-205. [PMID: 23267829 DOI: 10.1016/j.antiviral.2012.12.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/06/2012] [Accepted: 12/15/2012] [Indexed: 11/18/2022]
Abstract
Enterovirus 71 (EV71) is one of the major causative agents for hand, foot, and mouth disease. There is currently no clinically approved vaccine or antiviral treatment for EV71 infection. To facilitate antiviral drug discovery, we developed an infectious cDNA clone of an epidemic strain of EV71 and a stable eGFP reporter EV71. The reporter virus was generated by engineering the eGFP gene between the 5' untranslated region and VP4 gene of the EV71 genome. Vero cells transfected with the cDNA clone-derived RNA generated high titers (>10(6)PFU/ml) of the eGFP reporter virus. The reporter virus was infectious to Vero cells, producing robust eGFP fluorescence signals. Compared with the wild type virus, the reporter virus replicated slower in cell culture. To examine the stability of the reporter virus, we continuously passaged the virus on Vero cells for five rounds. The passaged viruses maintained the eGFP gene, demonstrating the stability of the reporter virus. Using a known EV71 inhibitor, we demonstrate that the reporter virus could be used for antiviral screening. The infectious cDNA clones of the wild type virus and the eGFP reporter viruses will be useful for antiviral research as well as for studying viral replication and pathogenesis of EV71.
Collapse
Affiliation(s)
- Baodi Shang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Science, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Bek EJ, McMinn PC. The Pathogenesis and Prevention of Encephalitis due to Human Enterovirus 71. Curr Infect Dis Rep 2012; 14:397-407. [PMID: 22639066 DOI: 10.1007/s11908-012-0267-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human enterovirus 71 (HEV71) has emerged as a major cause of viral encephalitis in Southeast Asia, with increased epidemic activity observed since 1997. This is reflected in a large increase in scientific publications relating directly to HEV71. New research is elucidating details of the viral life cycle, confirming similarities between HEV71 and other enteroviruses. Scavenger receptor B2 (SCARB2) is a receptor for HEV71, although other receptors are likely to be identified. Currently, the only strategies to prevent HEV71-associated disease are early diagnosis and aggressive supportive management of identified cases. As more information emerges regarding the molecular processes of HEV71 infection, further advances may lead to the development of effective antiviral treatments and ultimately a vaccine-protection strategy. The protective efficacies of several inactivated HEV71 vaccines have been confirmed in animal models, suggesting that an effective vaccine may become available in the next decade.
Collapse
Affiliation(s)
- Emily Jane Bek
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Blackburn Building D06, Sydney, NSW, 2006, Australia
| | | |
Collapse
|