1
|
Capone A, Lo Presti A, Sernicola L, Farcomeni S, Ferrantelli F, Maggiorella MT, Mee ET, Rose NJ, Cella E, Ciccozzi M, Ensoli B, Borsetti A. Genetic diversity in the env V1-V2 region of proviral quasispecies from long-term controller MHC-typed cynomolgus macaques infected with SHIVSF162P4cy. J Gen Virol 2018; 99:1717-1728. [PMID: 30311877 DOI: 10.1099/jgv.0.001159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intra-host evolution of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) has been shown by viral RNA analysis in subjects who naturally suppress plasma viremia to low levels, known as controllers. However, little is known about the variability of proviral DNA and the inter-relationships among contained systemic viremia, rate of reservoir reseeding and specific major histocompatibility complex (MHC) genotypes, in controllers. Here, we analysed the proviral DNA quasispecies of the env V1-V2 region, in PBMCs and in anatomical compartments of 13 long-term controller monkeys after 3.2 years of infection with simian/human immunodeficiency virus (SHIV)SF162P4cy. A considerable variation in the genetic diversity of proviral quasispecies was present among animals. Seven monkeys exhibited env V1-V2 proviral populations composed of both clusters of identical ancestral sequences and new variants, whereas the other six monkeys displayed relatively high env V1-V2 genetic diversity with a large proportion of diverse novel sequences. Our results demonstrate that in SHIVSF162P4cy-infected monkeys there exists a disparate pattern of intra-host viral diversity and that reseeding of the proviral reservoir occurs in some animals. Moreover, even though no particular association has been observed between MHC haplotypes and the long-term control of infection, a remarkably similar pattern of intra-host viral diversity and divergence was found within animals carrying the M3 haplotype. This suggests that in animals bearing the same MHC haplotype and infected with the same virus, viral diversity follows a similar pattern with similar outcomes and control of infection.
Collapse
Affiliation(s)
- Alessia Capone
- 1National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy.,2Neuroimmunology Laboratory, Fondazione Santa Lucia, Rome, Italy.,3Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Alessandra Lo Presti
- 4Department of Infectious Diseases, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Leonardo Sernicola
- 1National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Stefania Farcomeni
- 1National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Flavia Ferrantelli
- 5National Center for Global Health, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Maria T Maggiorella
- 1National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Edward T Mee
- 6Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare product Regulatory Agency, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Nicola J Rose
- 6Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare product Regulatory Agency, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Eleonora Cella
- 7Medical statistic and molecular epidemiology unit, University campus bio medico, Roma, Italy
| | - Massimo Ciccozzi
- 7Medical statistic and molecular epidemiology unit, University campus bio medico, Roma, Italy
| | - Barbara Ensoli
- 1National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Alessandra Borsetti
- 1National HIV/AIDS Research Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
2
|
Okamura T, Tsujimura Y, Soma S, Takahashi I, Matsuo K, Yasutomi Y. Simian immunodeficiency virus SIVmac239 infection and simian human immunodeficiency virus SHIV89.6P infection result in progression to AIDS in cynomolgus macaques of Asian origin. J Gen Virol 2016; 97:3413-3426. [PMID: 27902330 DOI: 10.1099/jgv.0.000641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Simian immunodeficiency virus (SIV) infection models in cynomolgus macaques are important for analysis of the pathogenesis of immunodeficiency virus and for studies on the efficacy of new vaccine candidates. However, very little is known about the pathogenesis of SIV or simian human immunodeficiency virus (SHIV) in cynomolgus macaques from different Asian countries. In the present study, we analysed the infectivity and pathogenicity of CCR5-tropic SIVmac and those of dual-tropic SHIV89.6P inoculated into cynomolgus macaques in Indonesian, Malaysian or Philippine origin. The plasma viral loads in macaques infected with either SIVmac239 or SHIV89.6P were maintained at high levels. CD4+ T cell levels in macaques infected with SIVmac239 gradually decreased. All of the macaques infected with SHIV89.6P showed greatly reduced CD4+ T-cell numbers within 6 weeks of infection. Eight of the 11 macaques infected with SIVmac239 were killed due to AIDS symptoms after 2-4.5 years, while four of the five macaques infected with SHIV89.6P were killed due to AIDS symptoms after 1-3.5 years. We also analysed cynomolgus macaques infected intrarectally with repeated low, medium or high doses of SIVmac239, SIVmac251 or SHIV89.6P. Infection was confirmed by quantitative RT-PCR at more than 5000, 300 and 500 TCID50 for SIVmac239, SIVmac251 and SHIV89.6P, respectively. The present study indicates that cynomolgus macaques of Asian origin are highly susceptible to SIVmac and SHIV infection by both intravenous and mucosal routes. These models will be useful for studies on virus pathogenesis, vaccination and therapeutics against human immunodeficiency virus/AIDS.
Collapse
Affiliation(s)
- Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Yusuke Tsujimura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Shogo Soma
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan.,Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Ichiro Takahashi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Kazuhiro Matsuo
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo 204-0022, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan.,Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
3
|
Early SIV Dissemination After Intrarectal SIVmac251 Challenge Was Associated With Proliferating Virus-Susceptible Cells in the Colorectum. J Acquir Immune Defic Syndr 2016; 71:353-8. [PMID: 26545123 DOI: 10.1097/qai.0000000000000890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Few studies have examined the eclipse time of simian immunodeficiency virus/HIV infection through the anal route. We aimed to measure the eclipse time after SIVmac251 intrarectal inoculation, and to investigate the factor(s) associated with early dissemination. DESIGN Forty macaques were intrarectally challenged with SIVmac251 3 times at 2-week intervals. METHODS Plasma viral RNA was monitored at 4, 7, 11, 14, 21, and 28 days after infection. Rectal/vaginal tissues were obtained and tissue viral loads (VLs) were measured at day 14 postinfection. RESULTS Of 40 macaques 26 (65%) had first detectable viral RNAs in the plasma at day 7 after the challenge that led to productive infection. Strikingly, 6 animals (15%) had detectable viral RNA in the plasma as early as at day 4. The Ki67 viral target CD4 T cells in the colorectal tissues were significantly higher in the early or middle-transmitter groups than those in the late-transmitter group. The rectal VL did not correlate with plasma VL at 14-day postinoculation, but did positively correlate with plasma VLs at days 21 and 28 postinfection. CONCLUSIONS The median eclipse time after intrarectal challenge was 7 days, with a few early transmitters at 4 days. More rapid viral dissemination was associated with a high frequency of colorectal Ki67CCR5CD4T cells, which fuel the local viral replication. Furthermore, local viral replication in the colorectal tissue during the early stage might affect the plasma VL in a delayed manner. Therefore, to reduce/limit these target cells at the portal of viral entry is essential.
Collapse
|
4
|
Generation and characterization of an HIV-1 subtype C transmitted and early founder virus consensus sequence. AIDS Res Hum Retroviruses 2014; 30:1001-5. [PMID: 25025284 DOI: 10.1089/aid.2014.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tight bottleneck during HIV-1 transmission generally results in only a single virus variant being transmitted. Investigation of the HIV-1 envelope glycoprotein (Env) can identify vulnerabilities of transmitting viruses that can be targeted by vaccines designed to elicit protection against global HIV-1. This study generated an HIV-1 subtype C consensus transmitted and early founder virus Env (EnvFVC) after detailed sequence analysis of 1,894 env genes obtained from 80 acutely infected individuals from South Africa, Malawi, and Zambia. The inferred EnvFVC sequence incorporates characteristics of transmitted and early founder viruses and results in the expression of a functional and conformationally intact Env. Overall, the "subtype-based" or "region-based" EnvFVC described here can be used in the development of a useful immunogen for novel vaccine design.
Collapse
|
5
|
Tsai L, Tasovski I, Leda AR, Chin MPS, Cheng-Mayer C. The number and genetic relatedness of transmitted/founder virus impact clinical outcome in vaginal R5 SHIVSF162P3N infection. Retrovirology 2014; 11:22. [PMID: 24612462 PMCID: PMC3975242 DOI: 10.1186/1742-4690-11-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/23/2014] [Indexed: 12/31/2022] Open
Abstract
Background Severe genetic bottleneck occurs during HIV-1 sexual transmission whereby most infections are initiated by a single transmitted/founder (T/F) virus. Similar observations had been made in nonhuman primates exposed mucosally to SIV/SHIV. We previously reported variable clinical outcome in rhesus macaques inoculated intravaginally (ivg) with a high dose of R5 SHIVSF162P3N. Given the potential contributions of viral diversity to HIV-1 persistence and AIDS pathogenesis and recombination between retroviral genomes increases the genetic diversity, we tested the hypothesis that transmission of multiple variants contributes to heightened levels of virus replication and faster disease progression in the SHIVSF162P3N ivg-infected monkeys. Results We found that the differences in viral replication and disease progression between the transiently viremic (TV; n = 2), chronically-infected (CP; n = 8) and rapid progressor (RP; n = 4) ivg-infected macaques cannot be explained by which variant in the inoculum was infecting the animal. Rather, transmission of a single variant was observed in both TV rhesus, with 1–2 T/F viruses found in the CPs and 2–4 in all four RP macaques. Moreover, the genetic relatedness of the T/F viruses in the CP monkeys with multivariant transmission was greater than that seen in the RPs. Biological characterization of a subset of T/F envelopes from chronic and rapid progressors revealed differences in their ability to mediate entry into monocyte-derived macrophages, with enhanced macrophage tropism observed in the former as compared to the latter. Conclusion Our study supports the tenet that sequence diversity of the infecting virus contributes to higher steady-state levels of HIV-1 virus replication and faster disease progression and highlights the role of macrophage tropism in HIV-1 transmission and persistence.
Collapse
Affiliation(s)
| | | | | | | | - Cecilia Cheng-Mayer
- Aaron Diamond AIDS Research Center, Aaron Diamond Professor at the Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Wood LF, Chahroudi A, Chen HL, Jaspan HB, Sodora DL. The oral mucosa immune environment and oral transmission of HIV/SIV. Immunol Rev 2014; 254:34-53. [PMID: 23772613 DOI: 10.1111/imr.12078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The global spread of human immunodeficiency virus (HIV) is dependent on the ability of this virus to efficiently cross from one host to the next by traversing a mucosal membrane. Unraveling how mucosal exposure of HIV results in systemic infection is critical for the development of effective therapeutic strategies. This review focuses on understanding the immune events associated with the oral route of transmission (via breastfeeding or sexual oral intercourse), which occurs across the oral and/or gastrointestinal mucosa. Studies in both humans and simian immunodeficiency virus (SIV) monkey models have identified viral changes and immune events associated with oral HIV/SIV exposure. This review covers our current knowledge of HIV oral transmission in both infants and adults, the use of SIV models in understanding early immune events, oral immune factors that modulate HIV/SIV susceptibility (including mucosal inflammation), and interventions that may impact oral HIV transmission rates. Understanding the factors that influence oral HIV transmission will provide the foundation for developing immune therapeutic and vaccine strategies that can protect both infants and adults from oral HIV transmission.
Collapse
Affiliation(s)
- Lianna F Wood
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
7
|
Genetic imprint of vaccination on simian/human immunodeficiency virus type 1 transmitted viral genomes in rhesus macaques. PLoS One 2013; 8:e70814. [PMID: 23967111 PMCID: PMC3743870 DOI: 10.1371/journal.pone.0070814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022] Open
Abstract
Understanding the genetic, antigenic and structural changes that occur during HIV-1 infection in response to pre-existing immunity will facilitate current efforts to develop an HIV-1 vaccine. Much is known about HIV-1 variation at the population level but little with regard to specific changes occurring in the envelope glycoprotein within a host in response to immune pressure elicited by antibodies. The aim of this study was to track and map specific early genetic changes occurring in the viral envelope gene following vaccination using a highly controlled viral challenge setting in the SHIV macaque model. We generated 449 full-length env sequences from vaccinees, and 63 from the virus inoculum. Analysis revealed a different pattern in the distribution and frequency of mutations in the regions of the envelope gene targeted by the vaccine as well as different patterns of diversification between animals in the naïve control group and vaccinees. Given the high stringency of the model it is remarkable that we were able to identify genetic changes associated with the vaccination. This work provides insight into the characterization of breakthrough viral populations in less than fully efficacious vaccines and illustrates the value of HIV-1 Env SHIV challenge model in macaques to unravel the mechanisms driving HIV-1 envelope genetic diversity in the presence of vaccine induced-responses.
Collapse
|
8
|
Ren W, Mumbauer A, Zhuang K, Harbison C, Knight H, Westmoreland S, Gettie A, Blanchard J, Cheng-Mayer C. Mucosal transmissibility, disease induction and coreceptor switching of R5 SHIVSF162P3N molecular clones in rhesus macaques. Retrovirology 2013; 10:9. [PMID: 23369442 PMCID: PMC3571932 DOI: 10.1186/1742-4690-10-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/25/2013] [Indexed: 11/18/2022] Open
Abstract
Background Mucosally transmissible and pathogenic CCR5 (R5)-tropic simian-human immunodeficiency virus (SHIV) molecular clones are useful reagents to identity neutralization escape in HIV-1 vaccine experiments and to study the envelope evolutionary process and mechanistic basis for coreceptor switch during the course of natural infection. Results We observed progression to AIDS in rhesus macaques infected intrarectally with molecular clones of the pathogenic R5 SHIVSF162P3N isolate. Expansion to CXCR4 usage was documented in one diseased macaque that mounted a neutralizing antibody response and in another that failed to do so, with the latter displaying a rapid progressor phenotype. V3 loop envelop glycoprotein gp120 sequence changes that are predictive of a CXCR4 (X4)-using phenotype in HIV-1 subtype B primary isolates, specifically basic amino acid substations at positions 11 (S11R), 24 (G24R) and 25 (D25K) of the loop were detected in the two infected macaques. Functional assays showed that envelopes with V3 S11R or D25K mutation were dual-tropic, infecting CD4+ target cells that expressed either the CCR5 or CXCR4 coreceptor. And, consistent with findings of coreceptor switching in macaques infected with the pathogenic isolate, CXCR4-using variant was first detected in the lymph node of the chronically infected rhesus monkey several weeks prior to its presence in peripheral blood. Moreover, X4 emergence in this macaque coincided with persistent peripheral CD4+ T cell loss and a decline in neutralizing antibody titer that are suggestive of immune deterioration, with macrophages as the major virus-producing cells at the end-stage of disease. Conclusions The data showed that molecular clones derived from the R5 SHIVSF162P3N isolate are mucosally transmissible and induced disease in a manner similar to that observed in HIV-1 infected individuals, providing a relevant and useful animal infection model for in-depth analyses of host selection pressures and the env evolutionary changes that influence disease outcome, coreceptor switching and vaccine escape.
Collapse
Affiliation(s)
- Wuze Ren
- Aaron Diamond AIDS Research Center, 455 First Ave,, 7th Floor, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chaillon A, Braibant M, Hué S, Bencharif S, Enard D, Moreau A, Samri A, Agut H, Barin F. Human immunodeficiency virus type-1 (HIV-1) continues to evolve in presence of broadly neutralizing antibodies more than ten years after infection. PLoS One 2012; 7:e44163. [PMID: 22957000 PMCID: PMC3431314 DOI: 10.1371/journal.pone.0044163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
Background The evolution of HIV-1 and its immune escape to autologous neutralizing antibodies (Nabs) during the acute/early phases of infection have been analyzed in depth in many studies. In contrast, little is known about neither the long-term evolution of the virus in patients who developed broadly Nabs (bNabs) or the mechanism of escape in presence of these bNabs. Results We have studied the viral population infecting a long term non progressor HIV-1 infected patient who had developed broadly neutralizing antibodies toward all tier 2/3 viruses (6 clades) tested, 9 years after infection, and was then followed up over 7 years. The autologous neutralization titers of the sequential sera toward env variants representative of the viral population significantly increased during the follow-up period. The most resistant pseudotyped virus was identified at the last visit suggesting that it represented a late emerging escape variant. We identified 5 amino acids substitutions that appeared associated with escape to broadly neutralizing antibodies. They were V319I/S, R/K355T, R/W429G, Q460E and G/T463E, in V3, C3 and V5 regions. Conclusion This study showed that HIV-1 may continue to evolve in presence of both broadly neutralizing antibodies and increasing autologous neutralizing activity more than 10 years post-infection.
Collapse
Affiliation(s)
- Antoine Chaillon
- Université François Rabelais, Inserm UMR 966, Tours, France
- CHU Bretonneau, Laboratoire de Virologie, CHU Bretonneau, Tours, France
| | | | - Stéphane Hué
- Centre for Medical Molecular Virology, University College London, London, United Kingdom
| | | | - David Enard
- Laboratoire Ecologie et Evolution CNRS UMR 7625- Ecole Normale supérieure, Paris, France
| | - Alain Moreau
- Université François Rabelais, Inserm UMR 966, Tours, France
| | - Assia Samri
- Université Pierre et Marie Curie, Inserm UMRS 945, IFR 113, Hôpital Pitié-Salpêtrière, Paris, France
| | - Henri Agut
- Université Pierre et Marie Curie, ER1 DETIV, Hôpital Pitié-Salpêtrière, Paris, France
| | - Francis Barin
- Université François Rabelais, Inserm UMR 966, Tours, France
- CHU Bretonneau, Laboratoire de Virologie, CHU Bretonneau, Tours, France
- * E-mail:
| |
Collapse
|
10
|
Pathogenic consequences of vaginal infection with CCR5-tropic simian-human immunodeficiency virus SHIVSF162P3N. J Virol 2012; 86:9432-42. [PMID: 22740397 DOI: 10.1128/jvi.00852-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We previously reported efficient transmission of the pathogenic R5 simian-human immunodeficiency virus SHIV(SF162P3N) isolate in Indian rhesus macaques by intravenous and intrarectal inoculations, with a switch to CXCR4 coreceptor usage in ∼50% of infected animals that progressed rapidly to disease. Since women continue to be disproportionately affected by HIV, we developed an animal model based on the intravaginal challenge of female rhesus monkeys with SHIV(SF162P3N) and sought to validate the utility of this model to study relevant aspects of HIV transmission and pathogenesis. The effect of viral dose on infection outcome was evaluated to determine the optimal conditions for the evaluation of HIV-1 preventive and therapeutic strategies. We found that the virus can successfully cross the vaginal mucosal surface to establish infection and induce disease with coreceptor switch, but with lower efficiencies compared to intravenous and rectal transmissions. In contrast to intrarectal infection, peak and cumulative viral load over a 1 year-infection period were significantly greater in macaques exposed intravaginally to lower rather than higher inoculum doses. Moreover, low and transient viremia was observed only in macaques that were challenged intravaginally twice within the same day with a high dose of virus, which can be seen as doubling the dose. Taken together, these results show that SHIV(SF162P3N) can successfully transmit across the genital mucosa, undergo coreceptor switch, and induce disease. However, the administered dose appears to impact SHIV(SF162P3N) vaginal infection outcome in an unexpected manner.
Collapse
|
11
|
Murcia PR, Hughes J, Battista P, Lloyd L, Baillie GJ, Ramirez-Gonzalez RH, Ormond D, Oliver K, Elton D, Mumford JA, Caccamo M, Kellam P, Grenfell BT, Holmes EC, Wood JLN. Evolution of an Eurasian avian-like influenza virus in naïve and vaccinated pigs. PLoS Pathog 2012; 8:e1002730. [PMID: 22693449 PMCID: PMC3364949 DOI: 10.1371/journal.ppat.1002730] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/19/2012] [Indexed: 12/21/2022] Open
Abstract
Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV) in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1) gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies. The latest human influenza pandemic highlights the ability of influenza viruses to jump species barriers and emerge in new hosts, as well as the role of pigs in generating viruses with pandemic potential. The mutational power of influenza virus, caused by intrinsically error-prone viral polymerases, has been directly linked to viral emergence, as adaptive mutations present in the reservoir host are likely to be key to the evolution of sustained transmission in new hosts. Hence, studying how mutations are generated, maintained and transmitted in and among pigs is critical to understanding how novel viruses could emerge. Here we characterized the evolution and mutational spectra of influenza virus populations within naïve and vaccinated pigs linked by natural transmission, by analyzing multiple viral sequences obtained at different times post-infection. We show that the genetic make-up of influenza viruses in pigs is highly dynamic: the frequency of particular mutations, including those that could potentially alter host specificity or result in vaccine escape, fluctuated markedly, including one rapid fixation event. We also show that co-infections are common and multiple viruses – even defective ones – were transmitted between pigs despite being vaccinated. Our results provide empirical evidence of the complex dynamics of influenza viral populations in pigs and provide insight on the evolutionary basis of RNA viral emergence.
Collapse
Affiliation(s)
- Pablo R. Murcia
- Cambridge Infectious Diseases Consortium, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Joseph Hughes
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Patrizia Battista
- Cambridge Infectious Diseases Consortium, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lucy Lloyd
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Newmarket, United Kingdom
| | - Gregory J. Baillie
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Doug Ormond
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Karen Oliver
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Debra Elton
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Newmarket, United Kingdom
| | - Jennifer A. Mumford
- Cambridge Infectious Diseases Consortium, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mario Caccamo
- The Genome Analysis Centre, Norwich Research Park, Norwich, United Kingdom
| | - Paul Kellam
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Bryan T. Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, Pennsylvania, United States of America
| | - Edward C. Holmes
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, Pennsylvania, United States of America
- Fogarty International Center, National Institute of Health, Bethesda, Maryland, United States of America
| | - James L. N. Wood
- Cambridge Infectious Diseases Consortium, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Zheng Q, Ruone S, Switzer WM, Heneine W, García-Lerma JG. Limited SHIV env diversification in macaques failing oral antiretroviral pre-exposure prophylaxis. Retrovirology 2012; 9:40. [PMID: 22571771 PMCID: PMC3464968 DOI: 10.1186/1742-4690-9-40] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 05/09/2012] [Indexed: 11/10/2022] Open
Abstract
Background Pre-exposure prophylaxis (PrEP) with daily Truvada [a combination of emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF)] is a novel HIV prevention strategy recently found to prevent HIV transmission among men who have sex with men and heterosexual couples. Acute infection in adherent persons who fail PrEP will inevitably occur under concurrent antiretroviral therapy, thus raising questions regarding the potential impact of PrEP on early viral dynamics. We investigated viral evolution dynamics in a macaque model of PrEP consisting of repeated rectal exposures to SHIV162P3 in the presence of PrEP. Results Four macaques were infected during daily or intermittent PrEP with FTC or FTC/TDF, and five were untreated controls. SHIV env sequence evolution was monitored by single genome amplification with phylogenetic and sequence analysis. Mean nucleotide divergence from transmitted founder viruses calculated 17 weeks (range = 12–20) post peak viremia was significantly lower in PrEP failures than in control animals (7.2 × 10-3 compared to 1.6 × 10-2 nucleotide substitutions per site per year, respectively, p < 0.0001). Mean virus diversity was also lower in PrEP failures after 17 weeks (0.13% vs. 0.53% in controls, p < 0.0001). Conclusions Our results in a macaque model of acute HIV infection suggest that infection during PrEP limits early virus evolution likely because of a direct antiviral effect of PrEP and/or reduced target cell availability. Reduced virus diversification during early infection might enhance immune control by slowing the selection of escape mutants.
Collapse
Affiliation(s)
- Qi Zheng
- National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
13
|
Hessell AJ, Haigwood NL. Neutralizing antibodies and control of HIV: moves and countermoves. Curr HIV/AIDS Rep 2012; 9:64-72. [PMID: 22203469 DOI: 10.1007/s11904-011-0105-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is now evident that powerful antibodies directed to conserved regions of HIV-1 envelope protein develop during chronic infection in some individuals and that these antibodies can neutralize a broad array of diverse isolates in vitro, so termed broadly neutralizing antibodies (bNAbs). A great deal of effort is directed internationally at understanding the ontogeny of NAbs during infection as well as in designing and testing immunogens that can elicit bNAbs in animal models and in humans. Given the parrying tactics of Env, multiple approaches, along with high-resolution structural studies, will be needed to reach a degree of understanding sufficient to design an effective vaccine. We discuss and note here some of the most important recent advances in our knowledge of how neutralizing antibodies develop in vivo, the recent discovery of extremely powerful neutralizing monoclonal antibodies isolated from natural infection, enhanced methodologies that have accelerated discoveries on both fronts, and the progress made in eliciting potent NAbs with limited breadth by vaccination.
Collapse
Affiliation(s)
- Ann J Hessell
- Pathobiology and Immunology Division, Oregon National Primate Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | |
Collapse
|
14
|
Gijsbers EF, Schuitemaker H, Kootstra NA. HIV-1 transmission and viral adaptation to the host. Future Virol 2012. [DOI: 10.2217/fvl.11.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
HIV-1 transmission predominantly occurs via mucosal transmission and blood–blood contact. In most newly infected individuals, outgrowth of a single virus variant has been described. This indicates that HIV-1 transmission is a very inefficient process and is restricted by an extensive transmission bottleneck. The transmission rate is directly correlated to the viral load in the donor and the susceptibility of the recipient, which is influenced by factors such as the integrity of mucosal barriers, target cell availability and genetic host factors. After establishment of infection in the new host, the viral population remains very homogenous until the host immune response drives evolution of the viral quasispecies. This review describes our current knowledge on HIV-1 transmission and recent insights in viral adaption to its host.
Collapse
Affiliation(s)
- Esther F Gijsbers
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
15
|
Tsibris AMN, Pal U, Schure AL, Veazey RS, Kunstman KJ, Henrich TJ, Klasse PJ, Wolinsky SM, Kuritzkes DR, Moore JP. SHIV-162P3 infection of rhesus macaques given maraviroc gel vaginally does not involve resistant viruses. PLoS One 2011; 6:e28047. [PMID: 22164225 PMCID: PMC3229503 DOI: 10.1371/journal.pone.0028047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/31/2011] [Indexed: 01/17/2023] Open
Abstract
Maraviroc (MVC) gels are effective at protecting rhesus macaques from vaginal SHIV transmission, but breakthrough infections can occur. To determine the effects of a vaginal MVC gel on infecting SHIV populations in a macaque model, we analyzed plasma samples from three rhesus macaques that received a MVC vaginal gel (day 0) but became infected after high-dose SHIV-162P3 vaginal challenge. Two infected macaques that received a placebo gel served as controls. The infecting SHIV-162P3 stock had an overall mean genetic distance of 0.294±0.027%; limited entropy changes were noted across the envelope (gp160). No envelope mutations were observed consistently in viruses isolated from infected macaques at days 14-21, the time of first detectable viremia, nor selected at later time points, days 42-70. No statistically significant differences in MVC susceptibilities were observed between the SHIV inoculum (50% inhibitory concentration [IC(50)] 1.87 nM) and virus isolated from the three MVC-treated macaques (MVC IC(50) 1.18 nM, 1.69 nM, and 1.53 nM, respectively). Highlighter plot analyses suggested that infection was established in each MVC-treated animal by one founder virus genotype. The expected Poisson distribution of pairwise Hamming Distance frequency counts was observed and a phylogenetic analysis did not identify infections with distinct lineages from the challenge stock. These data suggest that breakthrough infections most likely result from incomplete viral inhibition and not the selection of MVC-resistant variants.
Collapse
Affiliation(s)
- Athe M N Tsibris
- Massachusetts General Hospital, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|