1
|
Dostálková A, Křížová I, Junková P, Racková J, Kapisheva M, Novotný R, Danda M, Zvonařová K, Šinkovec L, Večerková K, Bednářová L, Ruml T, Rumlová M. Unveiling the DHX15-G-patch interplay in retroviral RNA packaging. Proc Natl Acad Sci U S A 2024; 121:e2407990121. [PMID: 39320912 PMCID: PMC11459146 DOI: 10.1073/pnas.2407990121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
We explored how a simple retrovirus, Mason-Pfizer monkey virus (M-PMV) to facilitate its replication process, utilizes DHX15, a cellular RNA helicase, typically engaged in RNA processing. Through advanced genetic engineering techniques, we showed that M-PMV recruits DHX15 by mimicking cellular mechanisms, relocating it from the nucleus to the cytoplasm to aid in viral assembly. This interaction is essential for the correct packaging of the viral genome and critical for its infectivity. Our findings offer unique insights into the mechanisms of viral manipulation of host cellular processes, highlighting a sophisticated strategy that viruses employ to leverage cellular machinery for their replication. This study adds valuable knowledge to the understanding of viral-host interactions but also suggests a common evolutionary history between cellular processes and viral mechanisms. This finding opens a unique perspective on the export mechanism of intron-retaining mRNAs in the packaging of viral genetic information and potentially develop ways to stop it.
Collapse
Affiliation(s)
- Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Petra Junková
- Institute of Organic Chemistry and Biochemistry Research Centre & Gilead Sciences, Czech Academy of Sciences, 166 10Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology166 28, Prague, Czech Republic
| | - Jana Racková
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Marina Kapisheva
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Radim Novotný
- Department of Biochemistry and Microbiology, University of Chemistry and Technology166 28, Prague, Czech Republic
| | - Matěj Danda
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Karolína Zvonařová
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Larisa Šinkovec
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Kateřina Večerková
- Department of Informatics and Chemistry, University of Chemistry and Technology, 166 28Prague, Czech Republic
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20Prague, Czech Republic
| | - Lucie Bednářová
- Institute of Organic Chemistry and Biochemistry Research Centre & Gilead Sciences, Czech Academy of Sciences, 166 10Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology166 28, Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| |
Collapse
|
2
|
Effect of Small Polyanions on In Vitro Assembly of Selected Members of Alpha-, Beta- and Gammaretroviruses. Viruses 2021; 13:v13010129. [PMID: 33477490 PMCID: PMC7831069 DOI: 10.3390/v13010129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
The assembly of a hexameric lattice of retroviral immature particles requires the involvement of cell factors such as proteins and small molecules. A small, negatively charged polyanionic molecule, myo-inositol hexaphosphate (IP6), was identified to stimulate the assembly of immature particles of HIV-1 and other lentiviruses. Interestingly, cryo-electron tomography analysis of the immature particles of two lentiviruses, HIV-1 and equine infectious anemia virus (EIAV), revealed that the IP6 binding site is similar. Based on this amino acid conservation of the IP6 interacting site, it is presumed that the assembly of immature particles of all lentiviruses is stimulated by IP6. Although this specific region for IP6 binding may be unique for lentiviruses, it is plausible that other retroviral species also recruit some small polyanion to facilitate the assembly of their immature particles. To study whether the assembly of retroviruses other than lentiviruses can be stimulated by polyanionic molecules, we measured the effect of various polyanions on the assembly of immature virus-like particles of Rous sarcoma virus (RSV), a member of alpharetroviruses, Mason-Pfizer monkey virus (M-PMV) representative of betaretroviruses, and murine leukemia virus (MLV), a member of gammaretroviruses. RSV, M-PMV and MLV immature virus-like particles were assembled in vitro from truncated Gag molecules and the effect of selected polyanions, myo-inostol hexaphosphate, myo-inositol, glucose-1,6-bisphosphate, myo-inositol hexasulphate, and mellitic acid, on the particles assembly was quantified. Our results suggest that the assembly of immature particles of RSV and MLV was indeed stimulated by the presence of myo-inostol hexaphosphate and myo-inositol, respectively. In contrast, no effect on the assembly of M-PMV as a betaretrovirus member was observed.
Collapse
|
3
|
Kaufman F, Dostálková A, Pekárek L, Thanh TD, Kapisheva M, Hadravová R, Bednárová L, Novotný R, Křížová I, Černý J, Grubhoffer L, Ruml T, Hrabal R, Rumlová M. Characterization and in vitro assembly of tick-borne encephalitis virus C protein. FEBS Lett 2020; 594:1989-2004. [PMID: 32510601 DOI: 10.1002/1873-3468.13857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 01/10/2023]
Abstract
Tick-borne encephalitis virus (TBEV), a member of flaviviruses, represents a serious health threat by causing human encephalitis mainly in central and eastern Europe, Russia, and northeastern Asia. As no specific therapy is available, there is an urgent need to understand all steps of the TBEV replication cycle at the molecular level. One of the critical events is the packaging of flaviviral genomic RNA by TBEV C protein to form a nucleocapsid. We purified recombinant TBEV C protein and used a combination of physical-chemical approaches, such as size-exclusion chromatography, circular dichroism, NMR spectroscopies, and transmission electron microscopy, to analyze its structural stability and its ability to dimerize/oligomerize. We compared the ability of TBEV C protein to assemble in vitro into a nucleocapsid-like structure with that of dengue C protein.
Collapse
Affiliation(s)
- Filip Kaufman
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Lukáš Pekárek
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Tung Dinh Thanh
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Marina Kapisheva
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Romana Hadravová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry (IOCB) Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry (IOCB) Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Radim Novotný
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic.,NMR Laboratory, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Jiří Černý
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Prague, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Richard Hrabal
- NMR Laboratory, University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Prague, Czech Republic
| |
Collapse
|
4
|
Obr M, Schur FKM. Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging. Adv Virus Res 2019; 105:117-159. [PMID: 31522703 DOI: 10.1016/bs.aivir.2019.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Describing the protein interactions that form pleomorphic and asymmetric viruses represents a considerable challenge to most structural biology techniques, including X-ray crystallography and single particle cryo-electron microscopy. Obtaining a detailed understanding of these interactions is nevertheless important, considering the number of relevant human pathogens that do not follow strict icosahedral or helical symmetry. Cryo-electron tomography and subtomogram averaging methods provide structural insights into complex biological environments and are well suited to go beyond structures of perfectly symmetric viruses. This chapter discusses recent developments showing that cryo-ET and subtomogram averaging can provide high-resolution insights into hitherto unknown structural features of pleomorphic and asymmetric virus particles. It also describes how these methods have significantly added to our understanding of retrovirus capsid assemblies in immature and mature viruses. Additional examples of irregular viruses and their associated proteins, whose structures have been studied via cryo-ET and subtomogram averaging, further support the versatility of these methods.
Collapse
Affiliation(s)
- Martin Obr
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Florian K M Schur
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
| |
Collapse
|
5
|
Abstract
Immature retroviruses are built by the Gag polyprotein; Gag is then cut into domains, and the resulting CA capsid proteins form the mature capsid, which can mediate infection of a new cell. Murine leukemia virus (MLV) is a model retrovirus and the basis for gene-delivery vectors. We determined the capsid structures and architectures for immature and mature MLV. The mature MLV core does not enclose the genome in a closed capsid by using only part of the available proteins, as is the case for HIV-1. Instead, it wraps the genome in curved sheets incorporating most CA proteins. Retroviruses therefore have fundamentally different modes of core assembly and genome protection, which may relate to differences in their early replication. Retroviruses assemble and bud from infected cells in an immature form and require proteolytic maturation for infectivity. The CA (capsid) domains of the Gag polyproteins assemble a protein lattice as a truncated sphere in the immature virion. Proteolytic cleavage of Gag induces dramatic structural rearrangements; a subset of cleaved CA subsequently assembles into the mature core, whose architecture varies among retroviruses. Murine leukemia virus (MLV) is the prototypical γ-retrovirus and serves as the basis of retroviral vectors, but the structure of the MLV CA layer is unknown. Here we have combined X-ray crystallography with cryoelectron tomography to determine the structures of immature and mature MLV CA layers within authentic viral particles. This reveals the structural changes associated with maturation, and, by comparison with HIV-1, uncovers conserved and variable features. In contrast to HIV-1, most MLV CA is used for assembly of the mature core, which adopts variable, multilayered morphologies and does not form a closed structure. Unlike in HIV-1, there is similarity between protein–protein interfaces in the immature MLV CA layer and those in the mature CA layer, and structural maturation of MLV could be achieved through domain rotations that largely maintain hexameric interactions. Nevertheless, the dramatic architectural change on maturation indicates that extensive disassembly and reassembly are required for mature core growth. The core morphology suggests that wrapping of the genome in CA sheets may be sufficient to protect the MLV ribonucleoprotein during cell entry.
Collapse
|
6
|
Abstract
The retrovirus capsid core is a metastable structure that disassembles during the early phase of viral infection after membrane fusion. The core is intact and permeable to essential nucleotides during reverse transcription, but it undergoes disassembly for nuclear entry and genome integration. Increasing or decreasing the stability of the capsid core has a substantial negative impact on virus infectivity, which makes the core an attractive anti-viral target. The retrovirus capsid core also encounters a variety of virus- and organism-specific host cellular factors that promote or restrict viral replication. This review describes the structural elements fundamental to the formation and stability of the capsid core. The physical and chemical properties of the capsid core that are critical to its functional role in reverse transcription and interaction with host cellular factors are highlighted to emphasize areas of current research.
Collapse
|
7
|
Píchalová R, Füzik T, Vokatá B, Rumlová M, Llano M, Dostálková A, Křížová I, Ruml T, Ulbrich P. Conserved cysteines in Mason-Pfizer monkey virus capsid protein are essential for infectious mature particle formation. Virology 2018; 521:108-117. [PMID: 29906704 DOI: 10.1016/j.virol.2018.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Retrovirus assembly is driven mostly by Gag polyprotein oligomerization, which is mediated by inter and intra protein-protein interactions among its capsid (CA) domains. Mason-Pfizer monkey virus (M-PMV) CA contains three cysteines (C82, C193 and C213), where the latter two are highly conserved among most retroviruses. To determine the importance of these cysteines, we introduced mutations of these residues in both bacterial and proviral vectors and studied their impact on the M-PMV life cycle. These studies revealed that the presence of both conserved cysteines of M-PMV CA is necessary for both proper assembly and virus infectivity. Our findings suggest a crucial role of these cysteines in the formation of infectious mature particles.
Collapse
Affiliation(s)
- Růžena Píchalová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Tibor Füzik
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Barbora Vokatá
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso, 500 West University El Paso, TX 79902, USA.
| | - Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
8
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
9
|
Mutations in the Basic Region of the Mason-Pfizer Monkey Virus Nucleocapsid Protein Affect Reverse Transcription, Genomic RNA Packaging, and the Virus Assembly Site. J Virol 2018; 92:JVI.00106-18. [PMID: 29491167 DOI: 10.1128/jvi.00106-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022] Open
Abstract
In addition to specific RNA-binding zinc finger domains, the retroviral Gag polyprotein contains clusters of basic amino acid residues that are thought to support Gag-viral genomic RNA (gRNA) interactions. One of these clusters is the basic K16NK18EK20 region, located upstream of the first zinc finger of the Mason-Pfizer monkey virus (M-PMV) nucleocapsid (NC) protein. To investigate the role of this basic region in the M-PMV life cycle, we used a combination of in vivo and in vitro methods to study a series of mutants in which the overall charge of this region was more positive (RNRER), more negative (AEAEA), or neutral (AAAAA). The mutations markedly affected gRNA incorporation and the onset of reverse transcription. The introduction of a more negative charge (AEAEA) significantly reduced the incorporation of M-PMV gRNA into nascent particles. Moreover, the assembly of immature particles of the AEAEA Gag mutant was relocated from the perinuclear region to the plasma membrane. In contrast, an enhancement of the basicity of this region of M-PMV NC (RNRER) caused a substantially more efficient incorporation of gRNA, subsequently resulting in an increase in M-PMV RNRER infectivity. Nevertheless, despite the larger amount of gRNA packaged by the RNRER mutant, the onset of reverse transcription was delayed in comparison to that of the wild type. Our data clearly show the requirement for certain positively charged amino acid residues upstream of the first zinc finger for proper gRNA incorporation, assembly of immature particles, and proceeding of reverse transcription.IMPORTANCE We identified a short sequence within the Gag polyprotein that, together with the zinc finger domains and the previously identified RKK motif, contributes to the packaging of genomic RNA (gRNA) of Mason-Pfizer monkey virus (M-PMV). Importantly, in addition to gRNA incorporation, this basic region (KNKEK) at the N terminus of the nucleocapsid protein is crucial for the onset of reverse transcription. Mutations that change the positive charge of the region to a negative one significantly reduced specific gRNA packaging. The assembly of immature particles of this mutant was reoriented from the perinuclear region to the plasma membrane. On the contrary, an enhancement of the basic character of this region increased both the efficiency of gRNA packaging and the infectivity of the virus. However, the onset of reverse transcription was delayed even in this mutant. In summary, the basic region in M-PMV Gag plays a key role in the packaging of genomic RNA and, consequently, in assembly and reverse transcription.
Collapse
|
10
|
Optimized method for isolation of immature intracytoplasmic retroviral particles from mammalian cells. J Virol Methods 2017; 248:19-25. [PMID: 28619602 DOI: 10.1016/j.jviromet.2017.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 12/29/2022]
Abstract
To biochemically and structurally characterize viral intracytoplasmic particles (ICAPs), a sample of high purity and homogeneity is usually required. Production of ICAPs in the system closely related to their natural host cells is crucial for the analysis of host-cell binding proteins involved in ICAPs assembly, transport and budding. However, this approach is often hampered by problems with low yield of the ICAPs due to either low expression or fast release from the host cell. Another obstacle may be a low stability or fragility of the intracellular particles. The published methods for ICAPs isolation often involved several time-consuming centrifugation steps yielding damaged particles. Other papers describe the ICAPs production in non-natural host cells. Here, we optimized the method for purification of unstable Mason-Pfizer monkey virus (M-PMV) ICAPs from non-human primate derived cells, commonly used to study MPMV replication i.e. African green monkey kidney fibroblast cell line (COS-1). Our simple and rapid procedure involved separation of the intracytoplasmic particles from the cell debris and organelles by differential, low-speed centrifugation, their purification using sucrose velocity gradient and final concentrating by low-speed centrifugation. Importantly, the method was established for unstable and fragile M-PMV intracytoplasmic particles. Therefore, it may be suitable for isolation of ICAPs of other viruses.
Collapse
|
11
|
Del Carmen Morán-García A, Rivera-Toledo E, Echeverría O, Vázquez-Nin G, Gómez B, Bustos-Jaimes I. Peptide presentation on primate erythroparvovirus 1 virus-like particles: In vitro assembly, stability and immunological properties. Virus Res 2016; 224:12-8. [PMID: 27523978 DOI: 10.1016/j.virusres.2016.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/07/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
Virus-like particles (VLPs) have demonstrated to be valuable scaffolds for the display of heterologous peptides for vaccine development and other specific interactions. VLPs of primate erythroparvovirus 1, generally referred as parvovirus B19 (B19V), have already been produced in-vivo and in-vitro from the recombinant VP2 protein of this virus. In this study, chimeric forms of B19V VP2 were constructed, and their ability to assemble into VLPs was evaluated. Chimeras were composed of the VP2 protein fused, at its N-terminus, with two peptides derived from the fusion glycoprotein (F) of the respiratory syncytial virus (RSV). The chimeric proteins self-assembled into VLPs morphologically similar to B19V virions. Stability of these VLPs was analyzed under denaturation conditions with guanidinium chloride (GdnHCl). Our results indicate that the presence of the heterologous fragments increased the stability of VLPs assembled by any of the VP2 chimeras. Specific proteolysis assays shown that a fraction of the N-termini of the chimeric proteins is located on the outer surface of the VLPs. Immunogenicity of VLPs against RSV was evaluated and the results indicate that the particles can elicit a humoral immune response, although these antibodies did not cross-react with RSV in ELISA tests. These results provide novel insights into the localization of the N-termini of B19V VP2 protein after in vitro assembly into VLPs, and point them to be attractive sites to display peptides or proteins without compromise the assembly or stability of VLPs.
Collapse
Affiliation(s)
- Areli Del Carmen Morán-García
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Evelyn Rivera-Toledo
- Department of Microbiology and Parasitology, Faculty of Medicine, UNAM, Mexico City 04510, Mexico
| | - Olga Echeverría
- Department of Cell Biology, Faculty of Sciences, UNAM, Mexico City 04510, Mexico
| | - Gerardo Vázquez-Nin
- Department of Cell Biology, Faculty of Sciences, UNAM, Mexico City 04510, Mexico
| | - Beatriz Gómez
- Department of Microbiology and Parasitology, Faculty of Medicine, UNAM, Mexico City 04510, Mexico
| | - Ismael Bustos-Jaimes
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|
12
|
Doležal M, Hadravová R, Kožíšek M, Bednárová L, Langerová H, Ruml T, Rumlová M. Functional and Structural Characterization of Novel Type of Linker Connecting Capsid and Nucleocapsid Protein Domains in Murine Leukemia Virus. J Biol Chem 2016; 291:20630-42. [PMID: 27514744 DOI: 10.1074/jbc.m116.746461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 12/24/2022] Open
Abstract
The assembly of immature retroviral particles is initiated in the cytoplasm by the binding of the structural polyprotein precursor Gag with viral genomic RNA. The protein interactions necessary for assembly are mediated predominantly by the capsid (CA) and nucleocapsid (NC) domains, which have conserved structures. In contrast, the structural arrangement of the CA-NC connecting region differs between retroviral species. In HIV-1 and Rous sarcoma virus, this region forms a rod-like structure that separates the CA and NC domains, whereas in Mason-Pfizer monkey virus, this region is densely packed, thus holding the CA and NC domains in close proximity. Interestingly, the sequence connecting the CA and NC domains in gammaretroviruses, such as murine leukemia virus (MLV), is unique. The sequence is called a charged assembly helix (CAH) due to a high number of positively and negatively charged residues. Although both computational and deletion analyses suggested that the MLV CAH forms a helical conformation, no structural or biochemical data supporting this hypothesis have been published. Using an in vitro assembly assay, alanine scanning mutagenesis, and biophysical techniques (circular dichroism, NMR, microcalorimetry, and electrophoretic mobility shift assay), we have characterized the structure and function of the MLV CAH. We provide experimental evidence that the MLV CAH belongs to a group of charged, E(R/K)-rich, single α-helices. This is the first single α-helix motif identified in viral proteins.
Collapse
Affiliation(s)
- Michal Doležal
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6
| | - Romana Hadravová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6
| | - Milan Kožíšek
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6
| | - Lucie Bednárová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6
| | - Hana Langerová
- the Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Technická 3, 166 28 Prague, and
| | - Tomáš Ruml
- the Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Technická 3, 166 28 Prague, and
| | - Michaela Rumlová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, the Department of Biotechnology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
13
|
Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging. J Virol 2016; 90:4593-4603. [PMID: 26912613 DOI: 10.1128/jvi.03197-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The Gag polyprotein of retroviruses drives immature virus assembly by forming hexameric protein lattices. The assembly is primarily mediated by protein-protein interactions between capsid (CA) domains and by interactions between nucleocapsid (NC) domains and RNA. Specific interactions between NC and the viral RNA are required for genome packaging. Previously reported cryoelectron microscopy analysis of immature Mason-Pfizer monkey virus (M-PMV) particles suggested that a basic region (residues RKK) in CA may serve as an additional binding site for nucleic acids. Here, we have introduced mutations into the RKK region in both bacterial and proviral M-PMV vectors and have assessed their impact on M-PMV assembly, structure, RNA binding, budding/release, nuclear trafficking, and infectivity using in vitro and in vivo systems. Our data indicate that the RKK region binds and structures nucleic acid that serves to promote virus particle assembly in the cytoplasm. Moreover, the RKK region appears to be important for recruitment of viral genomic RNA into Gag particles, and this function could be linked to changes in nuclear trafficking. Together these observations suggest that in M-PMV, direct interactions between CA and nucleic acid play important functions in the late stages of the viral life cycle. IMPORTANCE Assembly of retrovirus particles is driven by the Gag polyprotein, which can self-assemble to form virus particles and interact with RNA to recruit the viral genome into the particles. Generally, the capsid domains of Gag contribute to essential protein-protein interactions during assembly, while the nucleocapsid domain interacts with RNA. The interactions between the nucleocapsid domain and RNA are important both for identifying the genome and for self-assembly of Gag molecules. Here, we show that a region of basic residues in the capsid protein of the betaretrovirus Mason-Pfizer monkey virus (M-PMV) contributes to interaction of Gag with nucleic acid. This interaction appears to provide a critical scaffolding function that promotes assembly of virus particles in the cytoplasm. It is also crucial for packaging the viral genome and thus for infectivity. These data indicate that, surprisingly, interactions between the capsid domain and RNA play an important role in the assembly of M-PMV.
Collapse
|
14
|
Perilla JR, Gronenborn AM. Molecular Architecture of the Retroviral Capsid. Trends Biochem Sci 2016; 41:410-420. [PMID: 27039020 DOI: 10.1016/j.tibs.2016.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/21/2016] [Accepted: 02/26/2016] [Indexed: 12/13/2022]
Abstract
Retroviral capsid cores are proteinaceous containers that self-assemble to encase the viral genome and a handful of proteins that promote infection. Their function is to protect and aid in the delivery of viral genes to the nucleus of the host, and, in many cases, infection pathways are influenced by capsid-cellular interactions. From a mathematical perspective, capsid cores are polyhedral cages and, as such, follow well-defined geometric rules. However, marked morphological differences in shapes exist, depending on virus type. Given the specific roles of capsid in the viral life cycle, the availability of detailed molecular structures, particularly at assembly interfaces, opens novel avenues for targeted drug development against these pathogens. Here, we summarize recent advances in the structure and understanding of retroviral capsid, with particular emphasis on assemblies and the capsid cores.
Collapse
Affiliation(s)
- Juan R Perilla
- Beckman Institute for Advanced Science and Technology and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, and Pittsburgh Center for HIV Protein Interactions, Pittsburgh, PA 15260, USA.
| |
Collapse
|
15
|
Mattei S, Schur FK, Briggs JA. Retrovirus maturation-an extraordinary structural transformation. Curr Opin Virol 2016; 18:27-35. [PMID: 27010119 DOI: 10.1016/j.coviro.2016.02.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/13/2016] [Indexed: 10/22/2022]
Abstract
Retroviruses such as HIV-1 assemble and bud from infected cells in an immature, non-infectious form. Subsequently, a series of proteolytic cleavages catalysed by the viral protease leads to a spectacular structural rearrangement of the viral particle into a mature form that is competent to fuse with and infect a new cell. Maturation involves changes in the structures of protein domains, in the interactions between protein domains, and in the architecture of the viral components that are assembled by the proteins. Tight control of proteolytic cleavages at different sites is required for successful maturation, and the process is a major target of antiretroviral drugs. Here we will describe what is known about the structures of immature and mature retrovirus particles, and about the maturation process by which one transitions into the other. Despite a wealth of available data, fundamental questions about retroviral maturation remain unanswered.
Collapse
Affiliation(s)
- Simone Mattei
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Florian Km Schur
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - John Ag Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany.
| |
Collapse
|
16
|
Role of Mason-Pfizer monkey virus CA-NC spacer peptide-like domain in assembly of immature particles. J Virol 2014; 88:14148-60. [PMID: 25275119 DOI: 10.1128/jvi.02286-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The hexameric lattice of an immature retroviral particle consists of Gag polyprotein, which is the precursor of all viral structural proteins. Lentiviral and alpharetroviral Gag proteins contain a peptide sequence called the spacer peptide (SP), which is localized between the capsid (CA) and nucleocapsid (NC) domains. SP plays a critical role in intermolecular interactions during the assembly of immature particles of several retroviruses. Published models of supramolecular structures of immature particles suggest that in lentiviruses and alpharetroviruses, SP adopts a rod-like six-helix bundle organization. In contrast, Mason-Pfizer monkey virus (M-PMV), a betaretrovirus that assembles in the cytoplasm, does not contain a distinct SP sequence, and the CA-NC connecting region is not organized into a clear rod-like structure. Nevertheless, the CA-NC junction comprises a sequence critical for assembly of immature M-PMV particles. In the present work, we characterized this region, called the SP-like domain, in detail. We provide biochemical data confirming the critical role of the M-PMV SP-like domain in immature particle assembly, release, processing, and infectivity. Circular dichroism spectroscopy revealed that, in contrast to the SP regions of other retroviruses, a short SP-like domain-derived peptide (SPLP) does not form a purely helical structure in aqueous or helix-promoting solution. Using 8-Å cryo-electron microscopy density maps of immature M-PMV particles, we prepared computational models of the SP-like domain and indicate the structural features required for M-PMV immature particle assembly. IMPORTANCE Retroviruses such as HIV-1 are of great medical importance. Using Mason-Pfizer monkey virus (M-PMV) as a model retrovirus, we provide biochemical and structural data confirming the general relevance of a short segment of the structural polyprotein Gag for retrovirus assembly and infectivity. Although this segment is critical for assembly of immature particles of lentiviruses, alpharetroviruses, and betaretroviruses, the organization of this domain is strikingly different. A previously published electron microscopic structure of an immature M-PMV particle allowed us to model this important region into the electron density map. The data presented here help explain the different packing of the Gag segments of various retroviruses, such as HIV, Rous sarcoma virus (RSV), and M-PMV. Such knowledge contributes to understanding the importance of this region and its structural flexibility among retroviral species. The region might play a key role in Gag-Gag interactions, leading to different morphological pathways of immature particle assembly.
Collapse
|
17
|
Abstract
UNLABELLED During virion maturation, the Rous sarcoma virus (RSV) capsid protein is cleaved from the Gag protein as the proteolytic intermediate CA-SP. Further trimming at two C-terminal sites removes the spacer peptide (SP), producing the mature capsid proteins CA and CA-S. Abundant genetic and structural evidence shows that the SP plays a critical role in stabilizing hexameric Gag interactions that form immature particles. Freeing of CA-SP from Gag breaks immature interfaces and initiates the formation of mature capsids. The transient persistence of CA-SP in maturing virions and the identification of second-site mutations in SP that restore infectivity to maturation-defective mutant viruses led us to hypothesize that SP may play an important role in promoting the assembly of mature capsids. This study presents a biophysical and biochemical characterization of CA-SP and its assembly behavior. Our results confirm cryo-electron microscopy (cryo-EM) structures reported previously by Keller et al. (J. Virol. 87:13655-13664, 2013, doi:10.1128/JVI.01408-13) showing that monomeric CA-SP is fully capable of assembling into capsid-like structures identical to those formed by CA. Furthermore, SP confers aggressive assembly kinetics, which is suggestive of higher-affinity CA-SP interactions than observed with either of the mature capsid proteins. This aggressive assembly is largely independent of the SP amino acid sequence, but the formation of well-ordered particles is sensitive to the presence of the N-terminal β-hairpin. Additionally, CA-SP can nucleate the assembly of CA and CA-S. These results suggest a model in which CA-SP, once separated from the Gag lattice, can actively promote the interactions that form mature capsids and provide a nucleation point for mature capsid assembly. IMPORTANCE The spacer peptide is a documented target for antiretroviral therapy. This study examines the biochemical and biophysical properties of CA-SP, an intermediate form of the retrovirus capsid protein. The results demonstrate a previously unrecognized activity of SP in promoting capsid assembly during maturation.
Collapse
|
18
|
Abstract
UNLABELLED Purified retroviral Gag proteins can assemble in vitro to form immature virus-like particles (VLPs). By cryoelectron tomography, Rous sarcoma virus VLPs show an organized hexameric lattice consisting chiefly of the capsid (CA) domain, with periodic stalk-like densities below the lattice. We hypothesize that the structure represented by these densities is formed by amino acid residues immediately downstream of the folded CA, namely, the short spacer peptide SP, along with a dozen flanking residues. These 24 residues comprise the SP assembly (SPA) domain, and we propose that neighboring SPA units in a Gag hexamer coalesce to form a six-helix bundle. Using in vitro assembly, alanine scanning mutagenesis, and biophysical analyses, we have further characterized the structure and function of SPA. Most of the amino acid residues in SPA could not be mutated individually without abrogating assembly, with the exception of a few residues near the N and C termini, as well as three hydrophilic residues within SPA. We interpret these results to mean that the amino acids that do not tolerate mutations contribute to higher-order structures in VLPs. Hydrogen-deuterium exchange analyses of unassembled Gag compared that of assembled VLPs showed strong protection at the SPA region, consistent with a higher-order structure. Circular dichroism revealed that a 29mer SPA peptide shifts from a random coil to a helix in a concentration-dependent manner. Analytical ultracentrifugation showed concentration-dependent self-association of the peptide into a hexamer. Taken together, these results provide strong evidence for the formation of a critical six-helix bundle in Gag assembly. IMPORTANCE The structure of a retrovirus like HIV is created by several thousand molecules of the viral Gag protein, which assemble to form the known hexagonal protein lattice in the virus particle. How the Gag proteins pack together in the lattice is incompletely understood. A short segment of Gag known to be critical for proper assembly has been hypothesized to form a six-helix bundle, which may be the nucleating event that leads to lattice formation. The experiments reported here, using the avian Rous sarcoma virus as a model system, further define the nature of this segment of Gag, show that it is in a higher-order structure in the virus particle, and provide the first direct evidence that it forms a six-helix bundle in retrovirus assembly. Such knowledge may provide underpinnings for the development of antiretroviral drugs that interfere with virus assembly.
Collapse
|
19
|
Qualley DF, Boleratz BL. Expression, purification, and characterization of full-length bovine leukemia virus Gag protein from bacterial culture. Protein Expr Purif 2014; 93:32-7. [DOI: 10.1016/j.pep.2013.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 10/10/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
|
20
|
Liu F, Wu X, Li L, Ge S, Liu Z, Wang Z. Virus-like particles: promising platforms with characteristics of DIVA for veterinary vaccine design. Comp Immunol Microbiol Infect Dis 2013; 36:343-52. [PMID: 23561290 DOI: 10.1016/j.cimid.2013.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/13/2013] [Accepted: 02/25/2013] [Indexed: 11/27/2022]
Abstract
In general, it is difficult to differentiate infected from vaccinated animals through vaccination with conventional vaccines, thereby impeding the serological surveillance of animal diseases. DIVA (differentiating infected from vaccinated animals) vaccine, originally known as marker vaccine, usually based on the absence of at least one immunogenic protein in the vaccine strain, allows DIVA in conjunction with a diagnostic test that detects antibodies against the antigens lacking in the vaccine strain. Virus-like particles (VLPs), composed of one or more structural proteins but no genomes of native viruses, mimic the organization and conformation of authentic virions but have no ability to self-replicate in cells, potentially yielding safer vaccine candidates. Since VLPs containing either monovalent or multivalent antigen can be produced in compliance with the requirements for serological surveillance, the use of VLP-based vaccines plays a promising role in DIVA vaccination strategies against animal diseases. Here, we critically reviewed VLPs and companion diagnostics with properties of DIVA for veterinary vaccine design, and three different VLPs as promising platforms for DIVA vaccination strategies in animals.
Collapse
Affiliation(s)
- Fuxiao Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | | | | | | | | | | |
Collapse
|
21
|
Tang Y, George A, Taylor T, Hildreth JEK. Cholesterol depletion inactivates XMRV and leads to viral envelope protein release from virions: evidence for role of cholesterol in XMRV infection. PLoS One 2012; 7:e48013. [PMID: 23110160 PMCID: PMC3482229 DOI: 10.1371/journal.pone.0048013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/24/2012] [Indexed: 01/24/2023] Open
Abstract
Membrane cholesterol plays an important role in replication of HIV-1 and other retroviruses. Here, we report that the gammaretrovirus XMRV requires cholesterol and lipid rafts for infection and replication. We demonstrate that treatment of XMRV with a low concentration (10 mM) of 2-hydroxypropyl-β-cyclodextrin (2OHpβCD) partially depleted virion-associated cholesterol resulting in complete inactivation of the virus. This effect could not be reversed by adding cholesterol back to treated virions. Further analysis revealed that following cholesterol depletion, virus-associated Env protein was significantly reduced while the virions remained intact and retained core proteins. Increasing concentrations of 2OHpβCD (≥20 mM) resulted in loss of the majority of virion-associated cholesterol, causing disruption of membrane integrity and loss of internal Gag proteins and viral RNA. Depletion of cholesterol from XMRV-infected cells significantly reduced virus release, suggesting that cholesterol and intact lipid rafts are required for the budding process of XMRV. These results suggest that unlike glycoproteins of other retroviruses, the association of XMRV glycoprotein with virions is highly dependent on cholesterol and lipid rafts.
Collapse
Affiliation(s)
- Yuyang Tang
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Alvin George
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
| | - Thyneice Taylor
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - James E. K. Hildreth
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Meng X, Zhao G, Yufenyuy E, Ke D, Ning J, DeLucia M, Ahn J, Gronenborn AM, Aiken C, Zhang P. Protease cleavage leads to formation of mature trimer interface in HIV-1 capsid. PLoS Pathog 2012; 8:e1002886. [PMID: 22927821 PMCID: PMC3426514 DOI: 10.1371/journal.ppat.1002886] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/13/2012] [Indexed: 11/19/2022] Open
Abstract
During retrovirus particle maturation, the assembled Gag polyprotein is cleaved by the viral protease into matrix (MA), capsid (CA), and nucleocapsid (NC) proteins. To form the mature viral capsid, CA rearranges, resulting in a lattice composed of hexameric and pentameric CA units. Recent structural studies of assembled HIV-1 CA revealed several inter-subunit interfaces in the capsid lattice, including a three-fold interhexamer interface that is critical for proper capsid stability. Although a general architecture of immature particles has been provided by cryo-electron tomographic studies, the structural details of the immature particle and the maturation pathway remain unknown. Here, we used cryo-electron microscopy (cryoEM) to determine the structure of tubular assemblies of the HIV-1 CA-SP1-NC protein. Relative to the mature assembled CA structure, we observed a marked conformational difference in the position of the CA-CTD relative to the NTD in the CA-SP1-NC assembly, involving the flexible hinge connecting the two domains. This difference was verified via engineered disulfide crosslinking, revealing that inter-hexamer contacts, in particular those at the pseudo three-fold axis, are altered in the CA-SP1-NC assemblies compared to the CA assemblies. Results from crosslinking analyses of mature and immature HIV-1 particles containing the same Cys substitutions in the Gag protein are consistent with these findings. We further show that cleavage of preassembled CA-SP1-NC by HIV-1 protease in vitro leads to release of SP1 and NC without disassembly of the lattice. Collectively, our results indicate that the proteolytic cleavage of Gag leads to a structural reorganization of the polypeptide and creates the three-fold interhexamer interface, important for the formation of infectious HIV-1 particles.
Collapse
Affiliation(s)
- Xin Meng
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ernest Yufenyuy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Danxia Ke
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Maria DeLucia
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (CA); (PZ)
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (CA); (PZ)
| |
Collapse
|