1
|
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018; 28:443-467. [PMID: 29579213 PMCID: PMC7108637 DOI: 10.1093/glycob/cwy021] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses encompass some of the most common human pathogens causing infections of different severity, ranging from no or very few symptoms to lethal disease as seen with the viral hemorrhagic fevers. All enveloped viruses possess an envelope membrane derived from the host cell, modified with often heavily glycosylated virally encoded glycoproteins important for infectivity, viral particle formation and immune evasion. While N-linked glycosylation of viral envelope proteins is well characterized with respect to location, structure and site occupancy, information on mucin-type O-glycosylation of these proteins is less comprehensive. Studies on viral glycosylation are often limited to analysis of recombinant proteins that in most cases are produced in cell lines with a glycosylation capacity different from the capacity of the host cells. The glycosylation pattern of the produced recombinant glycoproteins might therefore be different from the pattern on native viral proteins. In this review, we provide a historical perspective on analysis of viral glycosylation, and summarize known roles of glycans in the biology of enveloped human viruses. In addition, we describe how to overcome the analytical limitations by using a global approach based on mass spectrometry to identify viral O-glycosylation in virus-infected cell lysates using the complex enveloped virus herpes simplex virus type 1 as a model. We underscore that glycans often pay important contributions to overall protein structure, function and immune recognition, and that glycans represent a crucial determinant for vaccine design. High throughput analysis of glycosylation on relevant glycoprotein formulations, as well as data compilation and sharing is therefore important to identify consensus glycosylation patterns for translational applications.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| |
Collapse
|
2
|
Law LMJ, Everitt JC, Beatch MD, Holmes CFB, Hobman TC. Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication. J Virol 2003; 77:1764-71. [PMID: 12525610 PMCID: PMC140988 DOI: 10.1128/jvi.77.3.1764-1771.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rubella virus is an enveloped positive-strand RNA virus of the family TOGAVIRIDAE: Virions are composed of three structural proteins: a capsid and two membrane-spanning glycoproteins, E2 and E1. During virus assembly, the capsid interacts with genomic RNA to form nucleocapsids. In the present study, we have investigated the role of capsid phosphorylation in virus replication. We have identified a single serine residue within the RNA binding region that is required for normal phosphorylation of this protein. The importance of capsid phosphorylation in virus replication was demonstrated by the fact that recombinant viruses encoding hypophosphorylated capsids replicated at much lower titers and were less cytopathic than wild-type virus. Nonphosphorylated mutant capsid proteins exhibited higher affinities for viral RNA than wild-type phosphorylated capsids. Capsid protein isolated from wild-type strain virions bound viral RNA more efficiently than cell-associated capsid. However, the RNA-binding activity of cell-associated capsids increased dramatically after treatment with phosphatase, suggesting that the capsid is dephosphorylated during virus assembly. In vitro assays indicate that the capsid may be a substrate for protein phosphatase 1A. As capsid is heavily phosphorylated under conditions where virus assembly does not occur, we propose that phosphorylation serves to negatively regulate binding of viral genomic RNA. This may delay the initiation of nucleocapsid assembly until sufficient amounts of virus glycoproteins accumulate at the budding site and/or prevent nonspecific binding to cellular RNA when levels of genomic RNA are low. It follows that at a late stage in replication, the capsid may undergo dephosphorylation before nucleocapsid assembly occurs.
Collapse
Affiliation(s)
- Lok Man J Law
- Departments of Cell Biology. Biochemistry. Signal Transduction Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
3
|
Control of carbohydrate processing: the lec1A CHO mutation results in partial loss of N-acetylglucosaminyltransferase I activity. Mol Cell Biol 1985. [PMID: 2993857 DOI: 10.1128/mcb.5.6.1204] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lec1 CHO cell glycosylation mutants are defective in N-acetylglucosaminyltransferase I (GlcNAc-TI) activity and therefore cannot convert the oligomannosyl intermediate (Man5GlcNAc2Asn) into complex carbohydrates. Lec1A CHO cell mutants have been shown to belong to the same genetic complementation group but exhibit different phenotypic properties. Evidence is presented that lec1A represents a new mutation at the lec1 locus resulting in partial loss of GlcNAc-TI activity. Structural studies of the carbohydrates associated with vesicular stomatitis virus grown in Lec1A cells (Lec1A/VSV) revealed the presence of biantennary and branched complex carbohydrates as well as the processing intermediate Man5GlcNAc2Asn. By contrast, the glycopeptides from virus grown in CHO cells (CHO/VSV) possessed only fully processed complex carbohydrates, whereas those from Lec1/VSV were almost solely of the Man5GlcNAc2Asn intermediate type. Therefore, the Lec1A glycosylation phenotype appears to result from the partial processing of N-linked carbohydrates because of reduced GlcNAc-TI action on membrane glycoproteins. Genetic experiments provided evidence that lec1A is a single mutation affecting GlcNAc-TI activity. Lec1A mutants could be isolated at frequencies of 10(-5) to 10(-6) from unmutagenized CHO cell populations by single-step selection, a rate inconsistent with two mutations. In addition, segregants selected from Lec1A X parental cell hybrid populations expressed only Lec1A or related lectin-resistant phenotypes and did not include any with a Lec1 phenotype. The Lec1A mutant should be of interest for studies on the mechanisms that control carbohydrate processing in animal cells and the effects of reduced GlcNAc-TI activity on the glycosylation, translocation, and compartmentalization of cellular glycoproteins.
Collapse
|
4
|
Proteolytic release of glycopeptides from glycoproteins transferred to nitrocellulose following gel electrophoresis. Anal Biochem 1985; 147:525-8. [PMID: 2990256 DOI: 10.1016/0003-2697(85)90309-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To determine whether glycopeptides could be released from glycoproteins bound to nitrocellulose, the glycoproteins of murine mammary tumor virus (MuMTV) were radiolabeled by the periodate oxidation/tritiated sodium borohydride reduction technique and separated by gel electrophoresis followed by diffusion transfer. Pronase digestion of nitrocellulose filter strips containing labeled glycoproteins (gp55 or gp34) revealed a rapid release of glycopeptides, i.e., approximately total release within 4 h. The released glycopeptides were similar in size, as determined by molecular sieving chromatography, to glycopeptides obtained by proteolytic digestion of MuMTV glycoproteins from dried gel strips (A. Zilberstein et al., 1980, Cell 21, 417-427) or in solution (M. J. Yagi et al., 1978, Virology 91, 291-304).
Collapse
|
5
|
Control of carbohydrate processing: the lec1A CHO mutation results in partial loss of N-acetylglucosaminyltransferase I activity. Mol Cell Biol 1985; 5:1204-11. [PMID: 2993857 PMCID: PMC366847 DOI: 10.1128/mcb.5.6.1204-1211.1985] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lec1 CHO cell glycosylation mutants are defective in N-acetylglucosaminyltransferase I (GlcNAc-TI) activity and therefore cannot convert the oligomannosyl intermediate (Man5GlcNAc2Asn) into complex carbohydrates. Lec1A CHO cell mutants have been shown to belong to the same genetic complementation group but exhibit different phenotypic properties. Evidence is presented that lec1A represents a new mutation at the lec1 locus resulting in partial loss of GlcNAc-TI activity. Structural studies of the carbohydrates associated with vesicular stomatitis virus grown in Lec1A cells (Lec1A/VSV) revealed the presence of biantennary and branched complex carbohydrates as well as the processing intermediate Man5GlcNAc2Asn. By contrast, the glycopeptides from virus grown in CHO cells (CHO/VSV) possessed only fully processed complex carbohydrates, whereas those from Lec1/VSV were almost solely of the Man5GlcNAc2Asn intermediate type. Therefore, the Lec1A glycosylation phenotype appears to result from the partial processing of N-linked carbohydrates because of reduced GlcNAc-TI action on membrane glycoproteins. Genetic experiments provided evidence that lec1A is a single mutation affecting GlcNAc-TI activity. Lec1A mutants could be isolated at frequencies of 10(-5) to 10(-6) from unmutagenized CHO cell populations by single-step selection, a rate inconsistent with two mutations. In addition, segregants selected from Lec1A X parental cell hybrid populations expressed only Lec1A or related lectin-resistant phenotypes and did not include any with a Lec1 phenotype. The Lec1A mutant should be of interest for studies on the mechanisms that control carbohydrate processing in animal cells and the effects of reduced GlcNAc-TI activity on the glycosylation, translocation, and compartmentalization of cellular glycoproteins.
Collapse
|
6
|
Mayne JT, Bell JR, Strauss EG, Strauss JH. Pattern of glycosylation of Sindbis virus envelope proteins synthesized in hamster and chicken cells. Virology 1985; 142:121-33. [PMID: 4060569 DOI: 10.1016/0042-6822(85)90427-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The tryptic glycopeptides of the Sindbis virus envelope glycoproteins E1 and E2 grown in BHK and chick cells were purified by gel filtration followed by high-pressure liquid chromatography. Each of the purified glycopeptides was analyzed by N-terminal sequencing to identify from which of the potential glycosylation sites it was derived. The type of oligosaccharide chain attached to each glycopeptide was determined from gel filtration analysis of the pronase-digested glycopeptides, and the relative incorporation of radiolabeled galactose, mannose, and glucosamine into each glycopeptide was used to confirm these determinations. The glycosylation patterns for the two proteins were essentially identical in the two host cells. The E2 glycosylation sites at Asn196 and Asn318 contained exclusively complex-type and simple-type oligosaccharide chains, respectively. In E1, the glycosylation site at Asn139 contained only complex-type chains, but the site at Asn245 contained a mixture of simple (75-85%) and complex (15-25%) type chains. These results are discussed in relation to previously reported results and a prediction as to the relative importance of the different glycosylation sites to the function of the proteins is made.
Collapse
|
7
|
Stanley P, Vivona G, Atkinson PH. 1H NMR spectroscopy of carbohydrates from the G glycoprotein of vesicular stomatitis virus grown in parental and Lec4 Chinese hamster ovary cells. Arch Biochem Biophys 1984; 230:363-74. [PMID: 6324683 DOI: 10.1016/0003-9861(84)90119-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Carbohydrate moieties derived from the G glycoprotein of Vesicular Stomatitis Virus (VSV) grown in parental Chinese hamster ovary (CHO) cells and the glycosylation mutant Lec4 have been analyzed by high-field 1H NMR spectroscopy. The major glycopeptides of CHO/VSV and Lec4/VSV were purified by their ability to bind to concanavalin A-Sepharose. The carbohydrates in this fraction are of the biantennary, complex type with heterogeneity in the presence of alpha(2,3)-linked sialic acid and alpha (1,6)-linked fucose residues. A minor CHO/VSV glycopeptide fraction, which does not bind to concanavalin A-Sepharose but which binds to pea lectin-agarose, was also investigated by 1H NMR spectroscopy. These carbohydrates are complex moieties which appear to contain N-acetylglucosamine in beta(1,6) linkage. Their spectral properties are most similar to those of a triantennary complex oligosaccharide containing a 2, 6-disubstituted mannose alpha (1,6) residue. Carbohydrates of this type are not found among the glycopeptides of VSV grown in the Lec4 CHO glycosylation mutant.
Collapse
|
8
|
Herrler G, Compans RW. Posttranslational modification and intracellular transport of mumps virus glycoproteins. J Virol 1983; 47:354-62. [PMID: 6413700 PMCID: PMC255267 DOI: 10.1128/jvi.47.2.354-362.1983] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Analysis of the pronase-derived glycopeptides of isolated mumps virus glycoproteins revealed the presence of both complex and high-mannose-type oligosaccharides on the HN and F1 glycoproteins, whereas only high-mannose-type glycopeptides were detected on F2. Endoglycosidase F, a newly described glycosidase that cleaves N-linked high mannose as well as complex oligosaccharides, appeared to completely cleave the oligosaccharides linked to HN and F2, whereas F1 was resistant to the enzyme. Two distinct cleavage products of F2 were observed, suggesting the presence of two oligosaccharide side chains. Tunicamycin was found to reduce the infectious virus yield and inhibit mumps virus particle formation. The two glycoproteins, HN and F, were not found in the presence of the glycosylation inhibitor. However, two new polypeptides were detected, with molecular weights of 63,000 (HNT) and 53,000 (FT), respectively, which may represent nonglycosylated forms of the glycoproteins. Synthesis of the nonglycosylated virus-coded proteins (L, NP, P, M, pI, and pII) was not affected by tunicamycin. The formation of HN oligomers and the proteolytic cleavage of the F protein were found to occur with the same kinetics. Analysis of the time course of appearance of mumps virus glycoproteins on the cell surface suggested that dimerization of HN and cleavage of F occur immediately after their exposure on the plasma membrane.
Collapse
|
9
|
On the significance of heterogeneity of plasma glycoproteins possessing N -glycans of the complex type: a perspective. Trends Biochem Sci 1983. [DOI: 10.1016/0968-0004(83)90085-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Laurent J, Lafay F. Oligosaccharide moieties of Drosophila-adapted vesicular stomatitis virus grown in different cells. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/s0769-2617(83)80003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Stanley P. Carbohydrate heterogeneity of vesicular stomatitis virus G glycoprotein allows localization of the defect in a glycosylation mutant of CHO cells. Arch Biochem Biophys 1982; 219:128-39. [PMID: 6295280 DOI: 10.1016/0003-9861(82)90141-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Schwarz RT, Datema R. The lipid pathway of protein glycosylation and its inhibitors: the biological significance of protein-bound carbohydrates. Adv Carbohydr Chem Biochem 1982; 40:287-379. [PMID: 6188345 DOI: 10.1016/s0065-2318(08)60111-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Hunt LA, Lamph W, Wright SE. Transformation-dependent alterations in the oligosaccharides of Prague C Rous sarcoma virus glycoproteins. J Virol 1981; 37:207-15. [PMID: 6260974 PMCID: PMC170997 DOI: 10.1128/jvi.37.1.207-215.1981] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The influence of cell transformation on the glycosylation of viral envelope glycoproteins was examined by high-resolution gel filtration and specific glycosidase digestions of 3H-sugar-labeled glycopeptides from nondefective and transformation-defective Prague C strains of Rous sarcoma virus replicated in fibroblasts from the same chicken embryo. The major difference in glycosylation attributable to the viral transformation of the host cells was an increase in this relative amount of larger acidic-type oligosaccharides containing additional "branch" sugars (NeuNAc-Gal-GlcNAc-) compared with the smaller acidic-type and neutral-type oligosaccharides. There was also a shift in size distribution of neutral-type oligosaccharides toward smaller oligomannosyl cores in the transforming versus nontransforming virus glycopeptides. These alterations were consistent with a transformation-dependent increase in the extent of intracellular processing of a common precursor structure for the asparagine-linked oligosaccharides of Rous sarcoma virus.
Collapse
|
14
|
Wright PJ, Warr HM, Westaway EG. Preliminary characterization of glycopeptides derived from glycoproteins specified by the flavivirus Kunjin. Virology 1980; 104:482-6. [PMID: 7395111 DOI: 10.1016/0042-6822(80)90350-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
|
16
|
The carbohydrate structure of the glycoproteins of the paramyxovirus SV5 grown in bovine kidney cells. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(19)83568-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
|
18
|
|
19
|
Staneloni R, Leloir L. The biosynthetic pathway of the asparagine-linked oligosaccharides of glycoproteins. Trends Biochem Sci 1979. [DOI: 10.1016/0968-0004(79)90265-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Abstract
The exchange of the cholesterol in the membranes of two enveloped viruses, Sindbis virus and vesicular stomatitis virus, with cholesterol present in lipid vesicles and in serum was measured. Biosynthetically labeled viral cholesterol underwent spontaneous and complete transfer to both lipid vesicles and to serum. The rate with which and the extent to which this process occurred were very similar for these two viruses. During incubation with lipid vesicles in excess, half of the viral cholesterol underwent transfer in approximately 4 h and more than 90% underwent transfer in 24h at 37 degrees C. Similar rates and extents of movement of viral cholesterol were observed when incubations were carried out with vesicles which contained cholesterol and phospholipid in the same molar ratio as in the virus or with egg lecithin vesicles which contained no cholesterol. When labeled cholesterol was present initially in the lipid vesicles, movement of cholesterol from the vesicles to the virus was observed. One implication of the fact that viral cholesterol undergoes extensive exchange with serum cholesterol is that cellular cholesterol is in equilibrium with that in the extracellular fluid.
Collapse
|
21
|
Hunt LA, Wright SE, Etchison JR, Summers DF. Oligosaccharide chains of avian RNA tumor virus glycoproteins contain heterogeneous oligomannosyl cores. J Virol 1979; 29:336-43. [PMID: 219228 PMCID: PMC353126 DOI: 10.1128/jvi.29.1.336-343.1979] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chicken embryo fibroblasts (C/E phenotype) infected with subgroups B and C of the Prague strain of Rous sarcoma virus were radiolabeled with either [6-(3)H]-glucosamine or [2-(3)H]mannose, and virus was purified from the growth medium. The large envelope glycoprotein, gp85, was the only major radiolabeled component of purified virus. Pronase-digested glycopeptides from purified virus were analyzed by a combination of (i) gel filtration with columns of Sephadex G15/G50 and Bio-Gel P4 and (ii) enzymatic digestion of the oligosaccharide chains with specific exoglycosidases and endo-beta-N-acetylglucosaminidases. The rather broad molecular weight distribution (approximately 2,000 to 4,000) for glycopeptides in these studies and previous studies in other laboratories was shown to represent actual heterogeneity in the carbohydrate moieties: (i) the glycopeptides contained both mannose-rich, neutral chains and complex, acidic chains with terminal sialic acid; and (ii) both classes of asparagine-linked carbohydrate structures exhibited heterogeneity in the size of the oligomannosyl core (a mixture of approximately 5 to 9 mannose units for the neutral structures, and 3 or 5 mannose units for the acidic structures). With the [2-(3)H]mannose-labeled glycopeptides from Rous sarcoma virus, Prague strain subgroup C, most of the oligosaccharide chains were high-molecular-weight, acidic structures, with similar numbers of 3-mannose and 5-mannose core structures.
Collapse
|
22
|
Patzer EJ, Wagner RR, Dubovi EJ. Viral membranes: model systems for studying biological membranes. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1979; 6:165-217. [PMID: 378533 DOI: 10.3109/10409237909102563] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Yagi MJ, Tomana M, Stutzman RE, Robertson BH, Compans RW. Structural components of mouse mammary tumor virus. III. Composition and tryptic peptides of virion polypeptides. Virology 1978; 91:291-304. [PMID: 217150 DOI: 10.1016/0042-6822(78)90377-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Reading C, Penhoet E, Ballou C. Carbohydrate structure of vesicular stomatitis virus glycoprotein. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)30309-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Robertson MA, Etchison JR, Robertson JS, Summers DF, Stanley P. Specific changes in the oligosaccharide moieties of VSV grown in different lectin-resistnat CHO cells. Cell 1978; 13:515-26. [PMID: 207434 DOI: 10.1016/0092-8674(78)90325-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The carbohydrate moieties of the G glycoprotein of vesicular stomatitis virus (VSV) grown in three distinct lectin-resistant (LecR) Chinese hamster ovary (CHO) cell lines have been compared by fine structural analysis of radiolabeled glycopeptides. The mutant WgaRIII, selected for resistance to wheat germ agglutinin (WGA), produces VSV containing G glycoprotein specifically lacking in sialic acid. The mutant PhaRI, selected for resistance to phytohemagglutinin (PHA) and previously shown to lack a particular glycoprotein N-acetyl-glucosaminyl-transferase activity, produces VSV containing G glycoprotein specifically lacking terminal N-acetylglucosamine-galactose-sialic acid sequences and possessing an increased number of mannose residues in the "core" region of its carbohydrate moieties. The mutant PhaRIConARII, a "double" mutant selected from PhaRI cells for resistance to concanavalin A (ConA), produces VSV containing G glycoprotein with a further alteration in the mannose residues of the "core" oligosaccharide region. We discuss the relevance of these findings to the mechanisms of glycoprotein biosynthesis in mammalian cells and to the biochemical bases of lectin resistance in CHO cells.
Collapse
|
26
|
|
27
|
McCarthy M, Harrison SC. Glycosidase susceptibility: a probe for the distribution of glycoprotein oligosaccharides in Sindbis virus. J Virol 1977; 23:61-73. [PMID: 18614 PMCID: PMC515800 DOI: 10.1128/jvi.23.1.61-73.1977] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intact Sindbis virus and Triton-solubilized viral glycoprotein were treated with alpha-mannosidase and with a preparation of mixed glycosidases from Diplococcus pneumoniae to probe the accesibility of carbohydrate units on the viral surface. The products of glycosidase attack on Triton-solubilized virus showed that mose carbohydrate units of the glycoproteins are good substrates for these enzymes. The relative resistance of most of the viral oligosaccharides in intact virus particles showed that much of the carbohydrate is not accessible to glycosidases, probably because it is not exposed at the viral surface. The only completely accessible carbohydrate units on Sindbis glycoproteins were the type A oligosaccharides of E2. This differential accessibility of Sindbis oligosaccharides is discussed in relation to the organization of the viral surface.
Collapse
|
28
|
|
29
|
Etchison JR, Robertson JS, Summers DF. Partial structural analysis of the oligosaccharide moieties of the vesicular stomatitis virus glycoprotein by sequential chemical and enzymatic degradation. Virology 1977; 78:375-92. [PMID: 194394 DOI: 10.1016/0042-6822(77)90115-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Yagi MJ, Compans RW. Structural components of mouse mammary tumor virus. I. Polypeptides of the virion. Virology 1977; 76:751-66. [PMID: 190773 DOI: 10.1016/0042-6822(77)90256-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Keegstra K, Burke D. Comparison of the carbohydrate of Sinbis virus glycoproteins with the carbohydrate of host glycoproteins. JOURNAL OF SUPRAMOLECULAR STRUCTURE 1977; 7:371-9. [PMID: 616485 DOI: 10.1002/jss.400070309] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The carbohydrate portions of the Sindbis virus glycoproteins were compared with the carbohydrate portions of cell surface glycoproteins from uninfected host cells. Comparisons of the size of glycopeptides were made using gel filtrations. Comparisons of sugar linkages were made by methylation analysis. The conclusion was that the Sindbis carbohydrate is similar to a portion of the host carbohydrate. Thus, the Sindbis carbohydrate structures appear to be structures normally made in the uninfected host cell, but which are added to the Sindbis glycoproteins in virus-infected cells.
Collapse
|
32
|
Gottlieb C, Kornfeld S. Isolation and characterization of two mouse L cell lines resistant to the toxic lectin ricin. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(19)56999-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|