1
|
Molouki A, Peeters B. Rescue of recombinant Newcastle disease virus: a short history of how it all started. Arch Virol 2017; 162:1845-1854. [PMID: 28316014 DOI: 10.1007/s00705-017-3308-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/16/2017] [Indexed: 01/24/2023]
Abstract
Reverse genetics of viruses has come a long way, and many recombinant viruses have been generated since the first successful "rescues" were reported in the late 1970s. Recombinant Newcastle disease virus (rNDV), a non-segmented negative-sense RNA virus (NSNSV), was first rescued in 1999 using a reverse genetics approach similar to that reported for other recombinant viruses of the order Mononegavirales a few years before. The route from an original NDV isolate to the generation of its recombinant counterpart requires many steps that have to be sequentially and carefully completed. Background knowledge of each of these steps is essential because it allows one to make the best choices for fulfilling the specific requirements of the final recombinant virus. We have previously reviewed the latest strategies in cloning the NDV full-length cDNA into transcription vectors and the use of different RNA polymerase systems for the generation of viral RNA from plasmid DNA. In this article, we review a number of discoveries on the mechanism of transcription and replication of NDV, including a brief history behind the discovery of its RNP complex. This includes the generation of artificial and functional RNP constructs, in combination with the smart use of available knowledge and technologies that ultimately resulted in rescue of the first rNDV.
Collapse
Affiliation(s)
- Aidin Molouki
- Department of Avian Disease Research and Diagnostic, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Ben Peeters
- Department of Virology, Wageningen Bioveterinary Research, PO Box 65, 8200 AB, Lelystad, The Netherlands
| |
Collapse
|
2
|
Dietzgen RG, Kondo H, Goodin MM, Kurath G, Vasilakis N. The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res 2017; 227:158-170. [PMID: 27773769 PMCID: PMC5124403 DOI: 10.1016/j.virusres.2016.10.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/24/2022]
Abstract
The family Rhabdoviridae consists of mostly enveloped, bullet-shaped or bacilliform viruses with a negative-sense, single-stranded RNA genome that infect vertebrates, invertebrates or plants. This ecological diversity is reflected by the diversity and complexity of their genomes. Five canonical structural protein genes are conserved in all rhabdoviruses, but may be overprinted, overlapped or interspersed with several novel and diverse accessory genes. This review gives an overview of the characteristics and diversity of rhabdoviruses, their taxonomic classification, replication mechanism, properties of classical rhabdoviruses such as rabies virus and rhabdoviruses with complex genomes, rhabdoviruses infecting aquatic species, and plant rhabdoviruses with both mono- and bipartite genomes.
Collapse
Affiliation(s)
- Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Centre, Seattle, WA, USA
| | - Nikos Vasilakis
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
3
|
Mire CE, Whitt MA. The protease-sensitive loop of the vesicular stomatitis virus matrix protein is involved in virus assembly and protein translation. Virology 2011; 416:16-25. [PMID: 21596416 DOI: 10.1016/j.virol.2011.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 02/24/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
To study the contribution of the protease-sensitive loop of the VSV M protein in virus assembly we recovered recombinant VSV (rVSV) with mutations in this region and examined virus replication. Mutations in the highly conserved LXD motif (aa 123-125) resulted in reduced virion budding, reduced virus titers and enhanced M protein exchange with M-ribonucleocapsid complexes (M-RNPs), suggesting that the mutant M proteins were less tightly associated with RNP skeletons. In addition, viral protein synthesis began to decrease at 4h post-infection (hpi) and was reduced by ~80% at 8 hpi for the mutant rVSV-D125A. The reduced protein synthesis was not due to decreased VSV replication or transcription; however, translation of a reporter gene with an EMCV IRES was not reduced, suggesting that cap-dependent, but not cap-independent translation initiation was affected in rVSV-D125A infected cells. These results indicate that the LXD motif is involved in both virus assembly and VSV protein translation.
Collapse
Affiliation(s)
- Chad E Mire
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|
4
|
Finke S, Conzelmann KK. Dissociation of rabies virus matrix protein functions in regulation of viral RNA synthesis and virus assembly. J Virol 2003; 77:12074-82. [PMID: 14581544 PMCID: PMC254266 DOI: 10.1128/jvi.77.22.12074-12082.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recently, we have shown that the rabies virus (RV) matrix (M) protein regulates the balance of virus RNA synthesis by shifting synthesis activity from transcription to replication (S. Finke, R. Mueller-Waldeck, and K. K. Conzelmann, J. Gen. Virol. 84:1613-1621, 2003). Here we describe the identification of an M residue critical for regulation of RV RNA synthesis. By analyzing the phenotype of heterotypic RV M proteins with respect to RNA synthesis of RV SAD L16, we identified the M proteins of the RV ERA and PV strains as deficient. Comparison of M sequences suggested that a single residue, arginine 58, was critical. A recombinant virus having this amino acid exchanged with a glycine, SAD M(R58G), has lost the abilities to downregulate RV transcription and to stimulate replication. This resulted in an increase in the transcription rate of more than 15-fold, as previously observed for M deletion mutants. Most importantly, the efficiencies of virus assembly and budding were equal for wild-type M and M(R58G), as determined in assays studying the transient complementation of an M- and G-deficient RV construct, NPgrL. In addition, virus particle density, protein composition, and specific infectivity of SAD L16 and SAD M(R58G) viruses were identical. Thus, we have identified mutations that affect the function of M only in regulation of RNA synthesis, but not in assembly and budding, providing evidence that these functions are genetically separable.
Collapse
Affiliation(s)
- Stefan Finke
- Max von Pettenkofer Institute and Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | | |
Collapse
|
5
|
Gaudier M, Gaudin Y, Knossow M. Cleavage of vesicular stomatitis virus matrix protein prevents self-association and leads to crystallization. Virology 2001; 288:308-14. [PMID: 11601902 DOI: 10.1006/viro.2001.1062] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The matrix protein (M) of vesicular stomatitis virus is responsible for the budding of newly formed virions out of host cells. In vitro, it has been shown to self-associate, a property that may be related to the role of M in virus assembly but also prevents crystallization. Using limited proteolysis by thermolysin, we have isolated and characterized two soluble fragments of the protein that remain noncovalently associated. The digestion product does not self-associate nor is it recruited in aggregates formed by intact M molecules. These results identify a peptide, located at the surface of the protein and disorganized by thermolysin cleavage, responsible for M self-association. The thermolysin-resistant core of M has been crystallized and the crystals diffract to 2-A resolution.
Collapse
Affiliation(s)
- M Gaudier
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91198 Gif sur Yvette Cedex, France
| | | | | |
Collapse
|
6
|
Ball LA, Pringle CR, Flanagan B, Perepelitsa VP, Wertz GW. Phenotypic consequences of rearranging the P, M, and G genes of vesicular stomatitis virus. J Virol 1999; 73:4705-12. [PMID: 10233930 PMCID: PMC112512 DOI: 10.1128/jvi.73.6.4705-4712.1999] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/1999] [Accepted: 03/09/1999] [Indexed: 12/16/2022] Open
Abstract
The nonsegmented negative-strand RNA viruses (order Mononegavirales) include many important human pathogens. The order of their genes, which is highly conserved, is the major determinant of the relative levels of gene expression, since genes that are close to the single promoter site at the 3' end of the viral genome are transcribed at higher levels than those that occupy more distal positions. We manipulated an infectious cDNA clone of the prototypic vesicular stomatitis virus (VSV) to rearrange three of the five viral genes, using an approach which left the viral nucleotide sequence otherwise unaltered. The central three genes in the gene order, which encode the phosphoprotein P, the matrix protein M, and the glycoprotein G, were rearranged into all six possible orders. Viable viruses were recovered from each of the rearranged cDNAs. The recovered viruses were examined for their levels of gene expression, growth potential in cell culture, and virulence in mice. Gene rearrangement changed the expression levels of the encoded proteins in concordance with their distance from the 3' promoter. Some of the viruses with rearranged genomes replicated as well or slightly better than wild-type virus in cultured cells, while others showed decreased replication. All of the viruses were lethal for mice, although the time to symptoms and death following inoculation varied. These data show that despite the highly conserved gene order of the Mononegavirales, gene rearrangement is not lethal or necessarily even detrimental to the virus. These findings suggest that the conservation of the gene order observed among the Mononegavirales may result from immobilization of the ancestral gene order due to the lack of a mechanism for homologous recombination in this group of viruses. As a consequence, gene rearrangement should be irreversible and provide an approach for constructing viruses with novel phenotypes.
Collapse
Affiliation(s)
- L A Ball
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
7
|
Ito Y, Nishizono A, Mannen K, Hiramatsu K, Mifune K. Rabies virus M protein expressed in Escherichia coli and its regulatory role in virion-associated transcriptase activity. Arch Virol 1996; 141:671-83. [PMID: 8645103 DOI: 10.1007/bf01718325] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rabies virus M protein was expressed in Escherichia coli in the form of a fusion protein with maltose binding protein (MBP) and purified by amylose affinity column chromatography after extraction. In order to investigate the possible regulatory role of M protein in viral transcription, an assay system for rabies virion-associated transcriptase activity was established by using the ribonucleoprotein (RNP) cores prepared from purified virions. Analysis of the products of the transcription assay system showed that the products are sensitive to RNase and are positive-strand RNA. Addition of the fusion protein to the system after cleavage with a proteinase Factor Xa (FXa), which cleaves the fusion protein into the M protein and MBP, resulted in an efficient and dose-dependent inhibition of the transcription. Furthermore, addition to the system of anti-M protein monoclonal antibody significantly restored the transcription. Control experiments with the same transcription assaying system using rabies virus nucleoprotein expressed as a fusion protein with MBP and cleaved with FXa did not result in an inhibition of the transcription. These results suggest that the M protein of rabies virus has the property to down-regulate virion-associated transcription.
Collapse
Affiliation(s)
- Y Ito
- Department of Microbiology, Oita Medical University, Japan
| | | | | | | | | |
Collapse
|
8
|
Paik SY, Banerjea AC, Harmison GG, Chen CJ, Schubert M. Inducible and conditional inhibition of human immunodeficiency virus proviral expression by vesicular stomatitis virus matrix protein. J Virol 1995; 69:3529-37. [PMID: 7745700 PMCID: PMC189066 DOI: 10.1128/jvi.69.6.3529-3537.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Besides its role in viral assembly, the vesicular stomatitis virus (VSV) matrix (M) protein causes cytopathic effects such as cell rounding (D. Blondel, G. G. Harmison, and M. Schubert, J. Virol. 64:1716-1725, 1990). DNA cotransfection assays demonstrated that VSV M protein was able to inhibit the transcription of a reporter gene (B. L. Black and D. S. Lyles, J. Virol. 66:4058-4064, 1992). We have confirmed these observations by using cotransfections with an infectious clone of human immunodeficiency virus type 1 (HIV-1) and found that the amino-terminal 32 amino acids of M protein which are essential for viral assembly were not required for this inhibition. For the study of the potential role of M protein in the shutoff of transcription from chromosomal DNA, we have isolated stable HeLa T4 cell lines which encode either a wild-type or a temperature-sensitive (ts) VSV M gene under control of the HIV-1 long terminal repeat promoter. Transcription of the M mRNA was transactivated after HIV-1 infections. A cell line which encodes the wild-type M protein was nonpermissive for either HIV-1 or HIV-2. A cell line that encodes the ts M gene was transfected with the infectious HIV-1 DNA or was infected with HIV-1 or HIV-2. In all cases, at 32 degrees C, the permissive temperature for M protein, the cells were nonpermissive for HIV replication. At 40 degrees C, the ts M protein was nonfunctional and both HIV-1 and HIV-2 were able to replicate at high levels. A comparison of the amounts of proviral HIV-1 DNAs and HIV-1 mRNAs at 10 and 36 h after HIV-1 infection demonstrated that proviral insertion had not been prevented by M protein and that the block in HIV-1 replication was at the level of proviral expression. The severe reduction of HIV-1 proviral transcripts demonstrates that the VSV M protein alone can inhibit expression from chromosomal DNA. These results strongly support the hypothesis that the VSV M protein is involved in the shutoff of host cell transcription. M protein was able to attenuate HIV-1 infections and protect the cell population from HIV-1 pathogenesis. The temperature-dependent switch from a persistent to a lytic HIV-1 infection in the presence of ts M protein could be useful for studies of HIV-1 replication and pathogenesis.
Collapse
Affiliation(s)
- S Y Paik
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
9
|
Black BL, Brewer G, Lyles DS. Effect of vesicular stomatitis virus matrix protein on host-directed translation in vivo. J Virol 1994; 68:555-60. [PMID: 8254771 PMCID: PMC236321 DOI: 10.1128/jvi.68.1.555-560.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Vesicular stomatitis virus infection causes a rapid and potent inhibition of both host transcription and translation. Recently, the viral matrix (M) protein was shown to inhibit host-directed transcription in vivo in the absence of any other viral component (B. L. Black and D. S. Lyles, J. Virol. 66:4058-4064, 1992). The goal of this study was to determine the effect of M protein on host-directed translation. In vitro-transcribed mRNAs encoding M protein and chloramphenicol acetyltransferase (CAT) were cotransfected into BHK cells to determine the effect of M protein expression on translation of CAT mRNA. The results presented here show that M protein did not inhibit host-directed translation of CAT mRNA. On the contrary, this study gave the unexpected result that M protein actually stimulated host-directed translation under the same conditions in which it potently inhibited host-directed transcription. Under these conditions, the combined effect on host gene expression was a greater-than-20-fold inhibition. Furthermore, the enhancement of host translation mediated by M protein was genetically correlated with M protein's ability to inhibit host transcription. Thus, the results of this study establish that M protein does not inhibit host protein synthesis under the same conditions in which it potently inhibits host transcription and suggest that the inhibition of transcription and that of translation by vesicular stomatitis virus require separate viral gene products.
Collapse
Affiliation(s)
- B L Black
- Department of Microbiology and Immunology, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27157
| | | | | |
Collapse
|
10
|
Affiliation(s)
- A Kawai
- Department of Molecular Microbiology, Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | |
Collapse
|
11
|
Barge A, Gaudin Y, Coulon P, Ruigrok RW. Vesicular stomatitis virus M protein may be inside the ribonucleocapsid coil. J Virol 1993; 67:7246-53. [PMID: 8230447 PMCID: PMC238187 DOI: 10.1128/jvi.67.12.7246-7253.1993] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Vesicular stomatitis virus is an enveloped virus with an external glycoprotein G and a nucleocapsid that form, together with the M protein, a tight helically coiled structure: the skeleton. Negative staining and immunoelectron microscopy studies on skeleton preparations were performed to determine the localization of the M protein. These studies have resulted in a new model for the structure of rhabdoviruses in which the nucleocapsid is wound around a core containing the M protein. This model predicts contact between M and lipid only at the extreme ends of the skeleton, which is confirmed by skeleton-liposome binding studies.
Collapse
Affiliation(s)
- A Barge
- EMBL Grenoble Outstation, France
| | | | | | | |
Collapse
|
12
|
Black BL, Rhodes RB, McKenzie M, Lyles DS. The role of vesicular stomatitis virus matrix protein in inhibition of host-directed gene expression is genetically separable from its function in virus assembly. J Virol 1993; 67:4814-21. [PMID: 8392615 PMCID: PMC237868 DOI: 10.1128/jvi.67.8.4814-4821.1993] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recently, the vesicular stomatitis virus matrix (M) protein has been shown to be capable of inhibition of host cell-directed transcription in the absence of other viral components (B. L. Black and D. S. Lyles, J. Virol. 66:4058-4064, 1992). M protein is a major structural protein that is known to play a critical role in virus assembly by binding the helical ribonucleoprotein core of the virus to the cytoplasmic surface of the cell plasma membrane during budding. In this study, two M protein mutants were tested to determine whether the inhibition of host transcription by M protein is an indirect effect of its function in virus assembly or whether it represents an independent function of M protein. The mutant M protein of the conditionally temperature-sensitive (ts) vesicular stomatitis virus mutant, tsO82, was found to be defective in its ability to inhibit host-directed gene expression, as shown by its inability to inhibit expression of a cotransfected target gene encoding chloramphenicol acetyltransferase. The ability of the tsO82 M protein to function in virus assembly was similar to that of wild-type M protein, as shown by its ability to complement the group III ts M protein mutant, tsO23. Another mutant, MN1, which lacks amino acids 4 to 21 of M protein demonstrated that the abilities of M protein to inhibit chloramphenicol acetyltransferase gene expression and to localize to the nucleus were unaffected by deletion of this lysine-rich amino-terminal region but that the ability to function in virus assembly was ablated. Thus, the two M protein mutants examined in this study exhibited complementary phenotypes: tsO82 M protein functioned in virus assembly but was defective in inhibition of host-directed gene expression, while MN1 M protein functioned in inhibiting gene expression but was unable to function in virus assembly. These data demonstrate that the role of M protein in inhibition of host transcription can be separated genetically from its role in virus assembly.
Collapse
Affiliation(s)
- B L Black
- Department of Microbiology and Immunology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157
| | | | | | | |
Collapse
|
13
|
Li Y, Luo L, Schubert M, Wagner RR, Kang CY. Viral liposomes released from insect cells infected with recombinant baculovirus expressing the matrix protein of vesicular stomatitis virus. J Virol 1993; 67:4415-20. [PMID: 8389938 PMCID: PMC237817 DOI: 10.1128/jvi.67.7.4415-4420.1993] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The matrix (M) protein of vesicular stomatitis virus (VSV) has been found to promote assembly and budding of virions as well as down-regulating of VSV transcription. Large quantities of M protein can be produced in insect cells infected with recombinant baculovirus expressing the VSV M gene under control of the polyhedrin promoter. Analysis by pulse-chase experiments and density gradient centrifugation revealed that the [35S]methionine-labeled M protein synthesized in insect cells is released into the extracellular medium in association with lipid vesicles (liposomes). Electron microscopy and immunogold labeling showed that M protein expressed in insect cells induced the formation on plasma membrane of vesicles containing M protein, which are released from the cell surface in the form of liposomes. The baculovirus vector itself or recombinants expressing VSV glycoprotein (G) or nucleocapsid (N) protein did not produce the formation of vesicles in infected cells. The baculovirus-expressed M protein retains biological activity as demonstrated by its capacity to inhibit transcription when reconstituted with VSV nucleocapsids in vitro. These data suggest that M protein has the capacity to associate with the plasma membrane of infected cells and, in so doing, causes evagination of the membrane to form a vesicle which is released from the cell. This observation leads to the postulate, which requires further proof, that the VSV M protein can induce the formation and budding of liposomes from the cell membrane surface.
Collapse
Affiliation(s)
- Y Li
- Department of Zoology, Faculty of Science, University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|
14
|
Hiramatsu K, Mannen K, Mifune K, Nishizono A, Takita-Sonoda Y. Comparative sequence analysis of the M gene among rabies virus strains and its expression by recombinant vaccinia virus. Virus Genes 1993; 7:83-8. [PMID: 8470369 DOI: 10.1007/bf01702350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nucleotide sequences and the deduced amino acid sequences of the gene encoding the matrix (M) protein of the Nishigahara and the CVS strains of rabies virus have been determined. The M gene is 609 nucleotides long and is capable of coding for a peptide composed of 202 amino acids. Sequence comparison of these M genes with those of other stains [Pasteur (PV), ERA, Avol] revealed that there is 89.7-91.5% homology at the nucleotide level, and 90.1-92.1% homology at amino acid level, between almost all combinations of these strains. However, in the combinations of the PV and ERA strains, and the virulent CVS and the avirulent CVS-derived Avol strains, much higher homology was observed both at the nucleotide and amino acid levels. The predicted secondary structure and hydropathy profiles also exhibited similar features. Recombinant vaccinia virus containing the M gene was constructed. Sodium dodecyl sulfate (NaDodSO4)-polyacrylamide gel electrophoresis of the precipitates obtained by immune reaction of the recombinant virus-infected cell lysate with a monoclonal antibody against the M protein revealed that electrophoretic mobility of the expressed protein is indistinguishable from that of the authentic M protein from rabies virions.
Collapse
Affiliation(s)
- K Hiramatsu
- Department of Microbiology, Oita Medical University, Japan
| | | | | | | | | |
Collapse
|
15
|
Hiramatsu K, Mifune K, Mannen K, Nishizono A, Kawano H, Ito Y, Kawai A. Mapping of the antigenic determinants recognized by monoclonal antibodies against the M2 protein of rabies virus. Virology 1992; 187:472-9. [PMID: 1372139 DOI: 10.1016/0042-6822(92)90449-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Twenty-one hybridomas producing monoclonal antibodies (moAbs) against the M2 protein of the Nishigahara (RECH) strain of rabies virus were prepared using the SDS-polyacrylamide gel-purified M2 protein as the immunogen. All moAbs reacted with the protein after Western blotting of rabies virus. By combinations of competitive binding assays, examination of the reactivity of moAbs to the cells infected with parent RCEH and two other strains, CVS and HEP-Flury, and immunoprecipitation with in vitro translation products derived from full-length and truncated cDNAs of the M2 gene, these moAbs could be classified into seven epitope groups. Of these, 20 moAbs belonging to six epitope groups were suggested to recognize an antigenic determinant in the amino-terminal region, from the 1st to the 72nd amino acid of the protein (8 moAbs from two groups directed to amino acids 1 to 72; 2 moAbs from a group directed to amino acids 9 to 72; 5 moAbs from a group directed to amino acids 17-72; 5 moAbs from two groups directed to amino acids 32 to 72). The antigenic determinant recognized by the remaining 1 moAb was shown to be located in the amino acid region from 50 to 171. These moAbs should be useful for further studies on the biological functions of the M2 protein of rabies virus.
Collapse
Affiliation(s)
- K Hiramatsu
- Department of Microbiology, Medical College of Oita, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Kawai A, Takeuchi K. Temperature-sensitivity of the replication of rabies virus (HEP-flury strain) in BHK-21 cells. I. Alteration of viral RNA synthesis at the elevated temperature. Virology 1992; 186:524-32. [PMID: 1733101 DOI: 10.1016/0042-6822(92)90018-k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We investigated the nature of temperature sensitivity of the HEP strain of rabies virus. After initial incubation for appropriate period (more than 12 hr) at the permissive temperature (36-37 degrees), incubation temperature of the rabies virus infected cultures was shifted to a nonpermissive temperature (39.5-40.5 degrees). Upon the upshift, virion production was ceased, but the rate of viral RNA synthesis was greatly increased and reached almost 10 times that of 36 degrees-infection within 8-10 hr, and then the activity quickly decreased together with the onset of accelerated CPE. Little or no 42S genome-sized RNA was produced at the elevated temperature, and almost all RNAs produced in large amounts seemed to be viral mRNAs and were shown to be functional in t he cell-free translation system. Consistent with these observations, the viral ribonucleoprotein complex isolated from the temperature-upshifted culture was associated with relatively large amounts of small sized RNAs, which might reflect their increased transcriptive activity. These observations suggest that the viral RNA polymerase itself is not temperature-sensitive and the temperature-induced defect may reside in the regulatory factor which plays a role in turning on the synthesis of viral genome-sized RNA.
Collapse
Affiliation(s)
- A Kawai
- Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | |
Collapse
|
17
|
Kaptur PE, Rhodes RB, Lyles DS. Sequences of the vesicular stomatitis virus matrix protein involved in binding to nucleocapsids. J Virol 1991; 65:1057-65. [PMID: 1847435 PMCID: PMC239871 DOI: 10.1128/jvi.65.3.1057-1065.1991] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The purpose of these experiments was to study the physical structure of the nucleocapsid-M protein complex of vesicular stomatitis virus by analysis of nucleocapsid binding by wild-type and mutant M proteins and by limited proteolysis. We used the temperature-sensitive M protein mutant tsO23 and six temperature-stable revertants of tsO23 to test the effect of sequence changes on M protein binding to the nucleocapsid as a function of NaCl concentration. The results showed that M proteins from wild-type, mutant, and three of the revertant viruses had similar NaCl titration curves, while the curve for M proteins from the other three revertants differed significantly. The altered NaCl dependence of M protein was correlated with a single amino acid substitution from Phe to Leu at position 111 compared with the original temperature-sensitive mutant and was not correlated with a substitution of Gly to Glu at position 21 in tsO23 and the revertants. To determine whether protease cleavage sites in the M protein were protected by interaction with the nucleocapsid, nucleocapsid-M protein complexes were subjected to limited proteolysis with trypsin, chymotrypsin, or Staphylococcus aureus V8 protease. The initial trypsin and chymotrypsin cleavage sites, located after amino acids 19 and 20, respectively, were as accessible to proteases when M protein was bound to the nucleocapsid as when it was purified, indicating that this region of the protein does not interact directly with the nucleocapsid. Furthermore, trypsin or chymotrypsin treatment released the M protein fragments from the nucleocapsid, presumably due to conformational changes following proteolysis. V8 protease cleaved the M protein at position 34 or 50, producing two distinct fragments. The M protein fragment produced by V8 protease cleavage at position 34 remained associated with the nucleocapsid, while the fragment produced by cleavage at position 50 was released from the nucleocapsid. These results suggest that the amino-terminal region of the M protein around amino acid 20 does not interact directly with the nucleocapsid and that conformational changes resulting from single-amino-acid substitutions at other sites in the M protein are important for this interaction.
Collapse
Affiliation(s)
- P E Kaptur
- Department of Microbiology and Immunology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27103
| | | | | |
Collapse
|
18
|
Blondel D, Harmison GG, Schubert M. Role of matrix protein in cytopathogenesis of vesicular stomatitis virus. J Virol 1990; 64:1716-25. [PMID: 2157054 PMCID: PMC249309 DOI: 10.1128/jvi.64.4.1716-1725.1990] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The matrix (M) protein of vesicular stomatitis virus (VSV) plays an important structural role in viral assembly, and it also has a regulatory role in viral transcription. We demonstrate here that the M protein has an additional function. It causes visible cytopathic effects (CPE), as evidenced by the typical rounding of polygonal cells after VSV infection. We have analyzed a temperature-sensitive mutant of the M protein of VSV (tsG33) which is defective in viral assembly and which fails to cause morphological changes of the cells after infection at the nonpermissive temperature (40 degrees C). Interestingly, this defect in viral assembly as well as the CPE were reversible. Microinjection of antisense oligonucleotides which specifically inhibit M protein translation also inhibited the occurrence of CPE. Most importantly, when cells were transfected with a cDNA encoding the temperature-sensitive M protein of tsG33, no CPE was observed at the nonpermissive temperature. However, when these cells were shifted to the permissive temperature (32 degrees C), they rounded up and detached from the dish. These results demonstrate that M protein in the absence of the other viral proteins causes rounding of the cells, probably through a disorganization of the cytoskeleton. The absence of CPE at the nonpermissive temperature is correlated with an abnormal dotted staining pattern of M in these cells, suggesting that the mutant M protein may self-aggregate or associate with membranes rather than interact with cytoskeletal elements.
Collapse
Affiliation(s)
- D Blondel
- Laboratory of Viral and Molecular Pathogenesis, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892
| | | | | |
Collapse
|
19
|
Li Y, Luo LZ, Wagner RR. Transcription inhibition site on the M protein of vesicular stomatitis virus located by marker rescue of mutant tsO23(III) with M-gene expression vectors. J Virol 1989; 63:2841-3. [PMID: 2542594 PMCID: PMC250793 DOI: 10.1128/jvi.63.6.2841-2843.1989] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The matrix (M) protein of vesicular stomatitis virus serves as an endogenous inhibitor of viral transcription, a function missing or deficient in M proteins of temperature-sensitive (ts) mutants assigned to complementation group III. Previous studies with mutant tsO23(III) and vaccinia virus M-gene expression vectors revealed that the temperature-sensitive phenotype is due to a mutation leading to substitution of phenylalanine for leucine at amino acid III, whereas loss of the major antigenic determinant (epitope 1) of the mutant M protein results from the substitution of glutamic acid for the wild-type amino acid glycine at position 21 (Y. Li, L. Luo, R. M. Snyder, and R. R. Wagner, J. Virol. 62:3729-3737, 1988). We demonstrate here that transcription inhibition activity is restored to rescued tsO23 virus only when the rescuing vaccinia virus recombinant expresses M protein with glycine and not glutamic acid at amino acid 21. These experiments indicate the importance of the conformational integrity of the amino-terminal domain in determining the capacity of the vesicular stomatitis virus M protein to down regulate endogenous transcription.
Collapse
Affiliation(s)
- Y Li
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville 22908
| | | | | |
Collapse
|
20
|
Ayata M, Hirano A, Wong TC. Structural defect linked to nonrandom mutations in the matrix gene of biken strain subacute sclerosing panencephalitis virus defined by cDNA cloning and expression of chimeric genes. J Virol 1989; 63:1162-73. [PMID: 2915379 PMCID: PMC247811 DOI: 10.1128/jvi.63.3.1162-1173.1989] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Biken strain, a nonproductive measles viruslike agent isolated from a subacute sclerosing panencephalitis (SSPE) patient, contains a posttranscriptional defect affecting matrix (M) protein. A putative M protein was translated in vitro with RNA from Biken strain-infected cells. A similar protein was detected in vivo by an antiserum against a peptide synthesized from the cloned M gene of Edmonston strain measles virus. By using a novel method, full-length cDNAs of the Biken M gene were selectively cloned. The cloned Biken M gene contained an open reading frame which encoded 8 extra carboxy-terminal amino acid residues and 20 amino acid substitutions predicted to affect both the hydrophobicity and secondary structure of the gene product. The cloned gene was expressed in vitro and in vivo into a 37,500 Mr protein electrophoretically and antigenically distinct from the M protein of Edmonston strain but identical to the M protein in Biken strain-infected cells. Chimeric M proteins synthesized in vitro and in vivo showed that the mutations in the carboxy-proximal region altered the local antigenicity and those in the amino region affected the overall protein conformation. The protein expressed from the Biken M gene was unstable in vivo. Instability was attributed to multiple mutations in both the amino and carboxy regions. A surprising number of mutations in both the coding and noncoding regions of the Biken M gene were identical to those in an independently isolated SSPE virus strain with a similar defect. These results offer insights into the basis of the defect in Biken strain and pose intriguing questions about the evolutionary origins of SSPE viruses in general.
Collapse
Affiliation(s)
- M Ayata
- Department of Microbiology, University of Washington School of Medicine, Seattle 98195
| | | | | |
Collapse
|
21
|
Li Y, Luo LZ, Snyder RM, Wagner RR. Site-specific mutations in vectors that express antigenic and temperature-sensitive phenotypes of the M gene of vesicular stomatitis virus. J Virol 1988; 62:3729-37. [PMID: 2458488 PMCID: PMC253516 DOI: 10.1128/jvi.62.10.3729-3737.1988] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Full-length cDNA copies of mRNAs coding for the matrix (M) proteins of vesicular stomatitis virus and its mutant tsO23(III) were cloned in pBSM13- (BlueScribe). The authenticity of these clones was demonstrated by restriction enzyme mapping, DNA sequencing, and in vitro transcription and translation to identify the two M proteins by Western immunoblotting with epitope-specific monoclonal antibodies. Site-directed mutants were constructed by primer extension of synthetic oligodeoxynucleotides with one or two nucleotide changes to alter the glycine at amino acid 21 of the wild-type (wt) M gene to glutamic acid, alanine, or proline. Similarly, a revertant was created in the M gene of mutant tsO23 by a Glu-21----Gly substitution. A series of wt- and mutant-M-gene chimeras was also constructed to create mutant and revertant clones with Leu----Phe and His----Tyr alterations at amino acids 111 and 227, respectively. We then moved the wt and tsO23 M genes and their site-specific mutants and chimeras cloned in pBSM13- into the eucaryotic expression vector pTF7 directed by the T7 bacteriophage RNA polymerase of the vaccinia virus recombinant vTF1-6,2. Western blot analysis of the M proteins transiently expressed in CV-1 cells by plasmids carrying M genes altered at amino acid 21 revealed that the critical antigenic determinant (epitope 1) is expressed only by the Gly-21 M protein and not by Glu-21, Ala-21, or Pro-21 M proteins. Of particular interest is an apparent conformational change, evidenced by slightly but significantly retarded electrophoretic migration, in plasmid-expressed M proteins with amino acids substituted for glycine at position 21. The glutamic acid at position 21 of tsO23 is not responsible for its temperature-sensitive phenotype, because a tsO23 revertant plasmid with glycine substituted at position 21 fails to rescue tsO23 virus in cells infected at the restrictive temperature; conversely, plasmids expressing wt M protein with substitutions of glutamic acid, alanine, or proline at position 21 are just as effective in marker rescue of tsO23 as is the Gly-21 wt M protein. Marker rescue experiments with wt- and mutant-M-gene chimeras support the hypothesis of K. Morita, R. Vanderoef, and J. Lenard (J. Virol. 61:256-263, 1987) that the temperature-sensitive phenotype of tsO23 is due to a phenylalanine substituted for leucine at amino acid 111, rather than the His-227----Tyr substitution or the Gly-21----Glu substitution, which independently accounts for the loss of epitope 1 in the mutant M protein of tsO23.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Y Li
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | |
Collapse
|
22
|
Li Y, Luo LZ, Snyder RM, Wagner RR. Expression of the M gene of vesicular stomatitis virus cloned in various vaccinia virus vectors. J Virol 1988; 62:776-82. [PMID: 2828673 PMCID: PMC253631 DOI: 10.1128/jvi.62.3.776-782.1988] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Initial attempts to clone the matrix (M) gene of vesicular stomatitis virus (VSV) in a vaccinia virus expression vector failed, apparently because the expressed M protein, and particularly a carboxy-terminus-distal two-thirds fragment, was lethal for the virus recombinant. Therefore, a transient eucaryotic expression system was used in which a cDNA clone of the VSV M protein mRNA was inserted into a region of plasmid pTF7 flanked by the promoter and terminator sequences for the T7 bacteriophage RNA polymerase. When CV-1 cells infected with recombinant vaccinia virus vTF1-6,2 expressing the T7 RNA polymerase were transfected with pTF7-M3, the cells produced considerable amounts of M protein reactive by Western blot (immunoblot) analysis with monoclonal antibodies directed to VSV M protein. Evidence for biological activity of the plasmid-expressed wild-type M protein was provided by marker rescue of the M gene temperature-sensitive mutant tsO23(III) at the restrictive temperature. Somewhat higher levels of M protein expression were obtained in CV-1 cells coinfected with a vaccinia virus-M gene recombinant under control of the T7 polymerase promoter along with T7 polymerase-expressing vaccinia virus vTF1-6,2.
Collapse
Affiliation(s)
- Y Li
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | |
Collapse
|
23
|
Structural effects of amino acid substitutions on the matrix protein of vesicular stomatitis virus. Protein J 1987. [DOI: 10.1007/bf00276732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Ono K, Dubois-Dalcq ME, Schubert M, Lazzarini RA. A mutated membrane protein of vesicular stomatitis virus has an abnormal distribution within the infected cell and causes defective budding. J Virol 1987; 61:1332-41. [PMID: 3033263 PMCID: PMC254107 DOI: 10.1128/jvi.61.5.1332-1341.1987] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two temperature-sensitive (ts) mutants of the M protein of vesicular stomatitis virus (tsG31 and tsG33) are defective in viral assembly, but the exact nature of this defect is not known. When infected cells are switched from nonpermissive (40 degrees C) to permissive (32 degrees C) temperatures in the presence of cycloheximide, tsG33 virus release increased by 100-fold, whereas tsG31 release increased only by 10-fold. Thus, the tsG33 defect is more reversible than that of tsG31. Therefore, we investigated how the altered synthesis and cellular distribution of tsG33 M protein correlates with the viral assembly defect. At 32 degrees C tsG33 M protein is stained diffusely in the cell cytoplasm and later at the budding sites. In contrast, at 40 degrees C the mutant M protein formed unusual aggregates mostly located in the perinuclear regions of virus-infected cells and partially colocalized with G protein in this region. In temperature shift-down experiments, M can be disaggregated and used to some extent for nucleocapsid coiling and budding, which correlates with the virus titer increase. M aggregates also formed after shift-up from 32 to 40 degrees C, indicating a complete dependence of M aggregation on the temperature. Biochemical analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting revealed that at 40 degrees C M protein is detected exclusively in pellet fractions (nuclear and cytoskeleton components), whereas at 32 degrees C M protein is mainly in the cytoplasmic soluble fractions. Furthermore, when the temperature is raised from 32 to 40 degrees C, the distribution of M protein tends to shift from the soluble to the pellet and cytoskeletal fractions. Electron micrographs of immunoperoxidase-labeled M protein showed that at 40 degrees C M aggregates are often associated with the outer nuclear membranes as well as with vesicular structures. No nucleocapsid coiling was observed in these cells, whereas coiling and budding were seen at 32 degrees C in cells where M protein was partly associated with the plasma membrane. We suggest that the tsG33 M protein mutation may produce a reversible conformational alteration which causes M protein to aggregate at 40 degrees C, therefore inhibiting the proper association of M protein with nucleocapsids and budding membranes.
Collapse
|
25
|
Shapiro GI, Gurney T, Krug RM. Influenza virus gene expression: control mechanisms at early and late times of infection and nuclear-cytoplasmic transport of virus-specific RNAs. J Virol 1987; 61:764-73. [PMID: 3806797 PMCID: PMC254018 DOI: 10.1128/jvi.61.3.764-773.1987] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Single-stranded M13 DNAs specific for various influenza virus genomic segments were used to analyze the synthesis of virus-specific RNAs in infected cells. The results show that influenza virus infection is divided into two distinct phases. During the early phase, the syntheses of specific virion RNAs, viral mRNAs, and viral proteins were coupled. Thus, the NS (nonstructural) virion RNA was preferentially synthesized early, leading to the preferential synthesis of NS1 viral mRNA and NS1 protein; in contrast, M (matrix) RNA synthesis was delayed, leading to the delayed synthesis of M1 viral mRNA and M1 protein. This phase lasted for 2.5 h in BHK-21 cells, the time at which the rate of synthesis of all the viral mRNAs was maximal. During the second phase, the synthesis of all the virion RNAs remained at or near maximum until at least 5.5 h postinfection, whereas the rate of synthesis of all the viral mRNAs declined dramatically. By 4.5 h, the rate of synthesis of all the viral mRNAs was 5% of the maximum rate. Viral mRNA and protein syntheses were also not coupled, as the synthesis of all the viral proteins continued at maximum levels, indicating that protein synthesis during this phase was directed principally by previously synthesized viral mRNAs. Short pulses (3 min) with [3H]uridine and nonaqueous fractionation of cells were used to show that influenza virion RNA synthesis occurred in the nucleus, demonstrating that all virus-specific RNA synthesis was nuclear. Virion RNAs, like viral mRNAs, were efficiently transported to the cytoplasm at both early and late times of infection. In contrast, the full-length transcripts of the virion RNAs, which are the templates for virion RNA synthesis, were sequestered in the nucleus. Thus, the template RNAs, which were synthesized only at early times, remained in the nucleus to direct virion RNA synthesis throughout infection. These results enabled us to present an overall scheme for the control of influenza virus gene expression.
Collapse
|
26
|
|
27
|
Morita K, Vanderoef R, Lenard J. Phenotypic revertants of temperature-sensitive M protein mutants of vesicular stomatitis virus: sequence analysis and functional characterization. J Virol 1987; 61:256-63. [PMID: 3027358 PMCID: PMC253944 DOI: 10.1128/jvi.61.2.256-263.1987] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Twenty-five spontaneous temperature-stable revertants of four different temperature-sensitive (ts) M protein mutants (complementation group III: tsG31, tsG33, tsO23, and tsO89) were sequenced and tested for their ability to inhibit vesicular stomatitis virus RNA polymerase activity in vitro. Consensus sequences of the coding region of each M protein gene were determined, using total viral RNA as template. Fifteen different sequences were found among the 25 revertants; 14 differed from their ts parent by a single amino acid (one nucleotide), and 1 differed by two amino acids (two nucleotides). Amino acids were altered in various positions between residues 64 and 215, representing over 60% of the polypeptide chain. Resequencing of the Glasgow and Orsay wild types and the four ts mutants confirmed previously published differences (Y. Gopalakrishana and J. Lenard, J. Virol., 56:655-659, 1985), and one or two additional differences were found in each. The relative charges of the revertant M proteins, as determined by nonequilibrium pH gradient electrophoresis, were consistent with the deduced sequences in every case. The ability of each revertant M protein to inhibit the RNA polymerase activity of nucleocapsids prepared from its parent ts mutant was also tested. Only 13 of the 25 revertants had M protein with high (wild type-like) polymerase-inhibiting activity, while 5 had low (ts-like) activity, and 7 had intermediate activity, demonstrating that this property is not an essential concomitant of the temperature-stable phenotype. It is concluded that the high reversion frequency observed for these mutants arises from a very high incidence of pseudoreversion, i.e., many different molecular changes can repair the ts phenotype.
Collapse
|
28
|
Mapping regions of the matrix protein of vesicular stomatitis virus which bind to ribonucleocapsids, liposomes, and monoclonal antibodies. J Virol 1986; 58:860-8. [PMID: 2422402 PMCID: PMC252993 DOI: 10.1128/jvi.58.3.860-868.1986] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The matrix (M) protein of vesicular stomatitis virus (VSV) appears to function as a bridge between the ribonucleocapsid (RNP) core and the envelope in assembly of the virion. Two such properties would necessitate at least one site for interaction with the nucleocapsid and one with the envelope. In this study M protein was found to mediate the in vitro binding to RNP cores of phospholipid vesicles, representing membrane structures. The M protein could bind initially to either the vesicles or the RNP cores to promote RNP-vesicle association. A trypsin-resistant fragment (MT) of M protein, missing the initial 43 amino acids from its amino terminus, reconstituted with acidic phospholipid vesicles with the same binding efficiency as did whole M protein, suggesting that the carboxy-terminal 81% retained those regions of the M protein which interact with a lipid bilayer. The MT protein, however, was considerably less efficient than intact M protein as an inhibitor of in vitro virus transcription; almost 2.5-fold more MT protein than intact M protein was required for 50% inhibition of VSV transcription, indicating that a site for interaction with the RNP core may have been lost. A monoclonal antibody which is able to reverse the in vitro inhibition of transcription by M protein did not react by immunoblotting with MT protein. Partial tryptic digests of the M protein probed with this monoclonal antibody indicated that epitope 1 lies between amino acid residues 18 and 43. This region appears to be a site that promotes interaction of the M protein with the RNP core of VSV. Monoclonal antibodies to epitopes 2 and 3, which exhibit some overlap in binding to M protein but do not reverse transcription inhibition, were mapped by cleavage with N-chlorosuccinimide at regions in a carboxy direction from epitope 1.
Collapse
|