1
|
Costa JP, de Carvalho A, Paiva A, Borges O. Insights into Immune Exhaustion in Chronic Hepatitis B: A Review of Checkpoint Receptor Expression. Pharmaceuticals (Basel) 2024; 17:964. [PMID: 39065812 PMCID: PMC11279883 DOI: 10.3390/ph17070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B, caused by the hepatitis B virus (HBV), often progresses to chronic infection, leading to severe complications, such as cirrhosis, liver failure, and hepatocellular carcinoma. Chronic HBV infection is characterized by a complex interplay between the virus and the host immune system, resulting in immune cell exhaustion, a phenomenon commonly observed in chronic viral infections and cancer. This state of exhaustion involves elevated levels of inhibitory molecules, cells, and cell surface receptors, as opposed to stimulatory counterparts. This review aims to elucidate the expression patterns of various co-inhibitory and co-stimulatory receptors on immune cells isolated from chronic hepatitis B (CHB) patients. By analyzing existing data, the review conducts comparisons between CHB patients and healthy adults, explores the differences between HBV-specific and total T cells in CHB patients, and examines variations between intrahepatic and peripheral immune cells in CHB patients. Understanding the mechanisms underlying immune exhaustion in CHB is crucial for developing novel immunotherapeutic approaches. This detailed analysis sheds light on the immune exhaustion observed in CHB and lays the groundwork for future combined immunotherapy strategies aimed at leveraging checkpoint receptors to restore immune function and improve clinical outcomes.
Collapse
Affiliation(s)
- João Panão Costa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Armando de Carvalho
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Artur Paiva
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
2
|
Park J, Chung SW, Lee YB, Shin H, Hur MH, Cho H, Park MK, Youk J, Lee JY, Lee JO, Yu SJ, Kim YJ, Yoon JH, Kim TM, Lee JH. Treated chronic hepatitis B is a good prognostic factor of diffuse large B-cell lymphoma. Clin Mol Hepatol 2023; 29:794-809. [PMID: 37196991 PMCID: PMC10366791 DOI: 10.3350/cmh.2023.0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND/AIMS Chronic hepatitis B (CHB) is a risk factor for non-Hodgkin lymphoma (NHL). Our recent study suggested that antiviral treatment may reduce the incidence of NHL in CHB patients. This study compared the prognoses of hepatitis B virus (HBV)-associated diffuse large B-cell lymphoma (DLBCL) patients receiving antiviral treatment and HBV-unassociated DLBCL patients. METHODS This study comprised 928 DLBCL patients who were treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) at two referral centers in Korea. All patients with CHB received antiviral treatment. Time-to-progression (TTP) and overall survival (OS) were the primary and secondary endpoints, respectively. RESULTS Among the 928 patients in this study, 82 were hepatitis B surface antigen (HBsAg)-positive (the CHB group) and 846 were HBsAg-negative (the non-CHB group). The median follow-up time was 50.5 months (interquartile range [IQR]=25.6-69.7 months). Multivariable analyses showed longer TTP in the CHB group than the non-CHB group both before inverse probability of treatment weighting (IPTW; adjusted hazard ratio [aHR]=0.49, 95% confidence interval [CI]=0.29-0.82, p=0.007) and after IPTW (aHR=0.42, 95% CI=0.26-0.70, p<0.001). The CHB group also had a longer OS than the non-CHB group both before IPTW (HR=0.55, 95% CI=0.33-0.92, log-rank p=0.02) and after IPTW (HR=0.53, 95% CI=0.32-0.99, log-rank p=0.02). Although liver-related deaths did not occur in the non-CHB group, two deaths occurred in the CHB group due to hepatocellular carcinoma and acute liver failure, respectively. CONCLUSION Our findings indicate that HBV-associated DLBCL patients receiving antiviral treatment have significantly longer TTP and OS after R-CHOP treatment than HBV-unassociated DLBCL patients.
Collapse
Affiliation(s)
- Jeayeon Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Sung Won Chung
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yun Bin Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hyunjae Shin
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Moon Haeng Hur
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Heejin Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Min Kyung Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jeonghwan Youk
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University Cancer Research Institute, Seoul, Korea
| | - Ji Yun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeong-Ok Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University Cancer Research Institute, Seoul, Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
3
|
Lee DH, Chung SW, Lee JH, Kim HY, Chung GE, Kim MS, Yang BR, Nam JY, Lee YB, Kim YJ, Yoon JH. Association of Chronic Hepatitis B Infection and Antiviral Treatment With the Development of the Extrahepatic Malignancies: A Nationwide Cohort Study. J Clin Oncol 2022; 40:3394-3405. [PMID: 35561284 DOI: 10.1200/jco.21.01285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Epidemiologic studies suggest that chronic hepatitis B (CHB) is a risk factor for various primary extrahepatic malignancies. Our aim was to evaluate the associations of CHB and nucleos(t)ide analog (NA) treatment with the risk of the development of extrahepatic malignancies. PATIENTS AND METHODS We conducted an 18-month landmark analysis using nationwide claims data from the National Health Insurance Service of South Korea. Patients newly diagnosed with CHB in 2012-2014 (n = 90,944) and matched-controls (n = 685,436) were included. Patients with CHB were further classified as the NA-treated (CHB+/NA+, n = 6,539) or the NA-untreated (CHB+/NA-, n = 84,405) group. Inverse probability of treatment weighting analysis was applied to balance the treatment groups. Time-varying Cox analysis was performed to evaluate time-varying effect of NA treatment. The primary outcome was the development of any primary extrahepatic malignancy. Development of intrahepatic malignancy and death were considered as competing events. RESULTS During the study period (median = 47.4 months), 30,413 patients (3.9%) developed any extrahepatic malignancy. The CHB+/NA- group had a higher overall risk of extrahepatic malignancy than the CHB+/NA+ group (adjusted subdistribution hazard ratio [aSHR] = 1.28; 95% CI, 1.12 to 1.45; P < .001) or controls (aSHR = 1.22; 95% CI, 1.18 to 1.26; P < .001). There was no difference in the risk of extrahepatic malignancy between the CHB+/NA+ group and the controls (CHB+/NA+ v control: aSHR = 0.96; 95% CI, 0.84 to 1.08; P = .48). In time-varying Cox analysis, the CHB+/NA- patients were associated with a higher risk of extrahepatic malignancy than the CHB+/NA+ patients (aSHR = 1.37; 95% CI, 1.23 to 1.52; P < .001). CONCLUSION Patients with CHB have an elevated risk of developing primary extrahepatic malignancy. Long-term NA treatment was associated with a lower risk of extrahepatic malignancy development among patients with CHB.
Collapse
Affiliation(s)
- Dong Hyeon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Sung Won Chung
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hwi Young Kim
- Department of Internal Medicine, Ewha Womans University Medical Center, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Goh Eun Chung
- Department of Internal Medicine, Healthcare System Gangnam Center Seoul National University Hospital, Seoul, South Korea
| | - Mi-Sook Kim
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, South Korea
| | - Bo Ram Yang
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, South Korea.,College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Joon Yeul Nam
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yun Bin Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Beudeker BJB, Janssen HLA, Boonstra A. Letter to the Editor: Entecavir Treatment Restores the Anti-HBV Immune response? Hepatology 2021; 74:2325-2326. [PMID: 34107087 PMCID: PMC8519098 DOI: 10.1002/hep.32003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Boris J B Beudeker
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Harry L A Janssen
- Toronto Center for Liver Disease, University Health Network, Toronto, Ontario, Canada
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Chen Y, Lin J, Zhao Y, Ma X, Yi H. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J Zhejiang Univ Sci B 2021; 22:609-632. [PMID: 34414698 PMCID: PMC8377577 DOI: 10.1631/jzus.b2000808] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/08/2023]
Abstract
Toll-like receptor 3 (TLR3) is a member of the TLR family, mediating the transcriptional induction of type I interferons (IFNs), proinflammatory cytokines, and chemokines, thereby collectively establishing an antiviral host response. Studies have shown that unlike other TLR family members, TLR3 is the only RNA sensor that is utterly dependent on the Toll-interleukin-1 receptor (TIR)-domain-containing adaptor-inducing IFN-β (TRIF). However, the details of how the TLR3-TRIF signaling pathway works in an antiviral response and how it is regulated are unclear. In this review, we focus on recent advances in understanding the antiviral mechanism of the TRIF pathway and describe the essential characteristics of TLR3 and its antiviral effects. Advancing our understanding of TLR3 may contribute to disease diagnosis and could foster the development of novel treatments for viral diseases.
Collapse
Affiliation(s)
- Yujuan Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Junhong Lin
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Yao Zhao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Xianping Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Huashan Yi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China.
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
6
|
Li L. Association between the interferon-γ +874T/A polymorphism and susceptibility to hepatitis B virus infection: a meta-analysis. J Int Med Res 2021; 48:300060520945511. [PMID: 32790527 PMCID: PMC7427031 DOI: 10.1177/0300060520945511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective This study investigated the correlation between the interferon (IFN)-γ +874T/A polymorphism and hepatitis B virus (HBV) susceptibility using meta-analysis. Methods PubMed, EMBASE, Web of Science, CNKI, and China Wanfang databases were searched for case–control studies investigating the IFN-γ +874T/A polymorphism and HBV susceptibility from the time of database establishment to April 2020. Stata 15.0 software was used, and the subgroups of ethnicity and Hardy–Weinberg equilibrium were analyzed. Results Thirteen articles were included in this study. Significant differences were seen in the allelic model, dominant model, homozygous model, and heterozygous model, but heterogeneity was high. Analysis of the East Asian population revealed combined odds ratios of the allelic model (T vs. A), dominant model (TT + TA vs. AA), homozygous model (TT vs. AA), and heterozygous model (TA vs. AA) of 0.61, 0.56, 0.50, and 0.59, respectively. The difference was significant and the heterogeneity low. The recessive model showed no significance in the overall comparison, or in East Asian and Caucasian populations. Conclusions The IFN-γ +874T/A polymorphism is associated with the risk of HBV, especially in the East Asian population. Individuals with the T allele and TT and TA genotypes have a reduced risk of HBV infection.
Collapse
Affiliation(s)
- Liang Li
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Boeijen LL, Spaan M, Boonstra A. The effects of nucleoside/nucleotide analogues on host immune cells: the baseline for future immune therapy for HBV? Antivir Ther 2020; 25:181-191. [PMID: 32589166 DOI: 10.3851/imp3364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
HBV is a non-cytopathic virus and the progression of liver fibrosis is attributed to the host immune response. Complete suppression of viral replication using nucleotide or nucleoside analogues (NUCs) can prevent most complications related to chronic HBV infection. Unfortunately, antiviral treatment has to be administered lifelong to the majority of patients as HBV persists in the hepatocytes. However, although NUCs are very frequently administered in clinical practice, their effects on vital parts of the host immune response to HBV are not well established. In this review we summarize the currently available data gathered from longitudinal studies that investigated treatment-associated alterations of HBV-specific CD4+ and CD8+ T-cells, regulatory T-cells and natural killer (NK) cells. These observations are important, as they can guide the design of studies that investigate the efficacy of new immune therapeutic agents. Novel experimental compounds will likely be added to ongoing NUC treatment, which leads to a functional cure in only a small minority of patients.
Collapse
Affiliation(s)
- Lauke L Boeijen
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, the Netherlands
| | - Michelle Spaan
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, the Netherlands
| | - André Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
8
|
Immunopathogenesis of HBV Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:71-107. [DOI: 10.1007/978-981-13-9151-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Fisicaro P, Rossi M, Vecchi A, Acerbi G, Barili V, Laccabue D, Montali I, Zecca A, Penna A, Missale G, Ferrari C, Boni C. The Good and the Bad of Natural Killer Cells in Virus Control: Perspective for Anti-HBV Therapy. Int J Mol Sci 2019; 20:ijms20205080. [PMID: 31614928 PMCID: PMC6834135 DOI: 10.3390/ijms20205080] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Immune modulatory therapies are widely believed to represent potential therapeutic strategies for chronic hepatitis B infection (CHB). Among the cellular targets for immune interventions, Natural Killer (NK) cells represent possible candidates because they have a key role in anti-viral control by producing cytokines and by exerting cytotoxic functions against virus-infected cells. However, in patients with chronic hepatitis B, NK cells have been described to be more pathogenic than protective with preserved cytolytic activity but with a poor capacity to produce anti-viral cytokines. In addition, NK cells can exert a regulatory activity and possibly suppress adaptive immune responses in the setting of persistent viral infections. Consequently, a potential drawback of NK-cell targeted modulatory interventions is that they can potentiate the suppressive NK cell effect on virus-specific T cells, which further causes impairment of exhausted anti-viral T cell functions. Thus, clinically useful NK-cell modulatory strategies should be not only suited to improve positive anti-viral NK cell functions but also to abrogate T cell suppression by NK cell-mediated T cell killing. This review outlines the main NK cell features with a particular focus on CHB infection. It describes different mechanisms involved in NK-T cell interplay as well as how NK cells can have positive anti-viral effector functions and negative suppressive effects on T cells activity. This review discusses how modulation of their balance can have potential therapeutic implications.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Greta Acerbi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| |
Collapse
|
10
|
Fischer J, Koukoulioti E, Schott E, Fülöp B, Heyne R, Berg T, van Bömmel F. Polymorphisms in the Toll-like receptor 3 (TLR3) gene are associated with the natural course of hepatitis B virus infection in Caucasian population. Sci Rep 2018; 8:12737. [PMID: 30143709 PMCID: PMC6109130 DOI: 10.1038/s41598-018-31065-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
Innate immunity can induce spontaneous hepatitis B surface antigen (HBsAg) seroclearance (SC) of hepatitis B virus (HBV) infection or transition towards an inactive carrier state. Toll-like receptor (TLR) 3 signalling has been linked to these processes. Alterations in the TLR3 gene might impair immune responses against HBV. In our study, we analysed the impact of the TLR3 polymorphisms rs3775291 and rs5743305 on the natural course of HBV infection. In this retrospective study, a Caucasian cohort of 621 patients with chronic HBV infection (CHB), 239 individuals with spontaneous HBsAg SC, and 254 healthy controls were enrolled. In the CHB group, 49% of patients were inactive carriers, and 17% were HBeAg-positive. The TLR3 rs3775291 A allele was associated with a reduced likelihood of spontaneous HBsAg SC and HBeAg SC, and an increased risk of developing chronic hepatitis B. In haplotype analysis, the haplotype including both risk variants rs3775291A and rs5743305A had the lowest likelihood of HBsAg SC. Further research in larger cohorts and functional analyses are needed to shed light on the impact of TLR3 signalling.
Collapse
Affiliation(s)
- Janett Fischer
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany.
| | - Eleni Koukoulioti
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
| | - Eckart Schott
- Department of Gastroenterology, Hepatology and Diabetology, Internal Medicine II, HELIOS Hospital Emil von Behring, Berlin, Germany
| | - Balazs Fülöp
- Department of Internal Medicine and Gastroenterology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Renate Heyne
- Liver and Study Center Checkpoint, Berlin, Germany
| | - Thomas Berg
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
| | - Florian van Bömmel
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Dou Y, van Montfoort N, van den Bosch A, de Man RA, Zom GG, Krebber WJ, Melief CJM, Buschow SI, Woltman AM. HBV-Derived Synthetic Long Peptide Can Boost CD4+ and CD8+ T-Cell Responses in Chronic HBV Patients Ex Vivo. J Infect Dis 2018; 217:827-839. [PMID: 29220492 PMCID: PMC5853453 DOI: 10.1093/infdis/jix614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022] Open
Abstract
Background Vaccination with synthetic long peptides (SLP) is a promising new treatment strategy for chronic hepatitis B virus (CHB). SLP can induce broad T-cell responses for all HLA types. Here we investigated the ability of a prototype HBV-core (HBc)-sequence-derived SLP to boost HBV-specific T cells in CHB patients ex vivo. Methods HBc-SLP was used to assess cross-presentation by monocyte-derived dendritic cells (moDC) and BDCA1+ blood myeloid DC (mDC) to engineered HBV-specific CD8+ T cells. Autologous SLP-loaded and toll-like receptor (TLR)-stimulated DC were used to activate patient HBc-specific CD8+ and CD4+ T cells. Results HBV-SLP was cross-presented by moDC, which was further enhanced by adjuvants. Patient-derived SLP-loaded moDC significantly increased autologous HBcAg18-27-specific CD8+ T cells and CD4+ T cells ex vivo. HBV-specific T cells were functional as they synthesized tumor necrosis factor-alpha and interferon-gamma. In 6/7 of patients blockade of PD-L1 further increased SLP effects. Also, importantly, patient-derived BDCA1+ mDC cross-presented and activated autologous T-cell responses ex vivo. Conclusions As a proof of concept, we showed a prototype HBc-SLP can boost T-cell responses in patients ex vivo. These results pave the way for the development of a therapeutic SLP-based vaccine to induce effective HBV-specific adaptive immune responses in CHB patients.
Collapse
Affiliation(s)
- Yingying Dou
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Aniek van den Bosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Robert A de Man
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Gijs G Zom
- ISA Pharmaceuticals BV, Leiden, the Netherlands
| | | | | | - Sonja I Buschow
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Andrea M Woltman
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, the Netherlands
| |
Collapse
|
12
|
Nosratabadi R, Alavian SM, Zare-Bidaki M, Shahrokhi VM, Arababadi MK. Innate immunity related pathogen recognition receptors and chronic hepatitis B infection. Mol Immunol 2017; 90:64-73. [PMID: 28704708 DOI: 10.1016/j.molimm.2017.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/07/2017] [Accepted: 07/01/2017] [Indexed: 01/30/2023]
Abstract
Innate immunity consists of several kinds of pathogen recognition receptors (PRRs), which participate in the recognition of pathogens and consequently activation of innate immune system against pathogens. Recently, several investigations reported that PRRs may also play key roles in the induction/stimulation of immune system related complications in microbial infections. Hepatitis B virus (HBV), as the main cause of viral hepatitis in human, can induce several clinical forms of hepatitis B and also might be associated with hepatic complications such as cirrhosis and hepatocellular carcinoma (HCC). Based on the important roles of PRRs in the eradication of microbial infections including viral infections and their related complications, it appears that the molecules may be a main part of immune responses against viral infections including HBV and participate in the HBV related complications. Thus, this review article has brought together information regarding the roles of PRRs in immunity against HBV and its complications.
Collapse
Affiliation(s)
- Reza Nosratabadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Zare-Bidaki
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Microbiology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Vahid Mohammadi Shahrokhi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
13
|
Lam VC, Lanier LL. NK cells in host responses to viral infections. Curr Opin Immunol 2016; 44:43-51. [PMID: 27984782 DOI: 10.1016/j.coi.2016.11.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/20/2016] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes that play an important role in viral clearance. NK cell responses to viral infections were originally believed to be non-specific and lacked immune memory recall responses. It is now appreciated that NK cell responses to viral infections can be specific and in some cases memory recall responses are established. Increasing evidence also illuminates the complexity of NK cell interactions with both innate and adaptive immune cells. Here, we summarize the evidence for NK cell-specific memory responses to viral infections and the intricate reciprocal interactions between NK cells and other immune cells that dictate their activation and effector functions.
Collapse
Affiliation(s)
- Viola C Lam
- Biomedical Sciences Graduate Program, San Francisco, CA 94143, United States; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, United States
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, United States; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, United States.
| |
Collapse
|
14
|
Hepatitis B Virus Surface Antigen Activates Myeloid Dendritic Cells via a Soluble CD14-Dependent Mechanism. J Virol 2016; 90:6187-6199. [PMID: 27099316 DOI: 10.1128/jvi.02903-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/08/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) infection can cause chronic liver disease, which is associated with increased risk of liver cirrhosis, liver failure, and liver cancer. Clearance of HBV infection requires effective HBV-specific immunity; however, the immunological mechanisms that determine the development of effective HBV-specific immunity are poorly understood. Dendritic cells (DC) play a pivotal role in the regulation of antiviral immunity. Here, we investigated the interaction between HBV surface antigen (HBsAg), the main envelope glycoprotein of HBV, and BDCA1(+) myeloid dendritic cells (mDC). Exposure of peripheral blood-derived BDCA1(+) mDC to HBsAg resulted in strong DC maturation, cytokine production, and enhanced capacity to activate antigen-specific cytotoxic T cells (CTLs). By using neutralizing antibodies, crucial roles for CD14 and Toll-like receptor 4 (TLR4) in HBsAg-mediated BDCA1(+) mDC maturation were identified. Concordantly, HBsAg-mediated DC maturation required fetal calf serum (FCS) or human plasma, naturally containing soluble CD14 (sCD14). Intriguingly, HBsAg-induced DC maturation was significantly reduced in umbilical cord blood plasma, which contained less sCD14 than adult plasma, indicating that sCD14 is an important host factor for recognition of HBsAg by DC and subsequent DC activation. A direct interaction between sCD14 and HBsAg was demonstrated by using enzyme-linked immunosorbent assay (ELISA). Moreover, sCD14-HBsAg complexes were detected both in vitro and in sera of HBV-infected patients. The abundance of sCD14-HBsAg complexes varied between chronic HBV disease stages and correlated with activation of BDCA1(+) mDC in vivo We conclude that HBsAg activates BDCA1(+) DC via an sCD14-dependent mechanism. These findings provide important novel insights into the initiation of HBV-specific immunity and facilitate development of effective immunotherapeutic interventions for HBV. IMPORTANCE Hepatitis B virus (HBV) infection is a significant health problem, as it causes progressive liver injury and liver cancer in patients with chronic HBV infection, which affects approximately 250 million individuals worldwide. Some of the infected adults and the majority of neonates fail to mount an effective immune response and consequently develop chronic infection. The viral and host factors involved in the initiation of effective HBV-specific immune responses remain poorly understood. Here we identified CD14 and TLR4 as receptors for HBsAg, the main HBV envelope antigen. HBsAg induced strong maturation of dendritic cells (DC), which have a central role in regulation of virus-specific immunity. These results provide essential novel insights into the mechanisms underlying the initiation of HBV-specific immunity. Intriguingly, since neonates have naturally low sCD14, the finding that serum-derived sCD14 is a crucial host factor for recognition of HBsAg by DC may have implications for immunity of neonates to HBV infection.
Collapse
|
15
|
Wang L, Wang K, Zou ZQ. Crosstalk between innate and adaptive immunity in hepatitis B virus infection. World J Hepatol 2015; 7:2980-2991. [PMID: 26730277 PMCID: PMC4691701 DOI: 10.4254/wjh.v7.i30.2980] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major public health problem worldwide. HBV is not directly cytotoxic to infected hepatocytes; the clinical outcome of infection results from complicated interactions between the virus and the host immune system. In acute HBV infection, initiation of a broad, vigorous immune response is responsible for viral clearance and self-limited inflammatory liver disease. Effective and coordinated innate and adaptive immune responses are critical for viral clearance and the development of long-lasting immunity. Chronic hepatitis B patients fail to mount efficient innate and adaptive immune responses to the virus. In particular, HBV-specific cytotoxic T cells, which are crucial for HBV clearance, are hyporesponsiveness to HBV infection. Accumulating experimental evidence obtained from the development of animal and cell line models has highlighted the importance of innate immunity in the early control of HBV spread. The virus has evolved immune escape strategies, with higher HBV loads and HBV protein concentrations associated with increasing impairment of immune function. Therefore, treatment of HBV infection requires inhibition of HBV replication and protein expression to restore the suppressed host immunity. Complicated interactions exist not only between innate and adaptive responses, but also among innate immune cells and different components of adaptive responses. Improved insight into these complex interactions are important in designing new therapeutic strategies for the treatment HBV infection. In this review, we summarize the current knowledge regarding the cross-talk between the innate and adaptive immune responses and among different immunocytes in HBV infection.
Collapse
|
16
|
Mica Nanoparticle, STB-HO Eliminates the Human Breast Carcinoma Cells by Regulating the Interaction of Tumor with its Immune Microenvironment. Sci Rep 2015; 5:17515. [PMID: 26631982 PMCID: PMC4668362 DOI: 10.1038/srep17515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/29/2015] [Indexed: 11/09/2022] Open
Abstract
Mica, an aluminosilicate mineral, has been proven to possess anti-tumor and immunostimulatory effects. However, its efficacy and mechanisms in treating various types of tumor are less verified and the mechanistic link between anti-tumor and immunostimulatory effects has not been elucidated. We sought to investigate the therapeutic effect of STB-HO (mica nanoparticles) against one of the most prevalent cancers, the breast cancer. STB-HO was orally administered into MCF-7 xenograft model or directly added to culture media and tumor growth was monitored. STB-HO administration exhibited significant suppressive effects on the growth of MCF-7 cells in vivo, whereas STB-HO did not affect the proliferation and apoptosis of MCF-7 cells in vitro. To address this discrepancy between in vivo and in vitro results, we investigated the effects of STB-HO treatment on the interaction of MCF-7 cells with macrophages, dendritic cells (DCs) and natural killer (NK) cells, which constitute the cellular composition of tumor microenvironment. Importantly, STB-HO not only increased the susceptibility of MCF-7 cells to immune cells, but also stimulated the immunocytes to eliminate cancer cells. In conclusion, our study highlights the possible role of STB-HO in the suppression of MCF-7 cell growth via the regulation of interactions between tumor cells and anti-tumor immune cells.
Collapse
|
17
|
Wu SF, Wang WJ, Gao YQ. Natural killer cells in hepatitis B virus infection. Braz J Infect Dis 2015; 19:417-25. [PMID: 26119852 PMCID: PMC9427491 DOI: 10.1016/j.bjid.2015.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
Natural killer cells are a unique type of lymphocytes with cytotoxic capacity, and play important roles against tumors and infections. Recently, natural killer cells have been increasingly valued in their effects in hepatitis B virus infection. Since hepatitis B virus is not cytopathic, the subsequent antiviral immune responses of the host are responsible for sustaining the liver injury, which may result in cirrhosis and even hepatocellular carcinoma. Many studies have confirmed that natural killer cells participate in anti-hepatitis B virus responses both in the early phase after infection and in the chronic phase via cytolysis, degranulation, and cytokine secretion. However, natural killer cells play dichotomic roles: they exert antiviral and immunoregulatory functions whilst contribute to the pathogenesis of liver injury. Here, we review the roles of natural killer cells in hepatitis B virus infection, introducing novel therapeutic strategies for controlling hepatitis B virus infection via the modulation of natural killer cells.
Collapse
Affiliation(s)
- Shao-fei Wu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-jing Wang
- Department of Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-qiu Gao
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
18
|
de Groen RA, Boltjes A, Hou J, Liu BS, McPhee F, Friborg J, Janssen HLA, Boonstra A. IFN-λ-mediated IL-12 production in macrophages induces IFN-γ production in human NK cells. Eur J Immunol 2015; 45:250-9. [PMID: 25316442 DOI: 10.1002/eji.201444903] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/24/2014] [Accepted: 10/10/2014] [Indexed: 12/16/2022]
Abstract
With increasing interest in alternative options to interferon-alpha-based treatments, IFN-λ has shown therapeutic promise in a variety of diseases. Although the antiviral activity of IFN-λ has been extensively studied, there is limited knowledge regarding the immunological functions of IFN-λ and how these differ from those of other classes of IFNs. In this study, we investigated the effects of IFN-λ on primary human NK cells, both in a direct and indirect capacity. We demonstrate that in contrast to interferon-alpha, IFN-λ is unable to directly stimulate NK cells, due to the absence of IFN-λ receptor chain 1 (IFN-λR1) on NK cells. However, IFN-λ, in combination with TLR4 challenge, is able to induce the production of select members of the IL-12 family of cytokines in monocyte-derived macrophages. We further show that through macrophage-mediated IL-12 production, IFN-λ is able to indirectly affect NK cells and ultimately induce IFN-γ production.
Collapse
Affiliation(s)
- Rik A de Groen
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wu SF, Zhou ZH, Sun XH, Zhu XJ, Li M, Zhang X, Gao YQ. Role of natural kill cells in hepatitis B virus infection. Shijie Huaren Xiaohua Zazhi 2014; 22:5636-5642. [DOI: 10.11569/wcjd.v22.i36.5636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are a unique group of lymphocytes with cytotoxicity, playing an important role in anti-tumor and anti-infection activities. Recently, NK cells are increasingly recognized to play a role during hepatitis B virus (HBV) infection. Studies have confirmed NK cells participate in anti-HBV responses by secreting cytokines, mediating apoptosis and killing target cells, indicating a potential strategy for controlling HBV infection via regulation of NK cell functions. This review discusses the contribution of NK cells to HBV elimination, liver injury, and other parts of immune system and the formulation of new therapeutic strategies.
Collapse
|
20
|
Tjwa ETTL, Zoutendijk R, van Oord GW, Biesta PJ, Verheij J, Janssen HLA, Woltman AM, Boonstra A. Intrahepatic natural killer cell activation, but not function, is associated with HBsAg levels in patients with HBeAg-negative chronic hepatitis B. Liver Int 2014; 34:396-404. [PMID: 23890390 DOI: 10.1111/liv.12272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 06/25/2013] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Natural killer (NK) cells play an important role in the immune response to viruses. As the hepatitis B virus (HBV) replicates in hepatocytes, examination of the liver of chronic hepatitis B (CHB) patients is crucial to better understand the role of NK cells in HBV. HBeAg-negative CHB differs in many aspects from HBeAg-positive CHB, and until now little is known about the intrahepatic NK cell response in HBeAg-negative patients. Intrahepatic immune control might be different in HBeAg-negative as compared with HBeAg-positive patients. METHODS Liver NK cells were investigated in 21 HBeAg-positive and 35 HBeAg-negative CHB patients. Biopsy specimens were processed for routine histopathology and staging according to Ishak scores. Intrahepatic and blood NK cell frequencies, activation status and function of NK cells were analysed by flow cytometry. RESULTS In HBeAg-negative CHB patients, compared to blood, liver NK cells displayed a more activated phenotype and stimulation further increased the activation status, but production of IFN-γ was markedly less. There was no difference with HBeAg-positive CHB. Only in HBeAg-negative CHB, but not in HBeAg-positive CHB, NK cell activation was inversely correlated with HBsAg levels. CONCLUSIONS The present study indicates that liver NK cells of CHB have a higher activation status compared to blood. However, they are not capable to increase cytokine production above levels reached by activated blood NK cells. In HBeAg-negative CHB, the levels of HBsAg may contribute to the incapacity of activated liver NK cells to increase cytokine production.
Collapse
Affiliation(s)
- Eric T T L Tjwa
- Liver Unit, Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
TLR3 plays significant roles against hepatitis B virus. Mol Biol Rep 2014; 41:3279-86. [DOI: 10.1007/s11033-014-3190-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 01/21/2014] [Indexed: 01/30/2023]
|
22
|
NK cells in hepatitis B virus infection: a potent target for immunotherapy. Arch Virol 2014; 159:1555-65. [PMID: 24445811 DOI: 10.1007/s00705-013-1965-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/18/2013] [Indexed: 12/15/2022]
Abstract
Viruses, including hepatitis B virus (HBV), are the most prevalent and infectious agents that lead to liver disease in humans. Hepatocellular carcinoma (HCC) and cirrhosis of the liver are the most serious complications arising from prolonged forms of hepatitis B. Previous studies demonstrated that patients suffering from long-term HBV infections are unable to eradicate HBV from hepatocytes completely. The mechanisms responsible for progression of these forms of infection have not yet been clarified. However, it seems that there are differences in genetic and immunological parameters when comparing patients to subjects who successfully clear HBV infections, and these may represent the causes of long-term infection. Natural killer (NK) cells, the main innate immune cells that target viral infections, play important roles in the eradication of HBV from hepatocytes. NK cells carry several stimulatory and inhibitor receptors, and binding of receptors with their ligands results in activation and suppression of NK cells, respectively. The aim of this review is to address the recent information regarding NK cell phenotype, functions and modifications in hepatitis B. This review addresses the recent data regarding the roles of NK cells as novel targets for immunotherapies that target hepatitis B infection. It also discusses the potential to reduce the risk of HCC or cirrhosis of the liver by targeting NK cells.
Collapse
|
23
|
Brooks J, Gelson W, Rushbrook SM. Therapeutic advances in the management of chronic hepatitis B infection. Ther Adv Chronic Dis 2013; 4:157-66. [PMID: 23819019 DOI: 10.1177/2040622313484647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) is a small nonenveloped DNA virus that is a member of the Hepadnaviridae family. Chronic HBV infection is estimated to effect more than 350 million people worldwide with over 2 billion people being exposed to the virus. Risk factors for chronic infection include age of exposure to the virus, concurrent immunosuppression and HIV infection. Individuals chronically infected are 200 times more likely to develop hepatocellular carcinoma (HCC) than uninfected individuals and are at risk of developing cirrhosis and the risks of decompensated liver disease. This article focuses on the recent therapeutic advances that reduce the risk of developing these complications, those that prevent the spread of HBV and strategies for the prevention of post-liver-transplantation recurrence of HBV.
Collapse
Affiliation(s)
- Johanne Brooks
- Gastroenterology Department, Norfolk and Norwich Hospital, Colney Lane, Norwich NR4 7UY, UK
| | | | | |
Collapse
|
24
|
Huang YW, Lin SC, Wei SC, Hu JT, Chang HY, Huang SH, Chen DS, Chen PJ, Hsu PN, Yang SS, Kao JH. Reduced Toll-like receptor 3 expression in chronic hepatitis B patients and its restoration by interferon therapy. Antivir Ther 2013; 18:877-84. [PMID: 23744559 DOI: 10.3851/imp2630] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Toll-like receptor (TLR)3 gene variants may correlate with clinical significance of chronic viral infections including HBV. We aimed to investigate the expression of TLR3 in peripheral blood mononuclear cells (PBMCs) and liver cells of chronic hepatitis B (CHB) patients and its response to pegylated interferon or nucleoside analogue therapy. METHODS We consecutively enrolled 127 CHB patients and 64 hepatitis B surface antigen-negative, anti-HCV-negative healthy individuals as controls. We compared the TLR3 expressions on fresh PBMCs and liver cells from patients and controls, before and during pegylated interferon or nucleoside analogue therapy. RESULTS Compared to controls, patients had a lower TLR3 mean fluorescence intensity (MFI) on PBMCs (mean ± sd 14.61 ± 13.49 versus 9.70 ± 4.61; P < 0.001), independent of age, gender and alanine aminotransferase (ALT; -13.466, 95% CI -17.202, -9.730; P < 0.001). Patients had limited TLR3 stains on Kupffer cells, whereas controls had diffuse stains on Kupffer and hepatocytes. Hepatic TLR3 messenger RNA was lower in patients than controls (0.47 ± 0.30 versus 1-fold). Using pretreatment TLR3 MFI as a referent, among 5 of 12 pegylated-interferon-treated patients with sustained virological response (SVR), TLR3 MFI was restored to a mean of 1.5- to 1.7-folds immediately after treatment. Among seven non-responders or relapsers, TLR3 MFI reduced to a mean of 0.5- to 0.7-fold. Among 10 entecavir-treated patients with on-treatment virological response, TLR3 MFI gradually was restored to a mean of 1.2-folds during 48-week therapy. CONCLUSIONS CHB patients have reduced TLR3 expression on PBMCs, independent of age, gender and ALT, and on liver cells. Patients with pegylated-interferon-induced SVR have a more significant restoration of TLR3 expression than those under entecavir.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Liver Center, Cathay General Hospital Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhou Z, Zhang C, Zhang J, Tian Z. Macrophages help NK cells to attack tumor cells by stimulatory NKG2D ligand but protect themselves from NK killing by inhibitory ligand Qa-1. PLoS One 2012; 7:e36928. [PMID: 22629344 PMCID: PMC3356357 DOI: 10.1371/journal.pone.0036928] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/17/2012] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells and their crosstalk with other immune cells are important for innate immunity against tumor. To explore the role of the interaction between NK cells and macrophages in the regulation of anti-tumor activities of NK cells, we here demonstrate that poly I:C-treated macrophages increased NK cell-mediated cytotoxicity against target tumor cells in NKG2D-dependent manner. In addition, IL-15, IL-18, and IFN-β secreted by poly I:C-treated macrophages are also involved in NKG2D expression and NK cell activation. Interestingly, the increase in expression of NKG2D ligands on macrophages induced a highly NK cell-mediated cytotoxicity against tumor cells, but not against macrophages themselves. Notably, a high expression level of Qa-1, a NKG2A ligand, on macrophages may contribute to such protection of macrophages from NK cell-mediated killing. Furthermore, Qa-1 or NKG2A knockdown and Qa-1 antibody blockade caused the macrophages to be sensitive to NK cytolysis. These results suggested that macrophages may activate NK cells to attack tumor by NKG2D recognition whereas macrophages protect themselves from NK lysis via preferential expression of Qa-1.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- * E-mail: (CZ); (ZT)
| | - Jian Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Zhigang Tian
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- * E-mail: (CZ); (ZT)
| |
Collapse
|