1
|
Lee YP, Yu CK, Wong TW, Chen LC, Huang BM. Cordycepin Inhibits Enterovirus A71 Replication and Protects Host Cell from Virus-Induced Cytotoxicity through Adenosine Action Pathway. Viruses 2024; 16:352. [PMID: 38543718 PMCID: PMC10974990 DOI: 10.3390/v16030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
Enterovirus A71 (EV-A71) infection typically causes mild illnesses, such as hand-foot-and-mouth disease (HFMD), but occasionally leads to severe or fatal neurological complications in infants and young children. Currently, there is no specific antiviral treatment available for EV-A71 infection. Thus, the development of an effective anti-EV-A71 drug is required urgently. Cordycepin, a major bioactive compound found in Cordyceps fungus, has been reported to possess antiviral activity. However, its specific activity against EV-A71 is unknown. In this study, the potency and role of cordycepin treatment on EV-A71 infection were investigated. Results demonstrated that cordycepin treatment significantly reduced the viral load and viral ribonucleic acid (RNA) level in EV-A71-infected Vero cells. In addition, EV-A71-mediated cytotoxicity was significantly inhibited in the presence of cordycepin in a dose-dependent manner. The protective effect can also be extended to Caco-2 intestinal cells, as evidenced by the higher median tissue culture infectious dose (TCID50) values in the cordycepin-treated groups. Furthermore, cordycepin inhibited EV-A71 replication by acting on the adenosine pathway at the post-infection stage. Taken together, our findings reveal that cordycepin could be a potential antiviral candidate for the treatment of EV-A71 infection.
Collapse
Affiliation(s)
- Yi-Ping Lee
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Chun-Keung Yu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Li-Ching Chen
- Department of Biological Science & Technology, China Medical University, Taichung 406040, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
2
|
Therapeutic Potential and Biological Applications of Cordycepin and Metabolic Mechanisms in Cordycepin-Producing Fungi. Molecules 2019; 24:molecules24122231. [PMID: 31207985 PMCID: PMC6632035 DOI: 10.3390/molecules24122231] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Cordycepin (3′-deoxyadenosine), a cytotoxic nucleoside analogue found in Cordyceps militaris, has attracted much attention due to its therapeutic potential and biological value. Cordycepin interacts with multiple medicinal targets associated with cancer, tumor, inflammation, oxidant, polyadenylation of mRNA, etc. The investigation of the medicinal drug actions supports the discovery of novel targets and the development of new drugs to enhance the therapeutic potency and reduce toxicity. Cordycepin may be of great value owing to its medicinal potential as an external drug, such as in cosmeceutical, traumatic, antalgic and muscle strain applications. In addition, the biological application of cordycepin, for example, as a ligand, has been used to uncover molecular structures. Notably, studies that investigated the metabolic mechanisms of cordycepin-producing fungi have yielded significant information related to the biosynthesis of high levels of cordycepin. Here, we summarized the medicinal targets, biological applications, cytotoxicity, delivery carriers, stability, and pros/cons of cordycepin in clinical applications, as well as described the metabolic mechanisms of cordycepin in cordycepin-producing fungi. We posit that new approaches, including single-cell analysis, have the potential to enhance medicinal potency and unravel all facets of metabolic mechanisms of cordycepin in Cordyceps militaris.
Collapse
|
3
|
Harutyunyan S, Kumar M, Sedivy A, Subirats X, Kowalski H, Köhler G, Blaas D. Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3'-end. PLoS Pathog 2013; 9:e1003270. [PMID: 23592991 PMCID: PMC3617019 DOI: 10.1371/journal.ppat.1003270] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 02/10/2013] [Indexed: 01/09/2023] Open
Abstract
Upon infection, many RNA viruses reorganize their capsid for release of the genome into the host cell cytosol for replication. Often, this process is triggered by receptor binding and/or by the acidic environment in endosomes. In the genus Enterovirus, which includes more than 150 human rhinovirus (HRV) serotypes causing the common cold, there is persuasive evidence that the viral RNA exits single-stranded through channels formed in the protein shell. We have determined the time-dependent emergence of the RNA ends from HRV2 on incubation of virions at 56°C using hybridization with specific oligonucleotides and detection by fluorescence correlation spectroscopy. We report that psoralen UV crosslinking prevents complete RNA release, allowing for identification of the sequences remaining inside the capsid. We also present the structure of uncoating intermediates in which parts of the RNA are condensed and take the form of a rod that is directed roughly towards a two-fold icosahedral axis, the presumed RNA exit point. Taken together, in contrast to schemes frequently depicted in textbooks and reviews, our findings demonstrate that exit of the RNA starts from the 3′-end. This suggests that packaging also occurs in an ordered manner resulting in the 3′-poly-(A) tail becoming located close to a position of pore formation during conversion of the virion into a subviral particle. This directional genome release may be common to many icosahedral non-enveloped single-stranded RNA viruses. Viral infection requires safe transfer of the viral genome from within the protective protein shell into the host cell's cytosol. For many viruses this happens after uptake into endosomes, where receptor-binding and/or the acidic pH trigger conformational modifications or disassembly of the shell, allowing the nucleic acids to escape. For example, common cold viruses are converted into subviral particles still containing the single-stranded positive sense RNA genome; subsequently, the RNA escapes into the cytoplasm, leaving behind empty capsids. We triggered this process by heating HRV2 to 56°C and found that 3′- and 5′-end emerged with different kinetics. Crosslinking prevented complete RNA egress and upon nuclease digestion only sequences derived from the 5′-end were protected. Part of the RNA remaining within the viral shell adopted a rod-like shape pointing towards one of the two-fold axes where the RNA is presumed to exit in single-stranded form. Egress thus commences with the poly-(A) tail and not with the genome-linked peptide VPg. This suggests that assembly and uncoating are well-coordinated to avoid tangling, kinetic traps, and/or simultaneous exit of the two RNA ends at different sites.
Collapse
Affiliation(s)
- Shushan Harutyunyan
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Mohit Kumar
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Arthur Sedivy
- Max F. Perutz Laboratories, Department of Structural Biology, University of Vienna, Vienna, Austria
| | - Xavier Subirats
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Heinrich Kowalski
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Gottfried Köhler
- Max F. Perutz Laboratories, Department of Structural Biology, University of Vienna, Vienna, Austria
| | - Dieter Blaas
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
4
|
White JL, Dawson WO. Effect of cordycepin triphosphate on in vitro RNA synthesis by plant viral replicases. J Virol 2010; 29:811-4. [PMID: 16789174 PMCID: PMC353220 DOI: 10.1128/jvi.29.2.811-814.1979] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro RNA synthesis by tobacco mosaic virus and cowpea chlorotic mottle virus replicase were inhibited by cordycepin triphosphate. Inhibition could be overcome with higher concentrations of ATP in assay mixtures but not with UTP. Products synthesized in vitro by tobacco mosaic virus RNA replicase in the presence of inhibitor revealed replicative form but not replicative intermediate RNAs. These results suggest that cordycepin triphosphate competes specifically with ATP and results in premature termination of viral RNA synthesis in vitro.
Collapse
Affiliation(s)
- J L White
- Department of Plant Pathology, University of California, Riverside, California 92521
| | | |
Collapse
|
5
|
Insight into poliovirus genome replication and encapsidation obtained from studies of 3B-3C cleavage site mutants. J Virol 2009; 83:9370-87. [PMID: 19587035 DOI: 10.1128/jvi.02076-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A poliovirus (PV) mutant (termed GG), which is incapable of producing 3AB, VPg, and 3CD proteins due to a defective cleavage site between the 3B and 3C proteins, replicated, producing 3BC-linked RNA rather than the VPg-linked RNA produced by the wild type (WT). GG PV RNA is quasi-infectious. The yield of infectious GG PV relative to replicated RNA is reduced by almost 5 logs relative to that of WT PV. Proteolytic activity required for polyprotein processing is normal for the GG mutant. 3BC-linked RNA can be encapsidated as efficiently as VPg-linked RNA. However, a step after genome replication but preceding virus assembly that is dependent on 3CD and/or 3AB proteins limits production of infectious GG PV. This step may involve release of replicated genomes from replication complexes. A pseudorevertant (termed EG) partially restored cleavage at the 3B-3C cleavage site. The reduced rate of formation of 3AB and 3CD caused corresponding reductions in the observed rate of genome replication and infectious virus production by EG PV without impacting the final yield of replicated RNA or infectious virus relative to that of WT PV. Using EG PV, we showed that genome replication and encapsidation were distinct steps in the multiplication cycle. Ectopic expression of 3CD protein reversed the genome replication phenotype without alleviating the infectious-virus production phenotype. This is the first report of a trans-complementable function for 3CD for any picornavirus. This observation supports an interaction between 3CD protein and viral and/or host factors that is critical for genome replication, perhaps formation of replication complexes.
Collapse
|
6
|
Stanway G, Hughes PJ, Mountford RC, Minor PD, Almond JW. The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucleic Acids Res 1984; 12:7859-75. [PMID: 6093056 PMCID: PMC320205 DOI: 10.1093/nar/12.20.7859] [Citation(s) in RCA: 210] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The complete nucleotide sequence of the single-stranded RNA genome of human rhinovirus 14, one of the causative agents of the common cold, has been determined from cDNA cloned in E. coli. The genome is typical of the picornaviridae family, comprising a 5' non-coding region of 624 nucleotides, a long open reading frame of 6537 nucleotides (90.8% of the genome) and a 3' non-coding region of 47 nucleotides. Comparison of the nucleotide sequence and the predicted amino acid sequence with those of the polioviruses reveals a surprising degree of homology which may allow recognition of regions of antigenic importance and prediction of the virus polyprotein cleavage sites. The results presented here imply a closer genetic relationship between the rhinovirus and enterovirus genera than previously suspected.
Collapse
|
7
|
Littauer UZ, Soreq H. The regulatory function of poly(A) and adjacent 3' sequences in translated RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1982; 27:53-83. [PMID: 7048421 DOI: 10.1016/s0079-6603(08)60597-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
|
9
|
|
10
|
Ahlquist P, Kaesberg P. Determination of the length distribution of poly(A) at the 3' terminus of the virion RNAs of EMC virus, poliovirus, rhinovirus, RAV-61 and CPMV and of mouse globin mRNA. Nucleic Acids Res 1979; 7:1195-204. [PMID: 229465 PMCID: PMC342296 DOI: 10.1093/nar/7.5.1195] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rapid, detailed, and accurate analysis of the length spectrum of 3' terminal poly(A) in an RNA population can be obtained by 3'-terminal 32P-labelling of RNA with T4 RNA ligase, digestion with ribonucleases T1 and A, and use of gel sequencing methods. Length distributions of 3'-terminal poly(A) of EMC virus, poliovirus, rhinovirus, RAV-61, and CPMV virion RNAs as well as mouse globin mRNA are presented.
Collapse
|
11
|
Suhadolnik RJ. Naturally occurring nucleoside and nucleotide antibiotics. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1979; 22:193-291. [PMID: 230535 DOI: 10.1016/s0079-6603(08)60801-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
White JL. Effects of 3'-deoxyadenosine triphosphate on in vitro RNA synthesis of plant RNA-dependent RNA polymerases. Biochem Biophys Res Commun 1978; 83:1099-104. [PMID: 708429 DOI: 10.1016/0006-291x(78)91508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Carlin RK. The poly(A) segment of mRNA: (1) Evolution and function and (2) The evolution of viruses. J Theor Biol 1978; 71:323-38. [PMID: 642533 DOI: 10.1016/0022-5193(78)90163-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Lee PW, Paucha E, Colter JS. Identification and partial characterization of a new (50 S) subviral particle in Mengo virus-infected L cells. Virology 1978; 85:286-95. [PMID: 206009 DOI: 10.1016/0042-6822(78)90432-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Panicali DL, Nair CN. Effect of cordycepin triphosphate on in vitro RNA synthesis by picornavirus polymerase complexes. J Virol 1978; 25:124-8. [PMID: 202731 PMCID: PMC353908 DOI: 10.1128/jvi.25.1.124-128.1978] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cordycepin triphosphate inhibited in vitro [3H]GMP incorporation by pricornavirus-specific polymerase complexes isolated from infected HeLa cells. The inhibition of [3H]GMP incorporation could be reversed with ATP added to the reaction mixture along with the inhibitor, but not with GTP so added or with ATP added 10 min after the inhibitor. Products synthesized in vitro in the presence of cordycepin triphosphate lacked full-length single-stranded viral RNA. These results support RNA chain termination by specific competition with ATP as the mechanism of inhibition of picornavirus-specific RNA synthesis by cordycepin triphosphate.
Collapse
|
16
|
Wittek R, Koblet H, Menna A, Wyler R. The effect of cordycepin on the multiplication of Semliki Forest virus and on polyadenylation of viral RNA. Arch Virol 1977; 54:95-106. [PMID: 302113 DOI: 10.1007/bf01314382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cordycepin (3'-deoxyadenosine), at a concentration of 20 microgram/ml, has a marked effect on Semliki Forest virus multiplication. The appearance of plaque forming units is delayed by about 2 hours and the yield greatly reduced. The incorporation of [3H] uridine into intracellular viral RNAs reaches less than 50 per cent of controls. However, no specific effect on poly (A) synthesis could be detected. The binding efficiency of viral RNAs on nitrocellulose membranes and poly (U) sepharose is not affected by cordycepin. The average poly (A) length of total intracellular viral RNA was calculated on the basis of the ratio of the radioactivity of adenosine-monophosphate: adenosine and found to be about 35 nucleotides in treated and untreated cells.
Collapse
|