1
|
Savva R. The Essential Co-Option of Uracil-DNA Glycosylases by Herpesviruses Invites Novel Antiviral Design. Microorganisms 2020; 8:microorganisms8030461. [PMID: 32214054 PMCID: PMC7143999 DOI: 10.3390/microorganisms8030461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/10/2023] Open
Abstract
Vast evolutionary distances separate the known herpesviruses, adapted to colonise specialised cells in predominantly vertebrate hosts. Nevertheless, the distinct herpesvirus families share recognisably related genomic attributes. The taxonomic Family Herpesviridae includes many important human and animal pathogens. Successful antiviral drugs targeting Herpesviridae are available, but the need for reduced toxicity and improved efficacy in critical healthcare interventions invites novel solutions: immunocompromised patients presenting particular challenges. A conserved enzyme required for viral fitness is Ung, a uracil-DNA glycosylase, which is encoded ubiquitously in Herpesviridae genomes and also host cells. Research investigating Ung in Herpesviridae dynamics has uncovered an unexpected combination of viral co-option of host Ung, along with remarkable Subfamily-specific exaptation of the virus-encoded Ung. These enzymes apparently play essential roles, both in the maintenance of viral latency and during initiation of lytic replication. The ubiquitously conserved Ung active site has previously been explored as a therapeutic target. However, exquisite selectivity and better drug-like characteristics might instead be obtained via targeting structural variations within another motif of catalytic importance in Ung. The motif structure is unique within each Subfamily and essential for viral survival. This unique signature in highly conserved Ung constitutes an attractive exploratory target for the development of novel beneficial therapeutics.
Collapse
Affiliation(s)
- Renos Savva
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
2
|
Weigele P, Raleigh EA. Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chem Rev 2016; 116:12655-12687. [PMID: 27319741 DOI: 10.1021/acs.chemrev.6b00114] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Naturally occurring modification of the canonical A, G, C, and T bases can be found in the DNA of cellular organisms and viruses from all domains of life. Bacterial viruses (bacteriophages) are a particularly rich but still underexploited source of such modified variant nucleotides. The modifications conserve the coding and base-pairing functions of DNA, but add regulatory and protective functions. In prokaryotes, modified bases appear primarily to be part of an arms race between bacteriophages (and other genomic parasites) and their hosts, although, as in eukaryotes, some modifications have been adapted to convey epigenetic information. The first half of this review catalogs the identification and diversity of DNA modifications found in bacteria and bacteriophages. What is known about the biogenesis, context, and function of these modifications are also described. The second part of the review places these DNA modifications in the context of the arms race between bacteria and bacteriophages. It focuses particularly on the defense and counter-defense strategies that turn on direct recognition of the presence of a modified base. Where modification has been shown to affect other DNA transactions, such as expression and chromosome segregation, that is summarized, with reference to recent reviews.
Collapse
Affiliation(s)
- Peter Weigele
- Chemical Biology, New England Biolabs , Ipswich, Massachusetts 01938, United States
| | | |
Collapse
|
3
|
Cole AR, Ofer S, Ryzhenkova K, Baltulionis G, Hornyak P, Savva R. Architecturally diverse proteins converge on an analogous mechanism to inactivate Uracil-DNA glycosylase. Nucleic Acids Res 2013; 41:8760-75. [PMID: 23892286 PMCID: PMC3794593 DOI: 10.1093/nar/gkt633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Uracil-DNA glycosylase (UDG) compromises the replication strategies of diverse viruses from unrelated lineages. Virally encoded proteins therefore exist to limit, inhibit or target UDG activity for proteolysis. Viral proteins targeting UDG, such as the bacteriophage proteins ugi, and p56, and the HIV-1 protein Vpr, share no sequence similarity, and are not structurally homologous. Such diversity has hindered identification of known or expected UDG-inhibitory activities in other genomes. The structural basis for UDG inhibition by ugi is well characterized; yet, paradoxically, the structure of the unbound p56 protein is enigmatically unrevealing of its mechanism. To resolve this conundrum, we determined the structure of a p56 dimer bound to UDG. A helix from one of the subunits of p56 occupies the UDG DNA-binding cleft, whereas the dimer interface forms a hydrophobic box to trap a mechanistically important UDG residue. Surprisingly, these p56 inhibitory elements are unexpectedly analogous to features used by ugi despite profound architectural disparity. Contacts from B-DNA to UDG are mimicked by residues of the p56 helix, echoing the role of ugi's inhibitory beta strand. Using mutagenesis, we propose that DNA mimicry by p56 is a targeting and specificity mechanism supporting tight inhibition via hydrophobic sequestration.
Collapse
Affiliation(s)
- Ambrose R Cole
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK and Research Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
4
|
Uracil-containing DNA in Drosophila: stability, stage-specific accumulation, and developmental involvement. PLoS Genet 2012; 8:e1002738. [PMID: 22685418 PMCID: PMC3369950 DOI: 10.1371/journal.pgen.1002738] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 04/13/2012] [Indexed: 11/26/2022] Open
Abstract
Base-excision repair and control of nucleotide pools safe-guard against permanent uracil accumulation in DNA relying on two key enzymes: uracil–DNA glycosylase and dUTPase. Lack of the major uracil–DNA glycosylase UNG gene from the fruit fly genome and dUTPase from fruit fly larvae prompted the hypotheses that i) uracil may accumulate in Drosophila genomic DNA where it may be well tolerated, and ii) this accumulation may affect development. Here we show that i) Drosophila melanogaster tolerates high levels of uracil in DNA; ii) such DNA is correctly interpreted in cell culture and embryo; and iii) under physiological spatio-temporal control, DNA from fruit fly larvae, pupae, and imago contain greatly elevated levels of uracil (200–2,000 uracil/million bases, quantified using a novel real-time PCR–based assay). Uracil is accumulated in genomic DNA of larval tissues during larval development, whereas DNA from imaginal tissues contains much less uracil. Upon pupation and metamorphosis, uracil content in DNA is significantly decreased. We propose that the observed developmental pattern of uracil–DNA is due to the lack of the key repair enzyme UNG from the Drosophila genome together with down-regulation of dUTPase in larval tissues. In agreement, we show that dUTPase silencing increases the uracil content in DNA of imaginal tissues and induces strong lethality at the early pupal stages, indicating that tolerance of highly uracil-substituted DNA is also stage-specific. Silencing of dUTPase perturbs the physiological pattern of uracil–DNA accumulation in Drosophila and leads to a strongly lethal phenotype in early pupal stages. These findings suggest a novel role of uracil-containing DNA in Drosophila development and metamorphosis and present a novel example for developmental effects of dUTPase silencing in multicellular eukaryotes. Importantly, we also show lack of the UNG gene in all available genomes of other Holometabola insects, indicating a potentially general tolerance and developmental role of uracil–DNA in this evolutionary clade. The usual paradigm confines “normal” DNA of living cells to a well-defined restricted chemical space populated with only four bases (adenine, thymine, guanine, and cytosine) and some of their methylated derivatives (e.g. 5′-methyl-cytosine). Uracil is not considered to be a “normal” DNA base, except in several bacteriophages. On the contrary, uracil is generally considered to be an error in DNA. We show that Drosophila cells interpret uracil-substituted DNA as normal DNA, due to lack of two repair enzymes. Importantly, this unusual trait is under developmental control and applies only for animals before pupation. Metamorphosis is drastically perturbed by silencing of dUTPase, responsible for keeping uracil out of DNA. Our results argue that in Drosophila, and perhaps in other Holometabola insects as well, uracil–DNA plays a dedicated physiological role.
Collapse
|
5
|
Vértessy BG, Tóth J. Keeping uracil out of DNA: physiological role, structure and catalytic mechanism of dUTPases. Acc Chem Res 2009; 42:97-106. [PMID: 18837522 DOI: 10.1021/ar800114w] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The thymine-uracil exchange constitutes one of the major chemical differences between DNA and RNA. Although these two bases form the same Watson-Crick base pairs with adenine and are equivalent for both information storage and transmission, uracil incorporation in DNA is usually a mistake that needs to be excised. There are two ways for uracil to appear in DNA: thymine replacement and cytosine deamination. Most DNA polymerases readily incorporate dUMP as well as dTMP depending solely on the availability of the d(U/T)TP building block nucleotides. Cytosine deamination results in mutagenic U:G mismatches that must be excised. The repair system, however, also excises U from U:A "normal" pairs. It is therefore crucial to limit thymine-replacing uracils.dUTP is constantly produced in the pyrimidine biosynthesis network. To prevent uracil incorporation into DNA, representatives of the dUTP nucleotidohydrolase (dUTPase) enzyme family eliminate excess dUTP. This Account describes recent studies that have provided important detailed insights into the structure and function of these essential enzymes.dUTPases typically possess exquisite specificity and display an intriguing homotrimer active site architecture. Conserved residues from all three monomers contribute to each of the three active sites within the dUTPase. Although even dUTPases from evolutionarily distant species possess similar structural and functional traits, in a few cases, a monomer dUTPase mimics the trimer structure through an unusual folding pattern. Catalysis proceeds by way of an SN2 mechanism; a water molecule initiates in-line nucleophilic attack. The dUTPase binding pocket is highly specific for uracil. Phosphate chain coordination involves Mg2+ and is analogous to that of DNA polymerases. Because of conformational changes in the enzyme during catalysis, most crystal structures have not resolved the residues in the C-terminus. However, recent high-resolution structures are beginning to provide in-depth structural information about this region of the protein.The dUTPase family of enzymes also shows promise as novel targets for anticancer and antimicrobial therapies. dUTPase is upregulated in human tumor cells. In addition, dUTPase inhibitors could also fight infectious diseases such as malaria and tuberculosis. In these respective pathogens, Plasmodium falciparum and Mycobacterium tuberculosis, the biosynthesis of dTMP relies exclusively on dUTPase activity.
Collapse
Affiliation(s)
- Beáta G Vértessy
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Judit Tóth
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
6
|
Kiljunen S, Hakala K, Pinta E, Huttunen S, Pluta P, Gador A, Lönnberg H, Skurnik M. Yersiniophage phiR1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine. MICROBIOLOGY-SGM 2006; 151:4093-4102. [PMID: 16339954 DOI: 10.1099/mic.0.28265-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteriophage piR1-37 was isolated based on its ability to infect strain YeO3-R1, a virulence-plasmid-cured O antigen-negative derivative of Yersinia enterocolitica serotype O : 3. In this study, the phage receptor was found to be a structure in the outer core hexasaccharide of Y. enterocolitica O : 3 LPS. The phage receptor was present in the outer core of strains of many other Y. enterocolitica serotypes, but also in some Yersinia intermedia strains. Surprisingly, the receptor structure resided in the O antigen of Yersinia pseudotuberculosis O : 9. Electron microscopy demonstrated that phiR1-37 particles have an icosahedral head of 88 nm, a short neck of 10 nm, a long contractile tail of 236 nm, and tail fibres of at least 86 nm. This implies that the phage belongs to the order Caudovirales and the family Myoviridae in the ICTV (International Committee for Taxonomy of Viruses) classification. phiR1-37 was found to have a lytic life cycle, with eclipse and latent periods of 40 and 50 min, respectively, and a burst size of approximately 80 p.f.u. per infected cell. Restriction digestions and PFGE showed that the phiR1-37 genome was dsDNA and approximately 270 kb in size. Enzymically hydrolysed DNA was subjected to HPLC-MS/MS analysis, which demonstrated that the phiR1-37 genome is composed of DNA in which thymidine (T) is >99 % replaced by deoxyuridine (dU). The only organisms known to have similar DNA are the Bacillus subtilis-specific bacteriophages PBS1 and PBS2. N-terminal amino acid sequences of four major structural proteins did not show any similarity to (viral) protein sequences in databases, indicating that close relatives of phiR1-37 have not yet been characterized. Genes for two of the structural proteins, p24 and p46, were identified from the partially sequenced phiR1-37 genome.
Collapse
Affiliation(s)
- Saija Kiljunen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital Laboratory, Helsinki, Finland
- Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kristo Hakala
- Department of Pharmacology and Clinical Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Elise Pinta
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital Laboratory, Helsinki, Finland
- Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Suvi Huttunen
- Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Patrycja Pluta
- Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Aneta Gador
- Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Harri Lönnberg
- Department of Chemistry, University of Turku, Turku, Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital Laboratory, Helsinki, Finland
- Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
7
|
Radany EH, Malanoski G, Ambulos NP, Friedberg EC, Yasbin RE. Transfection enhancement in Bacillus subtilis displays features of a novel DNA repair pathway. I: DNA base and nucleolytic specificity. Mutat Res 1997; 384:107-20. [PMID: 9298119 DOI: 10.1016/s0921-8777(97)00019-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cells of Bacillus subtilis can enter a natural physiological state, termed competence, that is permissive for uptake of DNA from the surrounding medium. In the B. subtilis genetic system, transfection refers to uptake of isolated bacteriophage DNA by competent host cells, followed by intracellular processing that may ultimately lead to productive infection. Previous investigations have shown that transfecting DNA is usually far less infectious (on a molar basis) than is the DNA injected by phage particles; this result is apparently due to inactivating events suffered by transfecting DNA during its metabolism by competent cells. Earlier studies also demonstrated that, in some cases, the infectivity of transfecting DNA can be increased by ultraviolet (UV) irradiation of the competent cells prior to transfection, or by cotransfection of UV-irradiated heterologous DNAs; collectively, these phenomena have been termed transfection enhancement (TE). We propose here that some transfecting B. subtilis phage DNAs are attacked by a novel host DNA repair system, and that TE reflects inhibition of this by a competing substrate in UV-irradiated DNA. In support of this model, we show that UV-DNA cotransfection leads to a reduced rate of intracellular endonucleolytic breakdown of transfecting DNA. We also demonstrate that TE displays marked specificity of a kind frequently observed for repair enzymes. Thus, phages that contain hydroxymethyl uracil (HMU), but not thymine, in their genomes are susceptible to this process. In addition, we show that the photoproduct(s) in UV-irradiated DNA that produces TE by cotransfection is specific, and is not uracil, a pyrimidine dimer, thymine glycol, HMU, or a substrate for the E. coli thymine glycol DNA N-glycosylase. This photoproduct is derivable from thymine or HMU. The implications of these results are discussed.
Collapse
Affiliation(s)
- E H Radany
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor 48109-0582, USA.
| | | | | | | | | |
Collapse
|
8
|
Tomilin NV, Aprelikova ON. Uracil-DNA glycosylases and DNA uracil repair. INTERNATIONAL REVIEW OF CYTOLOGY 1989; 114:125-79. [PMID: 2500405 DOI: 10.1016/s0074-7696(08)60860-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- N V Tomilin
- Laboratory of Chromosome Stability, Academy of Sciences of the Union of Soviet Socialist Republics, Leningrad
| | | |
Collapse
|
9
|
Duncan BK. Isolation of insertion, deletion, and nonsense mutations of the uracil-DNA glycosylase (ung) gene of Escherichia coli K-12. J Bacteriol 1985; 164:689-95. [PMID: 2997126 PMCID: PMC214307 DOI: 10.1128/jb.164.2.689-695.1985] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two uracil-DNA glycosylase (ung) mutation selection procedures based upon the ability of uracil glycosylase to degrade the chromosomes of organisms containing uracil-DNA were devised to obtain a collection of well-defined ung alleles. In an enrichment procedure, lysogens were selected from Escherichia coli cultures infected with lambda pKanr phage containing uracil in their DNA. (These uracil-DNA phage were prepared by growth on host cells deficient in both dUTPase and uracil-DNA glycosylase.) The lysogenic Kanr population was enriched for uracil glycosylase-deficient mutants by a factor of 10(4). In a phage suicide selection procedure, lambda pung+ phage were unable to form plaques on dut ung cells containing uracil-DNA in their chromosomes, and all of the progeny were lambda pung-. Deletion, insertion (ung::Mu and ung::Tn10), nonsense, and missense mutants were isolated by using these procedures. Extracts of three insertion mutants contained no detectable enzyme activity. All of the other mutant isolates had less than 1% of the normal uracil glycosylase specific activity. The previously studied ung-1 allele, which was derived by N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, produced about 0.02% of the normal amount of uracil glycosylase activity. No significant phenotypic differences between ung-1 and ung::Tn10 alleles were observed. Variations of the lysogen selection procedure may be helpful for isolating other DNA glycosylase mutations in E. coli and other organisms.
Collapse
|
10
|
Swart WJ, Warner HR. Isolation and partial characterization of a bacteriophage T5 mutant unable to induce thymidylate synthetase and its use in studying the effect of uracil incorporation into DNA on early gene expression. J Virol 1985; 54:86-91. [PMID: 3973984 PMCID: PMC254764 DOI: 10.1128/jvi.54.1.86-91.1985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A mutant of phage T5 which is unable to induce thymidylate synthetase was isolated. T5 thy mutants synthesized less DNA than did wild-type T5, and the burst size of progeny phage was correspondingly reduced two- to threefold in thy+ Escherichia coli. No DNA or progeny phage were made in E. coli thy hosts grown in the absence of exogenous thymine. When the T5 thy mutation was recombined with a T5 dut mutation (unable to induce dUTPase), replication resulted in progeny which contained significant amounts of uracil in their DNA, and these phage failed to produce plaques unless the plating host was deficient in uracil-DNA glycosylase. T5 phage containing various amounts of uracil in their DNA were prepared and used to determine the effect of uracil on the induction of the early enzyme dTMP kinase. The presence of uracil in the parental DNA increased the rate of induction of this enzyme by about 2.5-fold. The T5 thy gene was mapped and is located near the T5 frd gene on the B region of the T5 genome.
Collapse
|
11
|
Karran P, Cone R, Friedberg EC. Specificity of the bacteriophage PBS2 induced inhibitor of uracil-DNA glycosylase. Biochemistry 1981; 20:6092-6. [PMID: 6796110 DOI: 10.1021/bi00524a027] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The purified PBS2 phage-coded inhibitor of uracil-DNA glycosylase (Ura-DNA glycosylase) from Bacillus subtilis has been tested for its ability to inhibit this enzyme isolated from other prokaryotic and from eukaryotic sources. In addition, the inhibitor has been assayed for its effect on DNA glycosylases specific for other base residues in DNA. The data indicate that Ura-DNA glycosylases from a variety of sources are equally sensitive to inhibition by the inhibitor. DNA glycosylases specific for base residues in DNA other than uracil are not inhibited by the PBS2-coded inhibitor.
Collapse
|
12
|
Inhibitor of uracil-DNA glycosylase induced by bacteriophage PBS2. Purification and preliminary characterization. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)70472-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Abstract
Repair of some DNA photoproducts can be mediated by glycosylic bond hydrolysis. Thus, Escherichia coli endonuclease III releases 5,6-hydrated thymines as free bases, while T4 UV endonuclease releases one of two glycosylic bonds holding pyrimidine dimers in DNA. In contrast, uninfected E. coli apparently does not excise pyrimidine dimers via a DNA glycosylase.
Collapse
|
14
|
Warner HR, Johnson LK, Snustad DP. Early events after infection of Escherichia coli by bacteriophage T5. III. Inhibition of uracil-DNA glycosylase activity. J Virol 1980; 33:535-8. [PMID: 6245250 PMCID: PMC288568 DOI: 10.1128/jvi.33.1.535-538.1980] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The activity of uracil-DNA glycosylase in Escherichia coli decreases dramatically to less than 10% of its original level after infection of the cells by phage T5. Phage-induced protein synthesis is required for this inhibition to occur, and the inhibition is induced by a mutant capable of injecting only the first 8% of its DNA. The inhibitor activity in extracts of infected cells is heat labile and nondialyzable, and will inhibit enzyme activity present in extracts of uninfected cells.
Collapse
|
15
|
Lindahl T. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1979; 22:135-92. [PMID: 392601 DOI: 10.1016/s0079-6603(08)60800-4] [Citation(s) in RCA: 378] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Duncan BK, Rockstroh PA, Warner HR. Escherichia coli K-12 mutants deficient in uracil-DNA glycosylase. J Bacteriol 1978; 134:1039-45. [PMID: 350837 PMCID: PMC222353 DOI: 10.1128/jb.134.3.1039-1045.1978] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A new assay specific for uracil-DNA glycosylase is described, Escherichia coli mutants partially and totally deficient in uracil-DNA glycosylase activity have been isolated by using this assay in mass-screening procedures. These have been designated ung mutants. The ung gene maps between tyrA and nadB on the E. coli chromosome. T4 phage containing uracil in their DNA grow on the most glycosylase-deficient hosts but are unable to grow on wild-type bacteria. This provides a simple spot test for the ung genotype. The ung mutants show slightly higher rates of spontaneous mutation to antibiotic resistance. Taken together, these results suggest a central role for uracil-DNA glycosylase in the initiation of an excision repair pathway for the exclusion of uracil from DNA.
Collapse
|
17
|
Da Roza R, Friedberg EC, Duncan BK, Warner HR. Repair of nitrous acid damage to DNA in Escherichia coli. Biochemistry 1977; 16:4934-9. [PMID: 334252 DOI: 10.1021/bi00641a030] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A number of mutant strains of Escherichia coli have been examined for their sensitivity to nitrous acid and in some instances to methylmethanesulfonate. All ung- mutants tested are abnormally sensitive to nitrous acid. Since the ung mutation is phenotypically expressed as a defect in uracil DNA glycosidase, this observation supports the contention that treatment of cells with nitrous acid causes deamination of cytosine to uracil. In addition the observed sentitivity indicates that the ung gene is involved in the repair of uracil in DNA. Studies with other mutants suggest that both exonuclease III and DNA polymerase I of E. coli are involved in the repair of nitrous acid damage in vivo.
Collapse
|