1
|
Jia X, Gao Y, Huang Y, Sun L, Li S, Li H, Zhang X, Li Y, He J, Wu W, Venkannagari H, Yang K, Baker ML, Zhang Q. Architecture of the baculovirus nucleocapsid revealed by cryo-EM. Nat Commun 2023; 14:7481. [PMID: 37980340 PMCID: PMC10657434 DOI: 10.1038/s41467-023-43284-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been widely used as a bioinsecticide and a protein expression vector. Despite their importance, very little is known about the structure of most baculovirus proteins. Here, we show a 3.2 Å resolution structure of helical cylindrical body of the AcMNPV nucleocapsid, composed of VP39, as well as 4.3 Å resolution structures of both the head and the base of the nucleocapsid composed of over 100 protein subunits. AcMNPV VP39 demonstrates some features of the HK97-like fold and utilizes disulfide-bonds and a set of interactions at its C-termini to mediate nucleocapsid assembly and stability. At both ends of the nucleocapsid, the VP39 cylinder is constricted by an outer shell ring composed of proteins AC104, AC142 and AC109. AC101(BV/ODV-C42) and AC144(ODV-EC27) form a C14 symmetric inner layer at both capsid head and base. In the base, these proteins interact with a 7-fold symmetric capsid plug, while a portal-like structure is seen in the central portion of head. Additionally, we propose an application of AlphaFold2 for model building in intermediate resolution density.
Collapse
Affiliation(s)
- Xudong Jia
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yuanzhu Gao
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen, China
| | - Yuxuan Huang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Linjun Sun
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Siduo Li
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Hongmei Li
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xueqing Zhang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yinyin Li
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jian He
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Wenbi Wu
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Harikanth Venkannagari
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Kai Yang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, 77030, USA.
| | - Qinfen Zhang
- State key laboratory of biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
2
|
Wen L, Zheng ZH, Liu AA, Lv C, Zhang LJ, Ao J, Zhang ZL, Wang HZ, Lin Y, Pang DW. Tracking single baculovirus retrograde transportation in host cell via quantum dot-labeling of virus internal component. J Nanobiotechnology 2017; 15:37. [PMID: 28477617 PMCID: PMC5420409 DOI: 10.1186/s12951-017-0270-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/26/2017] [Indexed: 02/08/2023] Open
Abstract
Background Quantum dot (QD)-based single virus tracking has become a powerful tool for dissecting virus infection mechanism. However, only virus behaviors at the early stage of retrograde trafficking have been dynamically tracked so far. Monitoring of comprehensive virus retrograde transportation remains a challenge. Results Based on the superior fluorescence properties of QDs and their labeling of virus internal component, the dynamic interactions between baculoviruses and all key transportation-related cellular structures, including vesicles, acidic endosomes, actins, nuclear pores and nuclei, were visualized at the single-virus level. Detailed scenarios and dynamic information were provided for these critical interaction processes. Conclusions A comprehensive model of baculovirus retrograde trafficking involving virus endocytosis, fusion with acidic endosome, translocation to nuclear periphery, internalization into nucleus, and arriving at the destination in nucleus was proposed. Thus the whole retrograde transportation of baculovirus in live host cells was elucidated at the single-virus level for the first time. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0270-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Wen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhen-Hua Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - An-An Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Cheng Lv
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Li-Juan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jian Ao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Han-Zhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Yi Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, People's Republic of China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| |
Collapse
|
3
|
Wang Q, Bosch BJ, Vlak JM, van Oers MM, Rottier PJ, van Lent JWM. Budded baculovirus particle structure revisited. J Invertebr Pathol 2015; 134:15-22. [PMID: 26743500 PMCID: PMC7127228 DOI: 10.1016/j.jip.2015.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 01/13/2023]
Abstract
Baculovirus budded virion ultrastructure has been revisited using cryo-electron microscopy. The now well-preserved virions have a remarkable elongated, ovoid shape and large lateral space between nucleocapsid and the intact envelope. Consistent with previous findings using classical electron microscopy the nucleocapsid has a distinctive cap and base structure interacting tightly with the envelope. Most spikes are densely clustered at the two apical ends of the virion. Using cryo-electron microscopy the viral envelope appeared to contain two layers with a total thickness of ≈6–7 nm, which is significantly thicker than a usual biological membrane (<4 nm). The spikes on the surface of AcMNPV BVs appear distinctly different from those of SeMNPV. Based on our observations we propose a new structural model of baculovirus budded virions.
Baculoviruses are a group of enveloped, double-stranded DNA insect viruses with budded (BV) and occlusion-derived (ODV) virions produced during their infection cycle. BVs are commonly described as rod shaped particles with a high apical density of protein extensions (spikes) on the lipid envelope surface. However, due to the fragility of BVs the conventional purification and electron microscopy (EM) staining methods considerably distort the native viral structure. Here, we use cryo-EM analysis to reveal the near-native morphology of two intensively studied baculoviruses, Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Spodoptera exigua MNPV (SeMNPV), as models for BVs carrying GP64 and F as envelope fusion protein on the surface. The now well-preserved AcMNPV and SeMNPV BV particles have a remarkable elongated, ovoid shape leaving a large, lateral space between nucleocapsid (NC) and envelope. Consistent with previous findings the NC has a distinctive cap and base structure interacting tightly with the envelope. This tight interaction may explain the partial retaining of the envelope on both ends of the NC and the disappearance of the remainder of the BV envelope in the negative-staining EM images. Cryo-EM also reveals that the viral envelope contains two layers with a total thickness of ≈6–7 nm, which is significantly thicker than a usual biological membrane (<4 nm) as measured by X-ray scanning. Most spikes are densely clustered at the two apical ends of the virion although some envelope proteins are also found more sparsely on the lateral regions. The spikes on the surface of AcMNPV BVs appear distinctly different from those of SeMNPV. Based on our observations we propose a new near-native structural model of baculovirus BVs.
Collapse
Affiliation(s)
- Qiushi Wang
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands; Virology Division, Department of Infectious Disease and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Disease and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Peter J Rottier
- Virology Division, Department of Infectious Disease and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jan W M van Lent
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Baculovirus VP1054 is an acquired cellular PURα, a nucleic acid-binding protein specific for GGN repeats. J Virol 2013; 87:8465-80. [PMID: 23720732 DOI: 10.1128/jvi.00068-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Baculovirus VP1054 protein is a structural component of both of the virion types budded virus (BV) and occlusion-derived virus (ODV), but its exact role in virion morphogenesis is poorly defined. In this paper, we reveal sequence and functional similarity between the baculovirus protein VP1054 and the cellular purine-rich element binding protein PUR-alpha (PURα). The data strongly suggest that gene transfer has occurred from a host to an ancestral baculovirus. Deletion of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) vp1054 gene completely prevented viral cell-to-cell spread. Electron microscopy data showed that assembly of progeny nucleocapsids is dramatically reduced in the absence of VP1054. More precisely, VP1054 is required for proper viral DNA encapsidation, as deduced from the formation of numerous electron-lucent capsid-like tubules. Complementary searching identified the presence of genetic elements composed of repeated GGN trinucleotide motifs in baculovirus genomes, the target sequence for PURα proteins. Interestingly, these GGN-rich sequences are disproportionally distributed in baculoviral genomes and mostly occurred in proximity to the gene for the major occlusion body protein polyhedrin. We further demonstrate that the VP1054 protein specifically recognizes these GGN-rich islands, which at the same time encode crucial proline-rich domains in p78/83, an essential gene adjacent to the polyhedrin gene in the AcMNPV genome. While some viruses, like human immunodeficiency virus type 1 (HIV-1) and human JC virus (JCV), utilize host PURα protein, baculoviruses encode the PURα-like protein VP1054, which is crucial for viral progeny production.
Collapse
|
5
|
Monteiro F, Carinhas N, Carrondo MJT, Bernal V, Alves PM. Toward system-level understanding of baculovirus-host cell interactions: from molecular fundamental studies to large-scale proteomics approaches. Front Microbiol 2012; 3:391. [PMID: 23162544 PMCID: PMC3494084 DOI: 10.3389/fmicb.2012.00391] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/23/2012] [Indexed: 01/16/2023] Open
Abstract
Baculoviruses are insect viruses extensively exploited as eukaryotic protein expression vectors. Molecular biology studies have provided exciting discoveries on virus-host interactions, but the application of omic high-throughput techniques on the baculovirus-insect cell system has been hampered by the lack of host genome sequencing. While a broader, systems-level analysis of biological responses to infection is urgently needed, recent advances on proteomic studies have yielded new insights on the impact of infection on the host cell. These works are reviewed and critically assessed in the light of current biological knowledge of the molecular biology of baculoviruses and insect cells.
Collapse
Affiliation(s)
- Francisca Monteiro
- Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica Oeiras, Portugal ; Animal Cell Technology Unit, Instituto de Tecnologia Quimica e Biológica Oeiras, Portugal
| | | | | | | | | |
Collapse
|