1
|
Jaramillo-Rangel G, Chávez-Briones MDL, Ancer-Arellano A, Miranda-Maldonado I, Ortega-Martínez M. Back to the Basics: Usefulness of Naturally Aged Mouse Models and Immunohistochemical and Quantitative Morphologic Methods in Studying Mechanisms of Lung Aging and Associated Diseases. Biomedicines 2023; 11:2075. [PMID: 37509714 PMCID: PMC10377355 DOI: 10.3390/biomedicines11072075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Aging-related molecular and cellular alterations in the lung contribute to an increased susceptibility of the elderly to devastating diseases. Although the study of the aging process in the lung may benefit from the use of genetically modified mouse models and omics techniques, these approaches are still not available to most researchers and produce complex results. In this article, we review works that used naturally aged mouse models, together with immunohistochemistry (IHC) and quantitative morphologic (QM) methods in the study of the mechanisms of the aging process in the lung and its most commonly associated disorders: cancer, chronic obstructive pulmonary disease (COPD), and infectious diseases. The advantage of using naturally aged mice is that they present characteristics similar to those observed in human aging. The advantage of using IHC and QM methods lies in their simplicity, economic accessibility, and easy interpretation, in addition to the fact that they provide extremely important information. The study of the aging process in the lung and its associated diseases could allow the design of appropriate therapeutic strategies, which is extremely important considering that life expectancy and the number of elderly people continue to increase considerably worldwide.
Collapse
Affiliation(s)
- Gilberto Jaramillo-Rangel
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | | | - Adriana Ancer-Arellano
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | - Ivett Miranda-Maldonado
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | - Marta Ortega-Martínez
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| |
Collapse
|
2
|
Varma DM, Batty CJ, Stiepel RT, Graham-Gurysh EG, Roque JA, Pena ES, Hasan Zahid MS, Qiu K, Anselmo A, Hill DB, Ross TM, Bachelder EM, Ainslie KM. Development of an Intranasal Gel for the Delivery of a Broadly Acting Subunit Influenza Vaccine. ACS Biomater Sci Eng 2022; 8:1573-1582. [PMID: 35353486 PMCID: PMC9627116 DOI: 10.1021/acsbiomaterials.2c00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Influenza virus is a major cause of death on a global scale. Seasonal vaccines have been developed to combat influenza; however, they are not always highly effective. One strategy to develop a more broadly active influenza vaccine is the use of multiple rounds of layered consensus buildings to generate recombinant antigens, termed computationally optimized broadly reactive antigen (COBRA). Immunization with the COBRA hemagglutinin (HA) can elicit broad protection against multiple strains of a single influenza subtype (e.g., H1N1). We formulated a COBRA H1 HA with a stimulator of interferon genes agonist cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) into a nasal gel for vaccination against influenza. The gel formulation was designed to increase mucoadhesion and nasal retention of the antigen and adjuvant to promote a strong mucosal response. It consisted of a Schiff base-crosslinked hydrogel between branched polyethyleneimine and oxidized dextran. Following a prime-boost-boost schedule, an intranasal gel containing cGAMP and model antigen ovalbumin (OVA) led to the faster generation of serum IgG, IgG1, and IgG2c and significantly greater serum IgG1 levels on day 42 compared to soluble controls. Additionally, OVA-specific IgA was detected in nasal, vaginal, and fecal samples for all groups, except the vehicle control. When the COBRA HA was given intranasally in a prime-boost schedule, the mice receiving the gel containing the COBRA and cGAMP had significantly higher serum IgG and IgG2c at day 41 compared to all groups, and only this group had IgA levels above the background in vaginal, nasal, and fecal samples. Overall, this study indicates the utility of an intranasal gel for the delivery of COBRAs for the generation of serum and mucosal humoral responses.
Collapse
Affiliation(s)
- Devika M Varma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cole J Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebeca T Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John A Roque
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erik S Pena
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - M Shamim Hasan Zahid
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kunyu Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David B Hill
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30605, United States.,Department of Infectious Diseases, University of Georgia, Athens, Georgia 30605, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States.,Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Hendy DA, Amouzougan EA, Young IC, Bachelder EM, Ainslie KM. Nano/microparticle Formulations for Universal Influenza Vaccines. AAPS J 2022; 24:24. [PMID: 34997352 PMCID: PMC8741137 DOI: 10.1208/s12248-021-00676-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022] Open
Abstract
Influenza affects millions of people worldwide and can result in severe sickness and even death. The best method of prevention is vaccination; however, the seasonal influenza vaccine often suffers from low efficacy and requires yearly vaccination due to changes in strain and viral mutations. More conserved universal influenza antigens like M2 ectodomain (M2e) and the stalk region of hemagglutinin (HA stalk) have been used clinically but often suffer from low antigenicity. To increase antigenicity, universal antigens have been formulated using nano/microparticles as vaccine carriers against influenza. Utilizing polymers, liposomes, metal, and protein-based particles, indicators of immunity and protection in mouse, pig, ferrets, and chicken models of influenza have been shown. In this review, seasonal and universal influenza vaccine formulations comprised of these materials including their physiochemical properties, fabrication, characterization, and biologic responses in vivo are highlighted. The review is concluded with future perspectives for nano/microparticles as carrier systems and other considerations within the universal influenza vaccine delivery landscape. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Dylan A Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 4012 Marsico Hall, 125 Mason Farm Road, Chapel Hill, North Carolina, 27599, USA
| | - Eva A Amouzougan
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 4012 Marsico Hall, 125 Mason Farm Road, Chapel Hill, North Carolina, 27599, USA
| | - Isabella C Young
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 4012 Marsico Hall, 125 Mason Farm Road, Chapel Hill, North Carolina, 27599, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 4012 Marsico Hall, 125 Mason Farm Road, Chapel Hill, North Carolina, 27599, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 4012 Marsico Hall, 125 Mason Farm Road, Chapel Hill, North Carolina, 27599, USA. .,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA. .,Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
4
|
Chen S, Kasper B, Zhang B, Lashua LP, Ross TM, Ghedin E, Mahal LK. Age-Dependent Glycomic Response to the 2009 Pandemic H1N1 Influenza Virus and Its Association with Disease Severity. J Proteome Res 2020; 19:4486-4495. [PMID: 32981324 PMCID: PMC7640967 DOI: 10.1021/acs.jproteome.0c00455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 01/05/2023]
Abstract
Influenza A viruses cause a spectrum of responses, from mild coldlike symptoms to severe respiratory illness and death. Intrinsic host factors, such as age, can influence disease severity. Glycosylation plays a critical role in influenza pathogenesis; however, the molecular drivers of influenza outcomes remain unknown. In this work, we characterized the host glycomic response to the H1N1 2009 pandemic influenza A virus (H1N1pdm09) as a function of age-dependent severity in a ferret model. Using our dual-color lectin microarray technology, we examined baseline glycosylation and glycomic response to infection in newly weaned and aged animals, models for young children and the elderly, respectively. Compared to adult uninfected ferrets, we observed higher levels of α-2,6-sialosides, the receptor for H1N1pdm09, in newly weaned and aged animals. We also observed age-dependent loss of O-linked α-2,3-sialosides. The loss of these highly charged groups may impact viral clearance by mucins, which corresponds to the lower clearance rates observed in aged animals. Upon infection, we observed dramatic changes in the glycomes of aged animals, a population severely impacted by the virus. In contrast, no significant alterations were observed in the newly weaned animals, which show mild to moderate responses to the H1N1pdm09. High mannose, a glycan recently identified as a marker of severity in adult animals, increased with severity in the aged population. However, the response was delayed, in line with the delayed development of pneumonia observed. Overall, our results may help explain the differential susceptibility to influenza A infection and severity observed as a function of age.
Collapse
Affiliation(s)
- Shuhui Chen
- Biomedical Research Institute, Department of Chemistry, New York University, NY, 10003, USA
| | - Brian Kasper
- Biomedical Research Institute, Department of Chemistry, New York University, NY, 10003, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Lauren P. Lashua
- Center for Genomics & Systems Biology, Department of Biology, New York University, NY, 10003, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, GA, 30602, USA
| | - Elodie Ghedin
- Center for Genomics & Systems Biology, Department of Biology, New York University, NY, 10003, USA
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID/NIH, Bethesda, MD, 20894, USA
| | - Lara K. Mahal
- Biomedical Research Institute, Department of Chemistry, New York University, NY, 10003, USA
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, CANADA
| |
Collapse
|
5
|
Bissel SJ, Carter CE, Wang G, Johnson SK, Lashua LP, Kelvin AA, Wiley CA, Ghedin E, Ross TM. Age-Related Pathology Associated with H1N1 A/California/07/2009 Influenza Virus Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2389-2399. [PMID: 31585069 DOI: 10.1016/j.ajpath.2019.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/29/2022]
Abstract
Influenza virus infection causes a spectrum of diseases, ranging from mild upper respiratory tract infection to severe lower respiratory tract infection, that can lead to diffuse alveolar damage, interstitial and airspace inflammation, or acute respiratory failure. Mechanisms instructing disease severity are not completely understood, but host, viral, and bacterial factors influence disease outcome. With age being one host factor associated with a higher risk of severe influenza, we investigated regional pulmonary distribution and severity of pneumonia after 2009 H1N1 influenza virus infection in newly weaned, adult, and aged ferrets to better understand age-dependent susceptibility and pathology. Aged ferrets exhibited greater weight loss and higher rates of mortality than adult ferrets, whereas most newly weaned ferrets did not lose weight but had a lack of weight gain. Newly weaned ferrets exhibited minimal pneumonia, whereas adult and aged ferrets had a spectrum of pneumonia severity. Influenza virus-induced pneumonia peaked earliest in adult ferrets, whereas aged ferrets had delayed presentation. Bronchial severity differed among groups, but bronchial pathology was comparable among all cohorts. Alveolar infection was strikingly different among groups. Newly weaned ferrets had little alveolar cell infection. Adult and aged ferrets had alveolar infection, but aged ferrets were unable to clear infection. These different age-related pneumonia and infection patterns suggest therapeutic strategies to treat influenza should be tailored contingent on age.
Collapse
Affiliation(s)
- Stephanie J Bissel
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Chalise E Carter
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia
| | - Guoji Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Scott K Johnson
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia
| | - Lauren P Lashua
- Center for Genomics & Systems Biology, Department of Biology, College of Arts & Sciences, New York University, New York, New York
| | - Alyson A Kelvin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Canadian Centre for Vaccinology, Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Clayton A Wiley
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elodie Ghedin
- Center for Genomics & Systems Biology, Department of Biology, College of Arts & Sciences, New York University, New York, New York; Department of Epidemiology, College of Global Public Health, New York University, New York, New York
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia; Department of Infectious Diseases, University of Georgia, Athens, Georgia
| |
Collapse
|
6
|
Belser JA, Maines TR, Tumpey TM. Importance of 1918 virus reconstruction to current assessments of pandemic risk. Virology 2018; 524:45-55. [PMID: 30142572 PMCID: PMC9036538 DOI: 10.1016/j.virol.2018.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/25/2018] [Accepted: 08/09/2018] [Indexed: 01/13/2023]
Abstract
Reconstruction of the 1918 influenza virus has facilitated considerable advancements in our understanding of this extraordinary pandemic virus. However, the benefits of virus reconstruction are not limited to this one strain. Here, we provide an overview of laboratory studies which have evaluated the reconstructed 1918 virus, and highlight key discoveries about determinants of virulence and transmissibility associated with this virus in mammals. We further discuss recent and current pandemic threats from avian and swine reservoirs, and provide specific examples of how reconstruction of the 1918 pandemic virus has improved our ability to contextualize research employing novel and emerging strains. As influenza viruses continue to evolve and pose a threat to human health, studying past pandemic viruses is key to future preparedness efforts.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
7
|
Garretson TA, Petrie JG, Martin ET, Monto AS, Hensley SE. Identification of human vaccinees that possess antibodies targeting the egg-adapted hemagglutinin receptor binding site of an H1N1 influenza vaccine strain. Vaccine 2018; 36:4095-4101. [PMID: 29861178 DOI: 10.1016/j.vaccine.2018.05.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 10/14/2022]
Abstract
Human influenza viruses passaged in eggs often acquire mutations in the hemagglutinin (HA) receptor binding site (RBS). To determine if egg-adapted H1N1 vaccines commonly elicit antibodies targeting the egg-adapted RBS of HA, we completed hemagglutinin-inhibition assays with A/California/7/2009 HA and egg-adapted A/California/7/2009-X-179A HA using sera collected from 159 humans vaccinated with seasonal influenza vaccines during the 2015-16 season. We found that ∼5% of participants had ≥4-fold higher antibody titers to the egg-adapted viral strain compared to wild type viral strain. We used reverse-genetics to demonstrate that a single egg-adapted HA RBS mutation (Q226R) was responsible for this phenotype.
Collapse
Affiliation(s)
- Tyler A Garretson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joshua G Petrie
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Emily T Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Arnold S Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Allen JD, Owino SO, Carter DM, Crevar CJ, Reese VA, Fox CB, Coler RN, Reed SG, Baldwin SL, Ross TM. Broadened immunity and protective responses with emulsion-adjuvanted H5 COBRA-VLP vaccines. Vaccine 2017; 35:5209-5216. [PMID: 28789850 DOI: 10.1016/j.vaccine.2017.07.107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/11/2017] [Accepted: 07/27/2017] [Indexed: 12/23/2022]
Abstract
A number of challenges for developing a protective pre-pandemic influenza A vaccine exists including predicting the target influenza strain and designing the vaccine for an immunologically naïve population. Manufacturing and supply of the vaccine would also require implementing ways to increase coverage for the largest number of people through dose-sparing methods, while not compromising the potency of the vaccine. Previously, our group described a novel hemagglutinin (HA) for H5N1 influenza derived from a methodology termed computationally optimized broadly reactive antigen (COBRA). This report describes a strategy combining a COBRA-based HA vaccine with an oil-in-water emulsion, resulting in a dose-sparing, immunologically broadened, and protective response against multiple H5N1 isolates. Here, we show that an emulsion-based adjuvant enhances the magnitude and breadth of antibody responses with both a wild-type H5HA (H5N1 WT) and the H5N1 COBRA HA VLP vaccines. The H5N1 COBRA HA VLP, combined with an emulsion adjuvant, elicited HAI specific antibodies against a larger panel of H5N1 viruses that resulted in protection against challenge as efficiently as the homologous, matched vaccine.
Collapse
Affiliation(s)
- James D Allen
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Simon O Owino
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Donald M Carter
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA; University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | | | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA; University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Quan FS, Lee YT, Kim KH, Kim MC, Kang SM. Progress in developing virus-like particle influenza vaccines. Expert Rev Vaccines 2016; 15:1281-93. [PMID: 27058302 DOI: 10.1080/14760584.2016.1175942] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recombinant vaccines based on virus-like particles (VLPs) or nanoparticles have been successful in their safety and efficacy in preclinical and clinical studies. The technology of expressing enveloped VLP vaccines has combined with molecular engineering of proteins in membrane-anchor and immunogenic forms mimicking the native conformation of surface proteins on the enveloped viruses. This review summarizes recent developments in influenza VLP vaccines against seasonal, pandemic, and avian influenza viruses from the perspective of use in humans. The immunogenicity and efficacies of influenza VLP vaccine in the homologous and cross-protection were reviewed. Discussions include limitations of current influenza vaccination strategies and future directions to confer broadly cross protective new influenza vaccines as well as vaccination.
Collapse
Affiliation(s)
- Fu-Shi Quan
- a Department of Medical Zoology , Kyung Hee University School of Medicine , Seoul , Korea
| | - Young-Tae Lee
- b Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA
| | - Ki-Hye Kim
- b Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA
| | - Min-Chul Kim
- b Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA.,c Animal and Plant Quarantine Agency , Gimcheon , Korea
| | - Sang-Moo Kang
- b Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA
| |
Collapse
|
10
|
Long-term immunogenicity of an inactivated split-virion 2009 pandemic influenza A H1N1 virus vaccine with or without aluminum adjuvant in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:327-35. [PMID: 25589552 DOI: 10.1128/cvi.00662-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In 2009, a global epidemic of influenza A(H1N1) virus caused the death of tens of thousands of people. Vaccination is the most effective means of controlling an epidemic of influenza and reducing the mortality rate. In this study, the long-term immunogenicity of influenza A/California/7/2009 (H1N1) split vaccine was observed as long as 15 months (450 days) after immunization in a mouse model. Female BALB/c mice were immunized intraperitoneally with different doses of aluminum-adjuvanted vaccine. The mice were challenged with a lethal dose (10× 50% lethal dose [LD(50)]) of homologous virus 450 days after immunization. The results showed that the supplemented aluminum adjuvant not only effectively enhanced the protective effect of the vaccine but also reduced the immunizing dose of the vaccine. In addition, the aluminum adjuvant enhanced the IgG antibody level of mice immunized with the H1N1 split vaccine. The IgG level was correlated to the survival rate of the mice. Aluminum-adjuvanted inactivated split-virion 2009 pandemic influenza A H1N1 vaccine has good immunogenicity and provided long-term protection against lethal influenza virus challenge in mice.
Collapse
|
11
|
H1N1, but not H3N2, influenza A virus infection protects ferrets from H5N1 encephalitis. J Virol 2013; 88:3077-91. [PMID: 24371072 DOI: 10.1128/jvi.01840-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Seasonal influenza causes substantial morbidity and mortality because of efficient human-to-human spread. Rarely, zoonotic strains of influenza virus spread to humans, where they have the potential to mediate new pandemics with high mortality. We studied systemic viral spread after intranasal infection with highly pathogenic avian influenza virus (H5N1 [A/Viet Nam/1203/2004]) in ferrets with or without prior pandemic H1N1pdm09 (A/Mexico/4108/2009) or H3N2 (A/Victoria/361/2011) infection. After intranasal challenge with H5N1 influenza virus, naive ferrets rapidly succumbed to systemic infection. Animals challenged with H5N1 influenza virus greater than 3 months after recovering from an initial H1N1pdm09 infection survived H5N1 virus challenge and cleared virus from the respiratory tract 4 days after infection. However, a prolonged low-level infection of hematopoietic elements in the small bowel lamina propria, liver, and spleen was present for greater than 2 weeks postinfection, raising the potential for reassortment of influenza genes in a host infected with multiple strains of influenza. Animals previously infected with an H3N2 influenza virus succumbed to systemic disease and encephalitis after H5N1 virus challenge. These results indicate prior infection with different seasonal influenza strains leads to radically different protection from H5N1 challenge and fatal encephalitis. IMPORTANCE Seasonal influenza is efficiently transmitted from human to human, causing substantial morbidity and mortality. Rarely, zoonotic strains of influenza virus spread to humans, where they have the potential to mediate new pandemics with high mortality. Infection of naive ferrets with H5N1 avian influenza virus causes a rapid and lethal systemic disease. We studied systemic H5N1 viral spread after infection of ferrets with or without prior exposure to either of two seasonal influenza virus strains, H1N1 and H3N2. Ferrets previously infected with H1N1 survive H5N1 challenge while those previously infected with H3N2 die of encephalitis. However ferrets protected from lethal H5N1 infection develop persistent low-level infection of the small intestine, liver, or spleen, providing a nidus for future viral strain recombination. The mechanism by which prior infection with specific strains of seasonal influenza virus protect from lethal H5N1 challenge needs to be elucidated in order to design effective immunization and treatments.
Collapse
|
12
|
Current world literature. Curr Opin Infect Dis 2012; 25:718-28. [PMID: 23147811 DOI: 10.1097/qco.0b013e32835af239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Sequential seasonal H1N1 influenza virus infections protect ferrets against novel 2009 H1N1 influenza virus. J Virol 2012; 87:1400-10. [PMID: 23115287 DOI: 10.1128/jvi.02257-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Individuals <60 years of age had the lowest incidence of infection, with ~25% of these people having preexisting, cross-reactive antibodies to novel 2009 H1N1 influenza. Many people >60 years old also had preexisting antibodies to novel H1N1. These observations are puzzling because the seasonal H1N1 viruses circulating during the last 60 years were not antigenically similar to novel H1N1. We therefore hypothesized that a sequence of exposures to antigenically different seasonal H1N1 viruses can elicit an antibody response that protects against novel 2009 H1N1. Ferrets were preinfected with seasonal H1N1 viruses and assessed for cross-reactive antibodies to novel H1N1. Serum from infected ferrets was assayed for cross-reactivity to both seasonal and novel 2009 H1N1 strains. These results were compared to those of ferrets that were sequentially infected with H1N1 viruses isolated prior to 1957 or more-recently isolated viruses. Following seroconversion, ferrets were challenged with novel H1N1 influenza virus and assessed for viral titers in the nasal wash, morbidity, and mortality. There was no hemagglutination inhibition (HAI) cross-reactivity in ferrets infected with any single seasonal H1N1 influenza viruses, with limited protection to challenge. However, sequential H1N1 influenza infections reduced the incidence of disease and elicited cross-reactive antibodies to novel H1N1 isolates. The amount and duration of virus shedding and the frequency of transmission following novel H1N1 challenge were reduced. Exposure to multiple seasonal H1N1 influenza viruses, and not to any single H1N1 influenza virus, elicits a breadth of antibodies that neutralize novel H1N1 even though the host was never exposed to the novel H1N1 influenza viruses.
Collapse
|
14
|
Influenza virus H1N1pdm09 infections in the young and old: evidence of greater antibody diversity and affinity for the hemagglutinin globular head domain (HA1 Domain) in the elderly than in young adults and children. J Virol 2012; 86:5515-22. [PMID: 22379097 DOI: 10.1128/jvi.07085-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The H1N1 2009 influenza virus (H1N1pdm09) pandemic had several unexpected features, including low morbidity and mortality in older populations. We performed in-depth evaluation of antibody responses generated following H1N1pdm09 infection of naïve ferrets and of 130 humans ranging from the very young (0 to 9 years old) to the very old (70 to 89 years old). In addition to hemagglutination inhibition (HI) titers, we used H1N1pdm09 whole-genome-fragment phage display libraries (GFPDL) to evaluate the antibody repertoires against internal genes, hemagglutinin (HA), and neuraminidase (NA) and also measured antibody affinity for antigenic domains within HA. GFPDL analyses of H1N1pdm09-infected ferrets demonstrated gradual development of antibody repertoires with a focus on M1 and HA1 by day 21 postinfection. In humans, H1N1pdm09 infection in the elderly (>70 years old) induced antibodies with broader epitope recognition in both the internal genes and the HA1 receptor binding domain (RBD) than for the younger age groups (0 to 69 years). Importantly, post-H1N1 infection serum antibodies from the elderly demonstrated substantially higher avidity for recombinant HA1 (rHA1) (but not HA2) than those from younger subjects (50% versus <22% 7 M urea resistance, respectively) and lower antibody dissociation rates using surface plasmon resonance. This is the first study in humans that provides evidence for a qualitatively superior antibody response in the elderly following H1N1pdm09 infection, indicative of recall of long-term memory B cells or long-lived plasma cells. These findings may help explain the age-related morbidity and mortality pattern observed during the H1N1pdm09 pandemic.
Collapse
|