1
|
Ungerleider NA, Roberts C, O’Grady TM, Nguyen TT, Baddoo M, Wang J, Ishaq E, Concha M, Lam M, Bass J, Nguyen T, Van Otterloo N, Wickramarachchige-Dona N, Wyczechowska D, Morales M, Ma T, Dong Y, Flemington E. Viral reprogramming of host transcription initiation. Nucleic Acids Res 2024; 52:5016-5032. [PMID: 38471819 PMCID: PMC11109974 DOI: 10.1093/nar/gkae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/13/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Viruses are master remodelers of the host cell environment in support of infection and virus production. For example, viruses typically regulate cell gene expression through modulating canonical cell promoter activity. Here, we show that Epstein Barr virus (EBV) replication causes 'de novo' transcription initiation at 29674 new transcription start sites throughout the cell genome. De novo transcription initiation is facilitated in part by the unique properties of the viral pre-initiation complex (vPIC) that binds a TATT[T/A]AA, TATA box-like sequence and activates transcription with minimal support by additional transcription factors. Other de novo promoters are driven by the viral transcription factors, Zta and Rta and are influenced by directional proximity to existing canonical cell promoters, a configuration that fosters transcription through existing promoters and transcriptional interference. These studies reveal a new way that viruses interact with the host transcriptome to inhibit host gene expression and they shed light on primal features driving eukaryotic promoter function.
Collapse
Affiliation(s)
- Nathan A Ungerleider
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Claire Roberts
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Tina M O’Grady
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Trang T Nguyen
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Melody Baddoo
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Jia Wang
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Eman Ishaq
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Monica Concha
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Meggie Lam
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Jordan Bass
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Truong D Nguyen
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Nick Van Otterloo
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | | | - Dorota Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Tianfang Ma
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| |
Collapse
|
2
|
Lin KM, Weng LF, Chen SYJ, Lin SJ, Tsai CH. Upregulation of IQGAP2 by EBV transactivator Rta and its influence on EBV life cycle. J Virol 2023; 97:e0054023. [PMID: 37504571 PMCID: PMC10506479 DOI: 10.1128/jvi.00540-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human oncogenic γ-herpesvirus that establishes persistent infection in more than 90% of the world's population. EBV has two life cycles, latency and lytic replication. Reactivation of EBV from latency to the lytic cycle is initiated and controlled by two viral immediate-early transcription factors, Zta and Rta, encoded by BZLF1 and BRLF1, respectively. In this study, we found that IQGAP2 expression was elevated in EBV-infected B cells and identified Rta as a viral gene responsible for the IQGAP2 upregulation in both B cells and nasopharyngeal carcinoma cell lines. Mechanistically, we showed that Rta increases IQGAP2 expression through direct binding to the Rta-responsive element in the IQGAP2 promoter. We also demonstrated the direct interaction between Rta and IQGAP2 as well as their colocalization in the nucleus. Functionally, we showed that the induced IQGAP2 is required for the Rta-mediated Rta promoter activation in the EBV lytic cycle progression and may influence lymphoblastoid cell line clumping morphology through regulating E-cadherin expression. IMPORTANCE Elevated levels of antibodies against EBV lytic proteins and increased EBV DNA copy numbers in the sera have been reported in patients suffering from Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma, indicating that EBV lytic cycle progression may play an important role in the pathogenesis of EBV-associated diseases and highlighting the need for a more complete mechanistic understanding of the EBV lytic cycle. Rta acts as an essential transcriptional activator to induce lytic gene expression and thus trigger EBV reactivation. In this study, scaffolding protein IQGAP2 was found to be upregulated prominently following EBV infection via the direct binding of Rta to the RRE in the IQGAP2 promoter but not in response to other biological stimuli. Importantly, IQGAP2 was demonstrated to interact with Rta and promote the EBV lytic cycle progression. Suppression of IQGAP2 was also found to decrease E-cadherin expression and affect the clumping morphology of lymphoblastoid cell lines.
Collapse
Affiliation(s)
- Kai-Min Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Fang Weng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shi-Yo Jill Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sue-Jane Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Myers JE, Schaal DL, Nkadi EH, Ward BJH, Bienkowska-Haba M, Sapp M, Bodily JM, Scott RS. Retinoblastoma Protein Is Required for Epstein-Barr Virus Replication in Differentiated Epithelia. J Virol 2023; 97:e0103222. [PMID: 36719239 PMCID: PMC9972952 DOI: 10.1128/jvi.01032-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/20/2022] [Indexed: 02/01/2023] Open
Abstract
Coinfection of human papillomavirus (HPV) and Epstein-Barr virus (EBV) has been detected in oropharyngeal squamous cell carcinoma. Although HPV and EBV replicate in differentiated epithelial cells, we previously reported that HPV epithelial immortalization reduces EBV replication within organotypic raft culture and that the HPV16 oncoprotein E7 was sufficient to inhibit EBV replication. A well-established function of HPV E7 is the degradation of the retinoblastoma (Rb) family of pocket proteins (pRb, p107, and p130). Here, we show that pRb knockdown in differentiated epithelia and EBV-positive Burkitt lymphoma (BL) reduces EBV lytic replication following de novo infection and reactivation, respectively. In differentiated epithelia, EBV immediate early (IE) transactivators were expressed, but loss of pRb blocked expression of the early gene product, EA-D. Although no alterations were observed in markers of epithelial differentiation, DNA damage, and p16, increased markers of S-phase progression and altered p107 and p130 levels were observed in suprabasal keratinocytes after pRb knockdown. In contrast, pRb interference in Akata BX1 Burkitt lymphoma cells showed a distinct phenotype from differentiated epithelia with no significant effect on EBV IE or EA-D expression. Instead, pRb knockdown reduced the levels of the plasmablast differentiation marker PRDM1/Blimp1 and increased the abundance of c-Myc protein in reactivated Akata BL with pRb knockdown. c-Myc RNA levels also increased following the loss of pRb in epithelial rafts. These results suggest that pRb is required to suppress c-Myc for efficient EBV replication in BL cells and identifies a mechanism for how HPV immortalization, through degradation of the retinoblastoma pocket proteins, interferes with EBV replication in coinfected epithelia. IMPORTANCE Terminally differentiated epithelium is known to support EBV genome amplification and virion morphogenesis following infection. The contribution of the cell cycle in differentiated tissues to efficient EBV replication is not understood. Using organotypic epithelial raft cultures and genetic interference, we can identify factors required for EBV replication in quiescent cells. Here, we phenocopied HPV16 E7 inhibition of EBV replication through knockdown of pRb. Loss of pRb was found to reduce EBV early gene expression and viral replication. Interruption of the viral life cycle was accompanied by increased S-phase gene expression in postmitotic keratinocytes, a process also observed in E7-positive epithelia, and deregulation of other pocket proteins. Together, these findings provide evidence of a global requirement for pRb in EBV lytic replication and provide a mechanistic framework for how HPV E7 may facilitate a latent EBV infection through its mediated degradation of pRb in copositive epithelia.
Collapse
Affiliation(s)
- Julia E. Myers
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Danielle L. Schaal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Ebubechukwu H. Nkadi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - B. J. H. Ward
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Malgorzata Bienkowska-Haba
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Martin Sapp
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Jason M. Bodily
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
4
|
Ali A, Ohashi M, Casco A, Djavadian R, Eichelberg M, Kenney SC, Johannsen E. Rta is the principal activator of Epstein-Barr virus epithelial lytic transcription. PLoS Pathog 2022; 18:e1010886. [PMID: 36174106 PMCID: PMC9553042 DOI: 10.1371/journal.ppat.1010886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/11/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2023] Open
Abstract
The transition from latent Epstein-Barr virus (EBV) infection to lytic viral replication is mediated by the viral transcription factors Rta and Zta. Although both are required for virion production, dissecting the specific roles played by Rta and Zta is challenging because they induce each other's expression. To circumvent this, we constructed an EBV mutant deleted for the genes encoding Rta and Zta (BRLF1 and BZLF1, respectively) in the Akata strain BACmid. This mutant, termed EBVΔRZ, was used to infect several epithelial cell lines, including telomerase-immortalized normal oral keratinocytes, a highly physiologic model of EBV epithelial cell infection. Using RNA-seq, we determined the gene expression induced by each viral transactivator. Surprisingly, Zta alone only induced expression of the lytic origin transcripts BHLF1 and LF3. In contrast, Rta activated the majority of EBV early gene transcripts. As expected, Zta and Rta were both required for expression of late gene transcripts. Zta also cooperated with Rta to enhance a subset of early gene transcripts (Rtasynergy transcripts) that Zta was unable to activate when expressed alone. Interestingly, Rta and Zta each cooperatively enhanced the other's binding to EBV early gene promoters, but this effect was not restricted to promoters where synergy was observed. We demonstrate that Zta did not affect Rtasynergy transcript stability, but increased Rtasynergy gene transcription despite having no effect on their transcription when expressed alone. Our results suggest that, at least in epithelial cells, Rta is the dominant transactivator and that Zta functions primarily to support DNA replication and co-activate a subset of early promoters with Rta. This closely parallels the arrangement in KSHV where ORF50 (Rta homolog) is the principal activator of lytic transcription and K8 (Zta homolog) is required for DNA replication at oriLyt.
Collapse
Affiliation(s)
- Ahmed Ali
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- National Center for Research, Khartoum, Sudan
| | - Makoto Ohashi
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Reza Djavadian
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Mark Eichelberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
5
|
Kumar S, Ramamurthy C, Choudhary D, Sekar A, Patra A, Bhavesh NS, Vivekanandan P. Contrasting roles for G-quadruplexes in regulating human Bcl-2 and virus homologues KSHV KS-Bcl-2 and EBV BHRF1. Sci Rep 2022; 12:5019. [PMID: 35322051 PMCID: PMC8943185 DOI: 10.1038/s41598-022-08161-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Herpesviruses are known to acquire several genes from their hosts during evolution. We found that a significant proportion of virus homologues encoded by HSV-1, HSV-2, EBV and KSHV and their human counterparts contain G-quadruplex motifs in their promoters. We sought to understand the role of G-quadruplexes in the regulatory regions of viral Bcl-2 homologues encoded by KSHV (KS-Bcl-2) and EBV (BHRF1). We demonstrate that the KSHV KS-Bcl-2 and the EBV BHRF1 promoter G-quadruplex motifs (KSHV-GQ and EBV-GQ) form stable intramolecular G-quadruplexes. Ligand-mediated stabilization of KS-Bcl-2 and BHRF1 promoter G-quadruplexes significantly increased the promoter activity resulting in enhanced transcription of these viral Bcl-2 homologues. Mutations disrupting KSHV-GQ and EBV-GQ inhibit promoter activity and render the KS-Bcl-2 and the BHRF1 promoters non-responsive to G-quadruplex ligand. In contrast, promoter G-quadruplexes of human bcl-2 gene inhibit promoter activity. Further, KS-Bcl-2 and BHRF1 promoter G-quadruplexes augment RTA (a virus-encoded transcription factor)-mediated increase in viral bcl-2 promoter activity. In sum, this work highlights how human herpesviruses have evolved to exploit promoter G-quadruplexes to regulate virus homologues to counter their cellular counterparts.
Collapse
Affiliation(s)
- Shivani Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chitteti Ramamurthy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Divya Choudhary
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Aashika Sekar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
6
|
Van Sciver N, Ohashi M, Nawandar DM, Pauly NP, Lee D, Makielski KR, Bristol JA, Tsao SW, Lambert PF, Johannsen EC, Kenney SC. ΔNp63α promotes Epstein-Barr virus latency in undifferentiated epithelial cells. PLoS Pathog 2021; 17:e1010045. [PMID: 34748616 PMCID: PMC8601603 DOI: 10.1371/journal.ppat.1010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/18/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that causes infectious mononucleosis and contributes to both B-cell and epithelial-cell malignancies. EBV-infected epithelial cell tumors, including nasopharyngeal carcinoma (NPC), are largely composed of latently infected cells, but the mechanism(s) maintaining viral latency are poorly understood. Expression of the EBV BZLF1 (Z) and BRLF1 (R) encoded immediate-early (IE) proteins induces lytic infection, and these IE proteins activate each other's promoters. ΔNp63α (a p53 family member) is required for proliferation and survival of basal epithelial cells and is over-expressed in NPC tumors. Here we show that ΔNp63α promotes EBV latency by inhibiting activation of the BZLF1 IE promoter (Zp). Furthermore, we find that another p63 gene splice variant, TAp63α, which is expressed in some Burkitt and diffuse large B cell lymphomas, also represses EBV lytic reactivation. We demonstrate that ΔNp63α inhibits the Z promoter indirectly by preventing the ability of other transcription factors, including the viral IE R protein and the cellular KLF4 protein, to activate Zp. Mechanistically, we show that ΔNp63α promotes viral latency in undifferentiated epithelial cells both by enhancing expression of a known Zp repressor protein, c-myc, and by decreasing cellular p38 kinase activity. Furthermore, we find that the ability of cis-platinum chemotherapy to degrade ΔNp63α contributes to the lytic-inducing effect of this agent in EBV-infected epithelial cells. Together these findings demonstrate that the loss of ΔNp63α expression, in conjunction with enhanced expression of differentiation-dependent transcription factors such as BLIMP1 and KLF4, induces lytic EBV reactivation during normal epithelial cell differentiation. Conversely, expression of ΔNp63α in undifferentiated nasopharyngeal carcinoma cells and TAp63α in Burkitt lymphoma promotes EBV latency in these malignancies.
Collapse
Affiliation(s)
- Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Dhananjay M. Nawandar
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Currently at Ring Therapeutics, Cambridge, Massachusetts, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Denis Lee
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Kathleen R. Makielski
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul F. Lambert
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Van Sciver N, Ohashi M, Pauly NP, Bristol JA, Nelson SE, Johannsen EC, Kenney SC. Hippo signaling effectors YAP and TAZ induce Epstein-Barr Virus (EBV) lytic reactivation through TEADs in epithelial cells. PLoS Pathog 2021; 17:e1009783. [PMID: 34339458 PMCID: PMC8360610 DOI: 10.1371/journal.ppat.1009783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/12/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) human herpesvirus is associated with B-cell and epithelial-cell malignancies, and both the latent and lytic forms of viral infection contribute to the development of EBV-associated tumors. Here we show that the Hippo signaling effectors, YAP and TAZ, promote lytic EBV reactivation in epithelial cells. The transcriptional co-activators YAP/TAZ (which are inhibited by Hippo signaling) interact with DNA-binding proteins, particularly TEADs, to induce transcription. We demonstrate that depletion of either YAP or TAZ inhibits the ability of phorbol ester (TPA) treatment, cellular differentiation or the EBV BRLF1 immediate-early (IE) protein to induce lytic EBV reactivation in oral keratinocytes, and show that over-expression of constitutively active forms of YAP and TAZ reactivate lytic EBV infection in conjunction with TEAD family members. Mechanistically, we find that YAP and TAZ interact with, and activate, the EBV BZLF1 immediate-early promoter. Furthermore, we demonstrate that YAP, TAZ, and TEAD family members are expressed at much higher levels in epithelial cell lines in comparison to B-cell lines, and find that EBV infection of oral keratinocytes increases the level of activated (dephosphorylated) YAP and TAZ. Finally, we have discovered that lysophosphatidic acid (LPA), a known YAP/TAZ activator that plays an important role in inflammation, induces EBV lytic reactivation in epithelial cells through a YAP/TAZ dependent mechanism. Together these results establish that YAP/TAZ are powerful inducers of the lytic form of EBV infection and suggest that the ability of EBV to enter latency in B cells at least partially reflects the extremely low levels of YAP/TAZ and TEADs in this cell type.
Collapse
Affiliation(s)
- Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Pathology Graduate Training Program, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
8
|
Expression of Rta in B Lymphocytes during Epstein-Barr Virus Latency. J Mol Biol 2020; 432:5227-5243. [PMID: 32710985 DOI: 10.1016/j.jmb.2020.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022]
Abstract
Rta of Epstein-Barr virus (EBV) is thought to be expressed only during the lytic cycle to promote the transcription of lytic genes. However, we found that Rta is expressed in EBV-infected B cells during viral latency, at levels detectable by immunoblot analysis. Latent Rta expression cannot be attributed to spontaneous lytic activation, as we observed that more than 90% of Akata, P3HR1, and 721 cells latently infected by EBV express Rta. We further found that Rta is sequestered in the nucleolus during EBV latency through its interaction with MCRS2, a nucleolar protein. When Rta is sequestered in the nucleolus, it no longer activates RNA polymerase II-driven transcription, thus explaining why Rta expression during latency does not transactivate EBV lytic genes. Additional experiments showed that Rta can bind to 18S rRNA and become incorporated into ribosomes, and a transient transfection experiment showed that Rta promotes translation from an mRNA reporter. These findings reveal that Rta has novel functions beyond transcriptional activation during EBV latency and may have interesting implications for the concept of EBV latency.
Collapse
|
9
|
Identifying the Cellular Interactome of Epstein-Barr Virus Lytic Regulator Zta Reveals Cellular Targets Contributing to Viral Replication. J Virol 2020; 94:JVI.00927-19. [PMID: 31694936 DOI: 10.1128/jvi.00927-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The human gammaherpesvirus Epstein-Barr virus (EBV) (human herpesvirus 4 [HHV4]) infects most adults and is an important contributor to the development of many types of lymphoid and epithelial cancers. Essential contributions of viral genes to viral replication are known, but the potential contributions of cell genes are less well delineated. A key player is the viral protein Zta (BZLF1, ZEBRA, or Z). This sequence-specific DNA-binding protein can disrupt EBV latency by driving the transcription of target genes and by interacting with the EBV lytic origin of replication. Here, we used an unbiased proteomics approach to identify the Zta-interactome in cells derived from Burkitt's lymphoma. Isolating Zta and associated proteins from Burkitt's lymphoma cells undergoing EBV replication, followed by tandem mass tag (TMT) mass spectrometry, resulted in the identification of 39 viral and cellular proteins within the Zta interactome. An association of Zta with the cellular protein NFATc2 was validated in independent experiments. Furthermore, the ability of Zta to attenuate the activity of an NFAT-dependent promoter was shown, which suggests a functional consequence for the association. The expression of Zta is itself regulated through NFAT activity, suggesting that Zta may contribute to a feedback loop that would limit its own expression, thus aiding viral replication by preventing the known toxic effects of Zta overexpression.IMPORTANCE Epstein-Barr virus infects most people across the world and causes several kinds of cancer. Zta is an important viral protein that makes the virus replicate by binding to its DNA and turning on the expression of some genes. We used a sensitive, unbiased approach to isolate and identify viral and cellular proteins that physically interact with Zta. This revealed 39 viral and cellular proteins. We found that one protein, termed NFATc2, was already known to be important for a very early step in viral replication. We identify that once this step has occurred, Zta reduces the effectiveness of NFATc2, and we suggest that this is important to prevent cells from dying before viral replication is complete and the mature virus is released from the cells.
Collapse
|
10
|
Natural Variations in BRLF1 Promoter Contribute to the Elevated Reactivation Level of Epstein-Barr Virus in Endemic Areas of Nasopharyngeal Carcinoma. EBioMedicine 2018; 37:101-109. [PMID: 30420297 PMCID: PMC6286269 DOI: 10.1016/j.ebiom.2018.10.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
Background Epstein-Barr virus (EBV) infection is a crucial risk factor for nasopharyngeal carcinoma (NPC), but the mechanism for its elevated activation level in NPC endemic areas remains unclear. This study aims to identify the EBV natural variations contributed to the different reactivation potential between NPC endemic and non-endemic areas. Methods 1030 subjects were recruited in China, including 303 healthy individuals from two NPC non-endemic areas, 483 healthy people from three endemic areas and 244 NPC patients. Among which, saliva DNA samples from 244 participants were sequenced for the EBV immediate early (IE) genes of BRLF1 and BZLF1, their promoters were included; the rest 786 subjects were used for the validation of significant variations among three different populations. Haplotype and population structure analysis were conducted. Dual-luciferase assay was used to detect the promoter activity. Results A total of 246 distinct variations were detected, 29 showed significant difference in the frequencies between healthy people from NPC endemic area and non-endemic area. Population structure analysis clustered EBV strains into 9 subgroups mostly in accordance with the geographical origin of samples. Interestingly, two EBV genotypes, Rp-V1 and Rp-V2, were identified according to the linkage relationship of the variations in BRLF1 promoter (Rp). Rp-V1 has higher frequency in NPC endemic areas than in non-endemic areas (52.38% vs 18.15%, P = 2.07 × 10−14), and was associated with higher oral EBV DNA levels (adjusted OR = 1.64, 95% CI = 1.21–2.24, P = .002), suggesting a more powerful activation ability of Rp-V1 than that of the prototype Rp-of the EBV strain; On the contrary, Rp-V2 has higher frequency in NPC non-endemic areas than in endemic areas (18.48% vs 0.38%, P = 1.17 × 10−7), might represent a reduced activation potential of EBV. Further dual-luciferase assay showed Rp-V1 has higher promoter activity while compared with Rp-V2 (P < .0001). Notably, Rp-V1 impaired the transcription repression effect of YY1 while Rp-V2 strengthened the transcription repression effect of EBF1 on Rp. In addition, significant differences of Rta 393–407 CTL epitope which may influence the recognition of Rta by CD8+ T cells were detected between healthy people from NPC endemic area and non-endemic area. Conclusions This study identified natural variations in cis-acting elements (YY1 and EBF1) of EBV Rp altering Rp transcription activities, which may contribute to the elevated EBV activation level in NPC endemic areas than non-endemic areas.
Collapse
|
11
|
Chen LW, Hung CH, Wang SS, Yen JB, Liu AC, Hung YH, Chang PJ. Expression and regulation of the BKRF2, BKRF3 and BKRF4 genes of Epstein-Barr virus. Virus Res 2018; 256:76-89. [PMID: 30096410 DOI: 10.1016/j.virusres.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 12/24/2022]
Abstract
The BKRF2, BKRF3 and BKRF4 genes of Epstein-Barr virus (EBV) are located close together in the viral genome, which encode glycoprotein L, uracil-DNA glycosylase and a tegument protein, respectively. Here, we demonstrate that the BKRF2 gene behaves as a true-late lytic gene, whereas the BKRF3 and BKRF4 genes belong to the early lytic gene family. Our results further reveal that both BKRF3 and BKRF4 promoters are new synergistic targets of Zta and Rta, two EBV latent-to-lytic switch transactivators. Multiple Rta- and Zta-responsive elements within the BKRF3 and BKRF4 promoters were identified and characterized experimentally. Importantly, we show that DNA methylation is absolutely required for activation of the BKRF4 promoter by Zta alone or in combination with Rta. Moreover, we find that sodium butyrate, an inducing agent of EBV reactivation, is capable of activating the BKRF4 promoter through a mechanism independent of Zta and Rta. Overall, our studies highlight the complexity of transcriptional regulation of lytic genes within the BKRF2-BKRF3-BKRF4 gene locus.
Collapse
Affiliation(s)
- Lee-Wen Chen
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan; Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Ju-Bei Yen
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan; Department of Pediatrics, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ann-Chi Liu
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Ya-Hui Hung
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan; Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan.
| |
Collapse
|
12
|
Encyclopedia of EBV-Encoded Lytic Genes: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:395-412. [DOI: 10.1007/978-981-10-7230-7_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Djavadian R, Hayes M, Johannsen E. CAGE-seq analysis of Epstein-Barr virus lytic gene transcription: 3 kinetic classes from 2 mechanisms. PLoS Pathog 2018; 14:e1007114. [PMID: 29864140 PMCID: PMC6005644 DOI: 10.1371/journal.ppat.1007114] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/14/2018] [Accepted: 05/21/2018] [Indexed: 01/18/2023] Open
Abstract
Epstein-Barr virus (EBV) lytic replication proceeds through an ordered cascade of gene expression that integrates lytic DNA amplification and late gene transcription. We and others previously demonstrated that 6 EBV proteins that have orthologs in β- and γ-, but not in α-herpesviruses, mediate late gene transcription in a lytic DNA replication-dependent manner. We proposed a model in which the βγ gene-encoded viral pre-initiation complex (vPIC) mediates transcription from newly replicated viral DNA. While this model explains the dependence of late gene transcription on lytic DNA replication, it does not account for this dependence in α-herpesviruses nor for recent reports that some EBV late genes are transcribed independently of vPIC. To rigorously define which transcription start sites (TSS) are dependent on viral lytic DNA replication or the βγ complex, we performed Cap Analysis of Gene Expression (CAGE)-seq on cells infected with wildtype EBV or EBV mutants defective for DNA replication, βγ function, or lacking an origin of lytic replication (OriLyt). This approach identified 16 true-late, 32 early, and 16 TSS that are active at low levels early and are further upregulated in a DNA replication-dependent manner (leaky late). Almost all late gene transcription is vPIC-dependent, with BCRF1 (vIL10), BDLF2, and BDLF3 transcripts being notable exceptions. We present evidence that leaky late transcription is not due to a distinct mechanism, but results from superimposition of the early and late transcription mechanisms at the same promoter. Our results represent the most comprehensive characterization of EBV lytic gene expression kinetics reported to date and suggest that most, but not all EBV late genes are vPIC-dependent.
Collapse
Affiliation(s)
- Reza Djavadian
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
14
|
BGLF2 Increases Infectivity of Epstein-Barr Virus by Activating AP-1 upon De Novo Infection. mSphere 2018; 3:3/2/e00138-18. [PMID: 29695622 PMCID: PMC5917423 DOI: 10.1128/msphere.00138-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human gammaherpesvirus that causes infectious mononucleosis and several malignancies, such as endemic Burkitt lymphoma and nasopharyngeal carcinoma. Herpesviruses carry genes that can modify cell functions, including transcription and ubiquitination, thereby facilitating viral growth and survival in infected cells. Using a reporter screening system, we revealed the involvement of several EBV gene products in such processes. Of these, BGLF2 activated the AP-1 signaling pathway through phosphorylation of p38 and c-Jun N-terminal kinase (JNK). Knockout of the BGLF2 gene did not affect viral gene expression and viral genome DNA replication, but resulted in marked reduction of progeny titer. We also found that the BGLF2 disruption resulted in significant loss of infectivity upon de novo infection. Interestingly, expression of a binding partner, BKRF4, repressed the activation of AP-1 by BGLF2. These results shed light on the physiological role of the tegument protein BGLF2.IMPORTANCE Epstein-Barr virus (EBV), an oncogenic gammaherpesvirus, carries ~80 genes. While several genes have been investigated extensively, most lytic genes remain largely unexplored. Therefore, we cloned 71 EBV lytic genes into an expression vector and used reporter assays to screen for factors that activate signal transduction pathways, viral and cellular promoters. BGLF2 activated the AP-1 signaling pathway, likely by interacting with p38 and c-Jun N-terminal kinase (JNK), and increased infectivity of the virus. We also revealed that BKRF4 can negatively regulate AP-1 activity. Therefore, it is suggested that EBV exploits and modifies the AP-1 signaling pathway for its replication and survival.
Collapse
|
15
|
Wang M, Yu F, Wu W, Wang Y, Ding H, Qian L. Epstein-Barr virus-encoded microRNAs as regulators in host immune responses. Int J Biol Sci 2018; 14:565-576. [PMID: 29805308 PMCID: PMC5968849 DOI: 10.7150/ijbs.24562] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic virus that infects over 90% of the world's adult population. EBV can establish life-long latent infection in host due to the balance between EBV and host immune system. EBV latency is associated with various malignancies such as nasopharyngeal carcinoma, gastric carcinoma and Burkitt's lymphoma. EBV is the first human virus that has the capability to encode microRNAs (miRNAs). Remarkably, EBV-encoded miRNAs are abundantly expressed in latently-infected cells and serve important function in viral infection and pathogenesis. Increasing evidence indicates that EBV miRNAs target the host mRNAs involved in cell proliferation, apoptosis and transformation. EBV miRNAs also inhibit the expression of viral antigens, thereby enabling infected cells to escape immune recognition. Intriguingly, EBV miRNAs directly suppress host antiviral immunity by interfering with antigen presentation and immune cell activation. This review will update the current knowledge about EBV miRNAs implicated in host immune responses. An in-depth understanding of the functions of EBV miRNAs in host antiviral immunity will shed light on the EBV-host interactions and provide potential therapeutic targets for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Yu Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Han Ding
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Lili Qian
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| |
Collapse
|
16
|
Wang M, Wu W, Zhang Y, Yao G, Gu B. Rapamycin enhances lytic replication of Epstein-Barr virus in gastric carcinoma cells by increasing the transcriptional activities of immediate-early lytic promoters. Virus Res 2018; 244:173-180. [PMID: 29169830 DOI: 10.1016/j.virusres.2017.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/18/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV), a human herpesvirus, is linked to both epithelial and lymphoid malignancies. Induction of EBV reactivation is a potential therapeutic strategy for EBV-associated tumors. In this study, we assessed the effects of rapamycin on EBV reactivation in gastric carcinoma cells. We found that rapamycin upregulated expression of EBV lytic proteins and increased the viral proliferation triggered by the EBV lytic inducer sodium butyrate. Reverse transcription-qPCR, luciferase activity assays, chromatin immunoprecipitation and western blotting were employed to explore the mechanism by which rapamycin promotes EBV reactivation. Our results showed that rapamycin treatment resulted in increased mRNA levels of EBV immediate-early genes. Rapamycin also enhanced the transcriptional activities of the EBV immediate-early lytic promoters Zp and Rp by strengthening Sp1 binding. Repression of the cellular ataxia telangiectasia-mutated/p53 pathway by siRNA-mediated knockdown of the ataxia telangiectasia-mutated gene significantly abrogated virus reactivation by rapamycin/sodium butyrate treatment, indicating that the ataxia telangiectasia-mutated/p53 pathway is involved in rapamycin-promoted EBV reactivation. Taken together, these findings demonstrate that rapamycin might have the potential to enhance the effectiveness of oncolytic viral therapies developed for EBV-associated malignancies.
Collapse
MESH Headings
- Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors
- Ataxia Telangiectasia Mutated Proteins/genetics
- Ataxia Telangiectasia Mutated Proteins/metabolism
- Butyric Acid/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Gastric Mucosa/drug effects
- Gastric Mucosa/metabolism
- Gastric Mucosa/virology
- Gene Expression Regulation
- Genes, Reporter
- Herpesvirus 4, Human/drug effects
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/growth & development
- Herpesvirus 4, Human/metabolism
- Humans
- Immediate-Early Proteins/agonists
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Luciferases/genetics
- Luciferases/metabolism
- Oncolytic Virotherapy/methods
- Promoter Regions, Genetic/drug effects
- Protein Binding
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Sirolimus/pharmacology
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Transcription, Genetic
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Virus Activation/drug effects
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China.
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Yinfeng Zhang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Guoliang Yao
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Bianli Gu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
17
|
Epstein-Barr Virus Rta-Mediated Accumulation of DNA Methylation Interferes with CTCF Binding in both Host and Viral Genomes. J Virol 2017; 91:JVI.00736-17. [PMID: 28490592 DOI: 10.1128/jvi.00736-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Rta, an Epstein-Barr virus (EBV) immediate-early protein, reactivates viral lytic replication that is closely associated with tumorigenesis. In previous studies, we demonstrated that in epithelial cells Rta efficiently induced cellular senescence, which is an irreversible G1 arrest likely to provide a favorable environment for productive replications of EBV and Kaposi's sarcoma-associated herpesvirus (KSHV). To restrict progression of the cell cycle, Rta simultaneously upregulates CDK inhibitors and downregulates MYC, CCND1, and JUN, among others. Rta has long been known as a potent transcriptional activator, thus its role in gene repression is unexpected. In silico analysis revealed that the promoter regions of MYC, CCND1, and JUN are common in (i) the presence of CpG islands, (ii) strong chromatin immunoprecipitation (ChIP) signals of CCCTC-binding factor (CTCF), and (iii) having at least one Rta binding site. By combining ChIP assays and DNA methylation analysis, here we provide evidence showing that Rta binding accumulated CpG methylation and decreased CTCF occupancy in the regulatory regions of MYC, CCND1, and JUN, which were associated with downregulated gene expression. Stable residence of CTCF in the viral latency and reactivation control regions is a hallmark of viral latency. Here, we observed that Rta-mediated decreased binding of CTCF in the viral genome is concurrent with virus reactivation. Via interfering with CTCF binding, in the host genome Rta can function as a transcriptional repressor for gene silencing, while in the viral genome Rta acts as an activator for lytic gene loci by removing a topological constraint established by CTCF.IMPORTANCE CTCF is a multifunctional protein that variously participates in gene expression and higher-order chromatin structure of the cellular and viral genomes. In certain loci of the genome, CTCF occupancy and DNA methylation are mutually exclusive. Here, we demonstrate that the Epstein-Barr virus (EBV) immediate-early protein, Rta, known to be a transcriptional activator, can also function as a transcriptional repressor. Via enriching CpG methylation and decreasing CTCF reloading, Rta binding efficiently shut down the expression of MYC, CCND1, and JUN, thus impeding cell cycle progression. Rta-mediated disruption of CTCF binding was also detected in the latency/reactivation control regions of the EBV genome, and this in turn led to viral lytic cycle progression. As emerging evidence indicates that a methylated EBV genome is a preferable substrate for EBV Zta, the other immediate-early protein, our results suggest a mechanistic link in understanding the molecular processes of viral latent-lytic switch.
Collapse
|
18
|
Cornaby C, Jafek JL, Birrell C, Mayhew V, Syndergaard L, Mella J, Cheney W, Poole BD. EBI2 expression in B lymphocytes is controlled by the Epstein-Barr virus transcription factor, BRRF1 (Na), during viral infection. J Gen Virol 2017; 98:435-446. [PMID: 27902324 DOI: 10.1099/jgv.0.000660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus-induced gene 2 (EBI2) is an important chemotactic receptor that is involved in proper B-cell T-cell interactions. Epstein-Barr virus (EBV) has been shown to upregulate this gene upon infection of cell lines, but the timing and mechanism of this upregulation, as well as its importance to EBV infection, remain unknown. This work investigated EBV's manipulation of EBI2 expression of primary naive B cells. EBV infection induces EBI2 expression resulting in elevated levels of EBI2 after 24 h until 7 days post-infection, followed by a dramatic decline (P=0.027). Increased EBI2 expression was not found in non-specifically stimulated B cells or when irradiated virus was used. The EBV lytic gene BRRF1 exhibited a similar expression pattern to EBI2 (R2=0.4622). BRRF1-deficient EBV could not induce EBI2. However, B cells transduced with BRRF1 showed elevated expression of EBI2 (P=0.042), a result that was not seen with transduction of a different EBV lytic transfection factor, BRLF1. Based on these results, we conclude that EBI2 expression is directly influenced by EBV infection and that BRRF1 is necessary and sufficient for EBI2 upregulation during infection.
Collapse
Affiliation(s)
- Caleb Cornaby
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Jillian L Jafek
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Cameron Birrell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Vera Mayhew
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Lauren Syndergaard
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Jeffrey Mella
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Wesley Cheney
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Brian D Poole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|
19
|
McKenzie J, Lopez-Giraldez F, Delecluse HJ, Walsh A, El-Guindy A. The Epstein-Barr Virus Immunoevasins BCRF1 and BPLF1 Are Expressed by a Mechanism Independent of the Canonical Late Pre-initiation Complex. PLoS Pathog 2016; 12:e1006008. [PMID: 27855219 PMCID: PMC5113994 DOI: 10.1371/journal.ppat.1006008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Subversion of host immune surveillance is a crucial step in viral pathogenesis. Epstein-Barr virus (EBV) encodes two immune evasion gene products, BCRF1 (viral IL-10) and BPLF1 (deubiquitinase/deneddylase); both proteins suppress antiviral immune responses during primary infection. The BCRF1 and BPLF1 genes are expressed during the late phase of the lytic cycle, an essential but poorly understood phase of viral gene expression. Several late gene regulators recently identified in beta and gamma herpesviruses form a viral pre-initiation complex for transcription. Whether each of these late gene regulators is necessary for transcription of all late genes is not known. Here, studying viral gene expression in the absence and presence of siRNAs to individual components of the viral pre-initiation complex, we identified two distinct groups of late genes. One group includes late genes encoding the two immunoevasins, BCRF1 and BPLF1, and is transcribed independently of the viral pre-initiation complex. The second group primarily encodes viral structural proteins and is dependent on the viral pre-initiation complex. The protein kinase BGLF4 is the only known late gene regulator necessary for expression of both groups of late genes. ChIP-seq analysis showed that the transcription activator Rta associates with the promoters of eight late genes including genes encoding the viral immunoevasins. Our results demonstrate that late genes encoding immunomodulatory proteins are transcribed by a mechanism distinct from late genes encoding viral structural proteins. Understanding the mechanisms that specifically regulate expression of the late immunomodulatory proteins could aid the development of antiviral drugs that impair immune evasion by the oncogenic EB virus. Late proteins are expressed during the productive cycle of Epstein-Barr virus (EBV) after the onset of viral DNA replication. Many late proteins serve structural functions; they form the capsid shell around the viral genome or mediate attachment and fusion of the virus to the host cell. EBV also encodes two late proteins that suppress the immune system during primary infection. The current model suggests that transcription of all late genes is regulated by a common mechanism involving seven late gene regulators. Here, we demonstrate that late genes encoding two viral immune suppressants are transcribed by a mechanism different from that regulating late genes encoding structural proteins. Abolishing expression of the late immunomodulators without disrupting expression of the antigenic viral structural proteins could serve as an approach to block EBV de novo infection and its associated malignancies.
Collapse
Affiliation(s)
- Jessica McKenzie
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Francesc Lopez-Giraldez
- Yale Center for Genome Analysis (YCGA), Yale University, West Haven, Connecticut, United States of America
| | - Henri-Jacques Delecluse
- Department of Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Ann Walsh
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ayman El-Guindy
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
20
|
Li H, Liu S, Hu J, Luo X, Li N, M Bode A, Cao Y. Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int J Biol Sci 2016; 12:1309-1318. [PMID: 27877083 PMCID: PMC5118777 DOI: 10.7150/ijbs.16564] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) has been associated with several types of human cancers. In the host, EBV can establish two alternative modes of life cycle, known as latent or lytic and the switch from latency to the lytic cycle is known as EBV reactivation. Although EBV in cancer cells is found mostly in latency, a small number of lytically-infected cells promote carcinogenesis through the release of growth factors and oncogenic cytokines. This review focuses on the mechanisms by which EBV reactivation is controlled by cellular and viral factors, and discusses how EBV lytic infection contributes to human malignancies.
Collapse
Affiliation(s)
- Hongde Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Sufang Liu
- Division of Hematology, Institute of Molecular Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Namei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| |
Collapse
|
21
|
Yang YC, Feng TH, Chen TY, Huang HH, Hung CC, Liu ST, Chang LK. RanBPM regulates Zta-mediated transcriptional activity in Epstein–Barr virus. J Gen Virol 2015; 96:2336-2348. [DOI: 10.1099/vir.0.000157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Tzu-Hui Feng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Tse-Yao Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Hsiang-Hung Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Chen-Chia Hung
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, 333, Taiwan, ROC
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, 333, Taiwan, ROC
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| |
Collapse
|
22
|
Hung CC, Kuo CW, Wang WH, Chang TH, Chang PJ, Chang LK, Liu ST. Transcriptional activation of Epstein-Barr virus BRLF1 by USF1 and Rta. J Gen Virol 2015; 96:2855-2866. [PMID: 26297580 DOI: 10.1099/jgv.0.000230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During its lytic cycle, Epstein-Barr virus (EBV) expresses Rta, a factor encoded by BRLF1 that activates the transcription of viral lytic genes. We found that upstream stimulating factor (USF) binds to E1, one of the five E boxes located at - 79 in the BRLF1 promoter (Rp), to activate BRLF1 transcription. Furthermore, Rta was shown to interact with USF1 in coimmunoprecipitation and glutathione S-transferase (GST)-pulldown assays, and confocal laser-scanning microscopy further confirmed that these two proteins colocalize in the nucleus. Rta was also found to bind with the E1 sequence in a biotin-labelled E1 probe, but only in the presence of USF1, suggesting that these two proteins likely form a complex on E1. We subsequently constructed p188mSZ, a reporter plasmid that contained the sequence from - 188 to +5 in Rp, within which the Sp1 site and Zta response element were mutated. In EBV-negative Akata cells cotransfected with p188mSZ and plasmids expressing USF1 and Rta, synergistic activation of Rp transcription was observed. However, after mutating the E1 sequence in p188mSZ, USF1 and Rta were no longer able to transactivate Rp, indicating that Rta autoregulates BRLF1 transcription via its interaction with USF1 on E1. This study showed that pUSF1 transfection after EBV lytic induction in P3HR1 cells increases Rta expression, indicating that USF1 activates Rta expression after the virus enters the lytic cycle. Together, these results reveal a novel mechanism by which USF interacts with Rta to promote viral lytic development, and provide additional insight into the viral-host interactions of EBV.
Collapse
Affiliation(s)
- Chen-Chia Hung
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC
| | - Chung-Wen Kuo
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC
| | - Wen-Hung Wang
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC
| | - Tzu-Hsuan Chang
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 33302, Taiwan, ROC.,Department of Medical Research, Chang-Gung Memorial Hospital Chiayi Branch, Chiayi 61363, Taiwan, ROC
| |
Collapse
|
23
|
Ohashi M, Holthaus AM, Calderwood MA, Lai CY, Krastins B, Sarracino D, Johannsen E. The EBNA3 family of Epstein-Barr virus nuclear proteins associates with the USP46/USP12 deubiquitination complexes to regulate lymphoblastoid cell line growth. PLoS Pathog 2015; 11:e1004822. [PMID: 25855980 PMCID: PMC4391933 DOI: 10.1371/journal.ppat.1004822] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022] Open
Abstract
The Epstein-Barr virus (EBV) nuclear proteins EBNA3A, EBNA3B, and EBNA3C interact with the cell DNA binding protein RBPJ and regulate cell and viral genes. Repression of the CDKN2A tumor suppressor gene products p16INK4A and p14ARF by EBNA3A and EBNA3C is critical for EBV mediated transformation of resting B lymphocytes into immortalized lymphoblastoid cell lines (LCLs). To define the composition of endogenous EBNA3 protein complexes, we generated lymphoblastoid cell lines (LCLs) expressing flag-HA tagged EBNA3A, EBNA3B, or EBNA3C and used tandem affinity purification to isolate each EBNA3 complex. Our results demonstrated that each EBNA3 protein forms a distinct complex with RBPJ. Mass-spectrometry revealed that the EBNA3A and EBNA3B complexes also contained the deubquitylation complex consisting of WDR48, WDR20, and USP46 (or its paralog USP12) and that EBNA3C complexes contained WDR48. Immunoprecipitation confirmed that EBNA3A, EBNA3B, and EBNA3C association with the USP46 complex. Using chromatin immunoprecipitation, we demonstrate that WDR48 and USP46 are recruited to the p14ARF promoter in an EBNA3C dependent manner. Mapping studies were consistent with WDR48 being the primary mediator of EBNA3 association with the DUB complex. By ChIP assay, WDR48 was recruited to the p14ARF promoter in an EBNA3C dependent manner. Importantly, WDR48 associated with EBNA3A and EBNA3C domains that are critical for LCL growth, suggesting a role for USP46/USP12 in EBV induced growth transformation. Epstein-Barr virus (EBV) is a gammaherpesvirus implicated in the pathogenesis of multiple malignancies, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disease (PTLD), nasopharyngeal carcinoma, and gastric carcinoma. EBV infection of resting B-lymphocytes drives them to proliferate as lymphoblastoid cell lines (LCLs), an in vitro model of PTLD. LCLs express a limited EBV gene repertoire, including six nuclear proteins (EBNA1, 2, 3A, 3B, 3C, and LP), three integral membrane proteins (LMP1, 2A, and 2B), and more than 30 micro RNAs. EBNA2 and the EBNA3 proteins are transcription factors that regulate viral and cell gene expression through the cell DNA binding protein RBPJ. In this study, we established LCLs transformed by recombinant EBV genomes in which a Flag-HA epitope tag is fused in-frame to the C-terminus of EBNA3A, EBNA3B or EBNA3C. Using these LCLs, we purified endogenous EBNA3 complexes and identified the USP46 deubiquitinating enzyme (DUB) and its associated chaperones WDR48 and WDR20 as EBNA3 binding proteins. We find that EBNA3s interact primarily with the WDR48 protein and that loss of WDR48 interaction with EBNA3A or EBNA3C impairs LCL growth. This study represents the first characterization of EBNA3 complexes from LCLs and implicates the USP46 DUB complex in EBNA3 mediated gene regulation.
Collapse
Affiliation(s)
- Makoto Ohashi
- Departments of Medicine and Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin, Madison, Wisconsin, United States of America
| | - Amy M. Holthaus
- Infectious Disease Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael A. Calderwood
- Infectious Disease Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chiou-Yan Lai
- Infectious Disease Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bryan Krastins
- Biomarker Research Initiatives in Mass Spectrometry (BRIMS), Thermo Fisher Scientific, Cambridge, Massachusetts, United States of America
| | - David Sarracino
- Biomarker Research Initiatives in Mass Spectrometry (BRIMS), Thermo Fisher Scientific, Cambridge, Massachusetts, United States of America
| | - Eric Johannsen
- Departments of Medicine and Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
24
|
Liu SQ, Deng CL, Yuan ZM, Rayner S, Zhang B. Identifying the pattern of molecular evolution for Zaire ebolavirus in the 2014 outbreak in West Africa. INFECTION GENETICS AND EVOLUTION 2015; 32:51-9. [PMID: 25745889 DOI: 10.1016/j.meegid.2015.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 12/12/2022]
Abstract
The current Ebola virus disease (EVD) epidemic has killed more than all previous Ebola outbreaks combined and, even as efforts appear to be bringing the outbreak under control, the threat of reemergence remains. The availability of new whole-genome sequences from West Africa in 2014 outbreak, together with those from the earlier outbreaks, provide an opportunity to investigate the genetic characteristics, the epidemiological dynamics and the evolutionary history for Zaire ebolavirus (ZEBOV). To investigate the evolutionary properties of ZEBOV in this outbreak, we examined amino acid mutations, positive selection, and evolutionary rates on the basis of 123 ZEBOV genome sequences. The estimated phylogenetic relationships within ZEBOV revealed that viral sequences from the same period or location formed a distinct cluster. The West Africa viruses probably derived from Middle Africa, consistent with results from previous studies. Analysis of the seven protein regions of ZEBOV revealed evidence of positive selection acting on the GP and L genes. Interestingly, all putatively positive-selected sites identified in the GP are located within the mucin-like domain of the solved structure of the protein, suggesting a possible role in the immune evasion properties of ZEBOV. Compared with earlier outbreaks, the evolutionary rate of GP gene was estimated to significantly accelerate in the 2014 outbreak, suggesting that more ZEBOV variants are generated for human to human transmission during this sweeping epidemic. However, a more balanced sample set and next generation sequencing datasets would help achieve a clearer understanding at the genetic level of how the virus is evolving and adapting to new conditions.
Collapse
Affiliation(s)
- Si-Qing Liu
- Key Laboratory of Etiology and Biosafety for Emerging and Highly Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Cheng-Lin Deng
- Key Laboratory of Etiology and Biosafety for Emerging and Highly Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Zhi-Ming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Simon Rayner
- Key Laboratory of Etiology and Biosafety for Emerging and Highly Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bo Zhang
- Key Laboratory of Etiology and Biosafety for Emerging and Highly Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
25
|
Abstract
Epstein-Barr virus, which mainly infects B cells and epithelial cells, has two modes of infection: latent and lytic. Epstein-Barr virus infection is predominantly latent; however, lytic infection is detected in healthy seropositive individuals and becomes more prominent in certain pathological conditions. Lytic infection is divided into several stages: early gene expression, DNA replication, late gene expression, assembly, and egress. This chapter summarizes the most recent progress made toward understanding the molecular mechanisms that regulate the different lytic stages leading to production of viral progeny. In addition, the chapter highlights the potential role of lytic infection in disease development and current attempts to purposely induce lytic infection as a therapeutic approach.
Collapse
Affiliation(s)
- Jessica McKenzie
- Department of Pediatrics, Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ayman El-Guindy
- Department of Pediatrics, Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
26
|
A locus encompassing the Epstein-Barr virus bglf4 kinase regulates expression of genes encoding viral structural proteins. PLoS Pathog 2014; 10:e1004307. [PMID: 25166506 PMCID: PMC4148442 DOI: 10.1371/journal.ppat.1004307] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/01/2014] [Indexed: 12/17/2022] Open
Abstract
The mechanism regulating expression of late genes, encoding viral structural components, is an unresolved problem in the biology of DNA tumor viruses. Here we show that BGLF4, the only protein kinase encoded by Epstein-Barr virus (EBV), controls expression of late genes independent of its effect on viral DNA replication. Ectopic expression of BGLF4 in cells lacking the kinase gene stimulated the transcript levels of six late genes by 8- to 10-fold. Introduction of a BGLF4 mutant that eliminated its kinase activity did not stimulate late gene expression. In cells infected with wild-type EBV, siRNA to BGLF4 (siG4) markedly reduced late gene expression without compromising viral DNA replication. Synthesis of late products was restored upon expression of a form of BGLF4 resistant to the siRNA. Studying the EBV transcriptome using mRNA-seq during the late phase of the lytic cycle in the absence and presence of siG4 showed that BGLF4 controlled expression of 31 late genes. Analysis of the EBV transcriptome identified BGLF3 as a gene whose expression was reduced as a result of silencing BGLF4. Knockdown of BGLF3 markedly reduced late gene expression but had no effect on viral DNA replication or expression of BGLF4. Our findings reveal the presence of a late control locus encompassing BGLF3 and BGLF4 in the EBV genome, and provide evidence for the importance of both proteins in post-replication events that are necessary for expression of late genes.
Collapse
|
27
|
Kenney SC, Mertz JE. Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol 2014; 26:60-8. [PMID: 24457012 PMCID: PMC4048781 DOI: 10.1016/j.semcancer.2014.01.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/17/2013] [Accepted: 01/09/2014] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) infection contributes to the development of several different types of human malignancy, including Burkitt lymphoma, Hodgkin lymphoma, and nasopharyngeal carcinoma. As a herpesvirus, EBV can establish latent or lytic infection in cells. EBV-positive tumors are composed almost exclusively of cells with latent EBV infection. Strategies for inducing the lytic form of EBV infection in tumor cells are being investigated as a potential therapy for EBV-positive tumors. In this article, we review how cellular and viral proteins regulate the latent-lytic EBV switch in infected B cells and epithelial cells, and discuss how harnessing lytic viral reactivation might be used therapeutically.
Collapse
Affiliation(s)
- Shannon C Kenney
- McArdle Laboratory for Cancer Research, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA; Department of Oncology, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA; Department of Medicine, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA.
| | - Janet E Mertz
- McArdle Laboratory for Cancer Research, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA; Department of Oncology, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA
| |
Collapse
|
28
|
Epstein-Barr virus utilizes Ikaros in regulating its latent-lytic switch in B cells. J Virol 2014; 88:4811-27. [PMID: 24522918 DOI: 10.1128/jvi.03706-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Ikaros is a zinc finger DNA-binding protein that regulates chromatin remodeling and the expression of genes involved in the cell cycle, apoptosis, and Notch signaling. It is a master regulator of lymphocyte differentiation and functions as a tumor suppressor in acute lymphoblastic leukemia. Nevertheless, no previous reports described effects of Ikaros on the life cycle of any human lymphotropic virus. Here, we demonstrate that full-length Ikaros (IK-1) functions as a major factor in the maintenance of viral latency in Epstein-Barr virus (EBV)-positive Burkitt's lymphoma Sal and MutuI cell lines. Either silencing of Ikaros expression by small hairpin RNA (shRNA) knockdown or ectopic expression of a non-DNA-binding isoform induced lytic gene expression. These effects synergized with other lytic inducers of EBV, including transforming growth factor β (TGF-β) and the hypoxia mimic desferrioxamine. Data from chromatin immunoprecipitation (ChIP)-quantitative PCR (qPCR) and ChIP-sequencing (ChIP-seq) analyses indicated that Ikaros did not bind to either of the EBV immediate early genes BZLF1 and BRLF1. Rather, Ikaros affected the expression of Oct-2 and Bcl-6, other transcription factors that directly inhibit EBV reactivation and plasma cell differentiation, respectively. IK-1 also complexed with the EBV immediate early R protein in coimmunoprecipitation assays and partially colocalized with R within cells. The presence of R alleviated IK-1-mediated transcriptional repression, with IK-1 then cooperating with Z and R to enhance lytic gene expression. Thus, we conclude that Ikaros plays distinct roles at different stages of EBV's life cycle: it contributes to maintaining latency via indirect mechanisms, and it may also synergize with Z and R to enhance lytic replication through direct association with R and/or R-induced alterations in Ikaros' functional activities via cellular signaling pathways. IMPORTANCE This is the first report showing that the cellular protein Ikaros, a known master regulator of hematopoiesis and critical tumor suppressor in acute lymphoblastic leukemia, also plays important roles in the life cycle of Epstein-Barr virus in B cells.
Collapse
|
29
|
You X, Yang YC, Ke X, Hong SL, Hu GH. Fluorescence visualization screening for EBV-LMP1-targeted DNAzymes. Otolaryngol Head Neck Surg 2013; 150:251-8. [PMID: 24323909 DOI: 10.1177/0194599813514514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To develop a novel screening method for DNAzymes targeting the LMP1 carboxy region. STUDY DESIGN To design a method to screen special DNAzymes toward the Epstein-Barr virus (EBV)-associated carcinoma before clinic use. SETTING Key Laboratory of the Ministry of Education-Molecular Biology of Infectious Diseases in Chongqing Medical University. SUBJECTS AND METHODS Four novel 10-23 DNAzymes (DZ509, DZ1037, DZ893, and DZ827) targeting the EBV-LMP1 gene were designed and evaluated by detecting enhanced green fluorescence protein (EGFP) expression of LMP1 mRNA and the protein in the nasopharyngeal carcinoma (NPC) cell line CNE2 transfected with the pEGFP-C1-LMP1c vector. The screened specific DNAzymes were then transfected into NPC cell lines C666-1 while a mutant oligonucleotide mutDZ509 and an antisense oligonucleotide ASODN509 were designed as positive and negative controls. Cell proliferation, cell apoptosis, LMP1 mRNA, and the protein were assessed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, Annexin V-fluorescence isothiocyanate (FITC), reverse transcription polymerase chain reaction (RT-PCR), and Western blots. RESULTS The inhibition rates of fluorescence expression of the DNAzymes DZ509, DZ1037, DZ893, and DZ827 were 91.25%, 65.84%, 49.02%, and 44.56%, respectively. The results were in accordance with the inhibition effects of mRNA and protein expression. The screened DZ509 could effectively knock down endogenous LMP1 expression in C666-1 cells, inhibit cell proliferation, and induce cell apoptosis compared with mutDZ509 and ASODN509. CONCLUSION LMP1 could present a potential target for DNAzymes toward the EBV-associated carcinoma, and the EGFP expression vector could be a visible method for screening special DNAzymes before clinic use.
Collapse
Affiliation(s)
- Xi You
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
30
|
Hoebe EK, Le Large TYS, Greijer AE, Middeldorp JM. BamHI-A rightward frame 1, an Epstein-Barr virus-encoded oncogene and immune modulator. Rev Med Virol 2013; 23:367-83. [PMID: 23996634 PMCID: PMC4272418 DOI: 10.1002/rmv.1758] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/19/2022]
Abstract
Epstein–Barr virus (EBV) causes several benign and malignant disorders of lymphoid and epithelial origin. EBV-related tumors display distinct patterns of viral latent gene expression, of which the BamHI-A rightward frame 1 (BARF1) is selectively expressed in carcinomas, regulated by cellular differentiation factors including ΔNp63α. BARF1 functions as a viral oncogene, immortalizing and transforming epithelial cells of different origin by acting as a mitogenic growth factor, inducing cyclin-D expression, and up-regulating antiapoptotic Bcl-2, stimulating host cell growth and survival. In addition, secreted hexameric BARF1 has immune evasive properties, functionally corrupting macrophage colony stimulating factor, as supported by recent functional and structural data. Therefore, BARF1, an intracellular and secreted protein, not only has multiple pathogenic functions but also can function as a target for immune responses. Deciphering the role of BARF1 in EBV biology will contribute to novel diagnostic and treatment options for EBV-driven carcinomas. Herein, we discuss recent insights on the regulation of BARF1 expression and aspects of structure-function relating to its oncogenic and immune suppressive properties. © 2013 The Authors. Reviews in Medical Virology published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Eveline K Hoebe
- VU University Medical Center, Department of Pathology, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
31
|
Abstract
Human papilllomaviruses (HPVs) are common human pathogens that infect cutaneous or mucosal epithelia in which they cause warts, self-contained benign lesions that commonly regress. The HPV life cycle is intricately tied to the differentiation of the host epithelium it infects. Mucosotropic HPVs are the most common sexually transmitted pathogen known to mankind. A subset of the mucosotropic HPVs, so-called high risk HPVs, is etiologically associated with numerous cancers of the anogenital tract, most notably the cervix, as well as a growing fraction of head and neck cancers. In these cancers, the HPV genome, which normally exists an a double stranded, circular, nuclear plasmid, is commonly found integrated into the host genome and expresses two viral oncogenes, E6 and E7, that are implicated in the development and maintainance of the cancers caused by these high risk HPVs. Numerous studies, primarily on the high risk HPV16, have documented that the methylation status of the viral genome changes not only in the context of the viral life cycle but also in the context of the progressive neoplastic disease that culminates in cancer. In this article, we summarize the knowledge gained from those studies. We also provide the first analysis of available ChIP-seq data on the occupancy of both epigentically modified histones as well as transcription factors on the high risk HPV18 genome in the context of HeLa cells, a cervical cancer-derived cell line that has been the subject of extensive analyses using this technique.
Collapse
|
32
|
Contribution of myocyte enhancer factor 2 family transcription factors to BZLF1 expression in Epstein-Barr virus reactivation from latency. J Virol 2013; 87:10148-62. [PMID: 23843637 DOI: 10.1128/jvi.01002-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reactivation of Epstein-Barr virus (EBV) from latency is dependent on expression of the viral transactivator BZLF1 protein, whose promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical or biological inducers. Using a reporter assay system, we screened for factors that can activate Zp and isolated genes, including those encoding MEF2B, KLF4, and some cellular b-Zip family transcription factors. After confirming their importance and functional binding sites in reporter assays, we prepared recombinant EBV-BAC, in which the binding sites were mutated. Interestingly, the MEF2 mutant virus produced very low levels of BRLF1, another transactivator of EBV, in addition to BZLF1 in HEK293 cells. The virus failed to induce a subset of early genes, such as that encoding BALF5, upon lytic induction, and accordingly, could not replicate to produce progeny viruses in HEK293 cells, but this restriction could be completely lifted by exogenous supply of BRLF1, together with BZLF1. In B cells, induction of BZLF1 by chemical inducers was inhibited by point mutations in the ZII or the three SP1/KLF binding sites of EBV-BAC Zp, while leaky BZLF1 expression was less affected. Mutation of MEF2 sites severely impaired both spontaneous and induced expression of not only BZLF1, but also BRLF1 in comparison to wild-type or revertant virus cases. We also observed that MEF2 mutant EBV featured relatively high repressive histone methylation, such as H3K27me3, but CpG DNA methylation levels were comparable around Zp and the BRLF1 promoter (Rp). These findings shed light on BZLF1 expression and EBV reactivation from latency.
Collapse
|
33
|
Viral genome methylation differentially affects the ability of BZLF1 versus BRLF1 to activate Epstein-Barr virus lytic gene expression and viral replication. J Virol 2012; 87:935-50. [PMID: 23135711 DOI: 10.1128/jvi.01790-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) immediate-early proteins BZLF1 and BRLF1 can both induce lytic EBV reactivation when overexpressed in latently infected cells. Although EBV genome methylation is required for BZLF1-mediated activation of lytic gene expression, the effect of viral genome methylation on BRLF1-mediated viral reactivation has not been well studied. Here, we have compared the effect of viral DNA methylation on BZLF1- versus BRLF1-mediated activation of lytic EBV gene transcription and viral genome replication. We show that most early lytic viral promoters are preferentially activated by BZLF1 in the methylated form, while methylation decreases the ability of BRLF1 to activate most early lytic promoters, as well as the BLRF2 late viral promoter. Moreover, methylation of bacmid constructs containing the EBV genome enhances BZLF1-mediated, but decreases BRLF1-mediated, early lytic gene expression. Methylation of viral promoter DNA does not affect BRLF1 binding to a variety of different CpG-containing BRLF1 binding motifs (RREs) in vitro or in vivo. However, BRLF1 preferentially induces H3K9 histone acetylation of unmethylated promoters in vivo. The methylated and unmethylated forms of an oriLyt-containing plasmid replicate with similar efficiency when transfected into EBV-positive cells that express the essential viral replication proteins in trans. Most importantly, we demonstrate that lytic viral gene expression and replication can be induced by BRLF1, but not BZLF1, expression in an EBV-positive telomerase-immortalized epithelial cell line (NOKs-Akata) in which lytic viral gene promoters remain largely unmethylated. These results suggest that the unmethylated form of the EBV genome can undergo viral reactivation and replication in a BRLF1-dependent manner.
Collapse
|
34
|
Abstract
Two transcription factors, ZEBRA and Rta, switch Epstein-Barr virus (EBV) from the latent to the lytic state. While ZEBRA also plays an obligatory role as an activator of replication, it is not known whether Rta is directly required for replication. Rta is dispensable for amplification of an oriLyt-containing plasmid in a transient-replication assay. Here, we assessed the requirement for Rta in activation of viral DNA synthesis from the endogenous viral genome, a function that has not been established. Initially, we searched for a ZEBRA mutant that supports viral replication but not transcription. We found that Z(S186A), a mutant of ZEBRA unable to activate transcription of Rta or viral genes encoding replication proteins, is competent to bind to oriLyt and to function as an origin recognition protein. Ectopic expression of the six components of the EBV lytic replication machinery failed to rescue replication by Z(S186A). However, addition of Rta to Z(S186A) and the mixture of replication factors activated viral replication and late gene expression. Deletion mutagenesis of Rta indicated that the C-terminal 10 amino acids (aa) were essential for the function of Rta in replication. In vivo DNA binding studies revealed that Rta interacted with the enhancer region of oriLyt. In addition, expression of Rta and Z(S186A) together, but not individually, activated synthesis of the BHLF1 transcript, a lytic transcript required for the process of viral DNA replication. Our findings demonstrate that Rta plays an indispensable role in the process of lytic DNA replication.
Collapse
|
35
|
Epstein-Barr virus transcription activator R upregulates BARF1 expression by direct binding to its promoter, independent of methylation. J Virol 2012; 86:11322-32. [PMID: 22896599 DOI: 10.1128/jvi.01161-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) BamHI-A rightward frame 1 (BARF1) is considered a major viral oncogene in epithelial cells and has immune-modulating properties. However, in B cells and lymphomas, BARF1 expression is restricted to the viral lytic replication cycle. In this report, the transcriptional regulation of BARF1 during lytic replication is unraveled. Bisulfite sequencing of various cell lines indicated a high level of methylation of the BARF1 gene control region. A BARF1 promoter luciferase reporter construct was created using a CpG-free vector, enabling true assessment of promoter methylation. Induction of the EBV lytic cycle is mediated by the immediate-early proteins BZLF1 (Z) and BRLF1 (R). R was found to activate expression of the BARF1 promoter up to 250-fold independently of Z and unaffected by BARF1 promoter methylation. Chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA), and specific mutagenesis of the R-responsive elements (RREs) demonstrated direct binding of R to RREs between nucleotides -554 and -327 relative to the BARF1 transcriptional ATG start site. The kinetics of BARF1 expression upon transactivation by R showed that BARF1 mRNA was expressed within 6 h in the context of the viral genome. In conclusion, expression of the BARF1 protein during lytic replication is regulated by direct binding of R to multiple RREs in the gene control region and is independent of the promoter methylation status. The early kinetics of BARF1 upon transactivation by R confirm its status as an early gene and emphasize the necessity of early immune modulation during lytic reactivation.
Collapse
|