1
|
Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin Microbiol Rev 2012; 25:471-506. [PMID: 22763635 DOI: 10.1128/cmr.05031-11] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a debilitating and frequently fatal central nervous system (CNS) demyelinating disease caused by JC virus (JCV), for which there is currently no effective treatment. Lytic infection of oligodendrocytes in the brain leads to their eventual destruction and progressive demyelination, resulting in multiple foci of lesions in the white matter of the brain. Before the mid-1980s, PML was a relatively rare disease, reported to occur primarily in those with underlying neoplastic conditions affecting immune function and, more rarely, in allograft recipients receiving immunosuppressive drugs. However, with the onset of the AIDS pandemic, the incidence of PML has increased dramatically. Approximately 3 to 5% of HIV-infected individuals will develop PML, which is classified as an AIDS-defining illness. In addition, the recent advent of humanized monoclonal antibody therapy for the treatment of autoimmune inflammatory diseases such as multiple sclerosis (MS) and Crohn's disease has also led to an increased risk of PML as a side effect of immunotherapy. Thus, the study of JCV and the elucidation of the underlying causes of PML are important and active areas of research that may lead to new insights into immune function and host antiviral defense, as well as to potential new therapies.
Collapse
|
2
|
Wortman MJ, Hanson LK, Martínez-Sobrido L, Campbell AE, Nance JA, García-Sastre A, Johnson EM. Regulation of PURA gene transcription by three promoters generating distinctly spliced 5-prime leaders: a novel means of fine control over tissue specificity and viral signals. BMC Mol Biol 2010; 11:81. [PMID: 21062477 PMCID: PMC2992531 DOI: 10.1186/1471-2199-11-81] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/09/2010] [Indexed: 12/17/2022] Open
Abstract
Background Purα is an evolutionarily conserved cellular protein participating in processes of DNA replication, transcription, and RNA transport; all involving binding to nucleic acids and altering conformation and physical positioning. The distinct but related roles of Purα suggest a need for expression regulated differently depending on intracellular and external signals. Results Here we report that human PURA (hPURA) transcription is regulated from three distinct and widely-separated transcription start sites (TSS). Each of these TSS is strongly homologous to a similar site in mouse chromosomal DNA. Transcripts from TSS I and II are characterized by the presence of large and overlapping 5'-UTR introns terminated at the same splice receptor site. Transfection of lung carcinoma cells with wild-type or mutated hPURA 5' upstream sequences identifies different regulatory elements. TSS III, located within 80 bp of the translational start codon, is upregulated by E2F1, CAAT and NF-Y binding elements. Transcription at TSS II is downregulated through the presence of adjacent consensus binding elements for interferon regulatory factors (IRFs). Chromatin immunoprecipitation reveals that IRF-3 protein binds hPURA promoter sequences at TSS II in vivo. By co-transfecting hPURA reporter plasmids with expression plasmids for IRF proteins we demonstrate that several IRFs, including IRF-3, down-regulate PURA transcription. Infection of NIH 3T3 cells with mouse cytomegalovirus results in a rapid decrease in levels of mPURA mRNA and Purα protein. The viral infection alters the degree of splicing of the 5'-UTR introns of TSS II transcripts. Conclusions Results provide evidence for a novel mechanism of transcriptional control by multiple promoters used differently in various tissues and cells. Viral infection alters not only the use of PURA promoters but also the generation of different non-coding RNAs from 5'-UTRs of the resulting transcripts.
Collapse
Affiliation(s)
- Margaret J Wortman
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 W, Olney Road, Norfolk, VA 23507, USA.
| | | | | | | | | | | | | |
Collapse
|
3
|
Marshall LJ, Dunham L, Major EO. Transcription factor Spi-B binds unique sequences present in the tandem repeat promoter/enhancer of JC virus and supports viral activity. J Gen Virol 2010; 91:3042-52. [PMID: 20826618 PMCID: PMC3052566 DOI: 10.1099/vir.0.023184-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is an often fatal demyelinating disease caused by lytic infection of oligodendrocytes with JC virus (JCV). The development of PML in non-immunosuppressed individuals is a growing concern with reports of mortality in patients treated with mAb therapies. JCV can persist in the kidneys, lymphoid tissue and bone marrow. JCV gene expression is restricted by non-coding viral regulatory region sequence variation and cellular transcription factors. Because JCV latency has been associated with cells undergoing haematopoietic development, transcription factors previously reported as lymphoid specific may regulate JCV gene expression. This study demonstrates that one such transcription factor, Spi-B, binds to sequences present in the JCV promoter/enhancer and may affect early virus gene expression in cells obtained from human brain tissue. We identified four potential Spi-B-binding sites present in the promoter/enhancer elements of JCV sequences from PML variants and the non-pathogenic archetype. Spi-B sites present in the promoter/enhancers of PML variants alone bound protein expressed in JCV susceptible brain and lymphoid-derived cell lines by electromobility shift assays. Expression of exogenous Spi-B in semi- and non-permissive cells increased early viral gene expression. Strikingly, mutation of the Spi-B core in a binding site unique to the Mad-4 variant was sufficient to abrogate viral activity in progenitor-derived astrocytes. These results suggest that Spi-B could regulate JCV gene expression in susceptible cells, and may play an important role in JCV activity in the immune and nervous systems.
Collapse
Affiliation(s)
- Leslie J Marshall
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1296, USA
| | | | | |
Collapse
|
4
|
Molecular regulation of JC virus tropism: insights into potential therapeutic targets for progressive multifocal leukoencephalopathy. J Neuroimmune Pharmacol 2010; 5:404-17. [PMID: 20401541 DOI: 10.1007/s11481-010-9203-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a growing concern for patients undergoing immune modulatory therapies for treatment of autoimmune diseases such as multiple sclerosis. Currently, there are no drugs approved for the treatment of PML that have been demonstrated in the patient to effectively and reproducibly alter the course of disease progression. The human polyoma virus JC is the causative agent of PML. JC virus (JCV) dissemination is tightly controlled by regulation of viral gene expression from the promoter by cellular transcription factors expressed in cells permissive for infection. JCV infection likely occurs during childhood, and latent virus containing PML-associated promoter sequences is maintained in lymphoid cells within the bone marrow. Because development of PML is tightly linked to suppression and or modulation of the immune system as in development of hematological malignancies, AIDS, and monoclonal antibody treatments, further scrutiny of the course of JCV infection in immune cells will be essential to our understanding of development of PML and identification of new therapeutic targets.
Collapse
|
5
|
Affiliation(s)
- W A Krajewski
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
6
|
Ranganathan PN, Khalili K. The transcriptional enhancer element, kappa B, regulates promoter activity of the human neurotropic virus, JCV, in cells derived from the CNS. Nucleic Acids Res 1993; 21:1959-64. [PMID: 8388103 PMCID: PMC309438 DOI: 10.1093/nar/21.8.1959] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Studies on the regulation of the human neurotropic virus (JCV) promoter, have been focused primarily on the 98 bp tandem repeat sequence which confers glial-specificity to viral gene expression. We demonstrate that a distinct regulatory element outside of the 98 bp region, which spans a stretch of 10 nucleotides (nt) (5'-GGGAATTTCC-3') increases transcriptional activity of JCV late (JCVL), and early (JCVE) promoters in glial cells. Sequence analysis of this motif reveals extensive homology to the kappa B sequence of HIV-1 (5'-GGGACTTTCC-3'). A DNA fragment corresponding to the 10 nt sequence of JCV exhibits transcriptional activity when placed upstream of the test promoter in glial cells. The induction mediated by this regulatory motif is moderately enhanced in response to phorbol 12-myristate 13-acetate (PMA) in glial cells. Band-shift and UV-crosslinking experiments suggest that glial cells constitutively produce proteins that specifically interact with the JCV kappa B, but not the HIV-1 kappa B motif. Treatment of cells with PMA results in formation of new complexes that are sensitive to the kappa B sequences derived from the JCV and HIV-1 genomes. These results suggest that the kappa B sequence located in the JCV genome may play a role in transcriptional regulation of JCV gene expression by interacting with inducible and uninducible nuclear proteins from glial cells.
Collapse
Affiliation(s)
- P N Ranganathan
- Jefferson Institute of Molecular Medicine, Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | | |
Collapse
|
7
|
Chowdhury M, Taylor JP, Chang CF, Rappaport J, Khalili K. Evidence that a sequence similar to TAR is important for induction of the JC virus late promoter by human immunodeficiency virus type 1 Tat. J Virol 1992; 66:7355-61. [PMID: 1331525 PMCID: PMC240440 DOI: 10.1128/jvi.66.12.7355-7361.1992] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A specific RNA sequence located in the leader of all human immunodeficiency virus type 1 (HIV-1) mRNAs termed the transactivation response element, or TAR, is a primary target for induction of HIV-1 long terminal repeat activity by the HIV-1-derived trans-regulatory protein, Tat. Human neurotropic virus, JC virus (JCV), a causative agent of the degenerative demyelinating disease progressive multifocal leukoencephalopathy, contains sequences in the 5' end of the late RNA species with an extensive homology to HIV-1 TAR. In this study, we examined the possible role of the JCV-derived TAR-homologous sequence in Tat-mediated activation of the JCV late promoter (Tada et al., Proc. Natl. Acad. Sci. USA 87:3479-3483, 1990). Results from site-directed mutagenesis revealed that critical G residues required for the function of HIV-1 TAR that are conserved in the JCV TAR homolog play an important role in Tat activation of the JCV promoter. In addition, in vivo competition studies suggest that shared regulatory components mediate Tat activation of the JCV late and HIV-1 long terminal repeat promoters. Furthermore, we showed that the JCV-derived TAR sequence behaves in the same way as HIV-1 TAR in response to two distinct Tat mutants, one of which that has no ability to bind to HIV-1 TAR and another that lacks transcriptional activity on a responsive promoter. These results suggest that the TAR homolog of the JCV late promoter is responsive to HIV-1 Tat induction and thus may participate in the overall activation of the JCV late promoter mediated by this transactivation.
Collapse
Affiliation(s)
- M Chowdhury
- Jefferson Institute of Molecular Medicine, Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | |
Collapse
|
8
|
Lednicky J, Folk WR. Two synthetic Sp1-binding sites functionally substitute for the 21-base-pair repeat region to activate simian virus 40 growth in CV-1 cells. J Virol 1992; 66:6379-90. [PMID: 1328672 PMCID: PMC240130 DOI: 10.1128/jvi.66.11.6379-6390.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The 21-bp repeat region of simian virus 40 (SV40) activates viral transcription and DNA replication and contains binding sites for many cellular proteins, including Sp1, LSF, ETF, Ap2, Ap4, GT-1B, H16, and p53, and for the SV40 large tumor antigen. We have attempted to reduce the complexity of this region while maintaining its growth-promoting capacity. Deletion of the 21-bp repeat region from the SV40 genome delays the expression of viral early proteins and DNA replication and reduces virus production in CV-1 cells. Replacement of the 21-bp repeat region with two copies of DNA sequence motifs bound with high affinities by Sp1 promotes SV40 growth in CV-1 cells to nearly wild-type levels, but substitution by motifs bound less avidly by Sp1 or bound by other activator proteins does not restore growth. This indicates that Sp1 or a protein with similar sequence specificity is primarily responsible for the function of the 21-bp repeat region. We speculate about how Sp1 activates both SV40 transcription and DNA replication.
Collapse
Affiliation(s)
- J Lednicky
- Department of Biochemistry, University of Missouri, Columbia 65212
| | | |
Collapse
|
9
|
Devine-Beach K, Lashgari M, Khalili K. Myelin basic protein gene transcription. Identification of proximal and distal cis-acting regulatory elements. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77423-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Burke C, Yu XB, Marchitelli L, Davis EA, Ackerman S. Transcription factor IIA of wheat and human function similarly with plant and animal viral promoters. Nucleic Acids Res 1990; 18:3611-20. [PMID: 2362810 PMCID: PMC331017 DOI: 10.1093/nar/18.12.3611] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eucaryotic transcription initiation by RNA polymerase II involves protein:DNA interactions during the formation of a transcription complex. In addition to RNA polymerase II there are at least five other general transcription factors necessary for initiation with the adenovirus major late promoter. One of these, TFIIA, is involved in the earliest events during transcription complex assembly. We have purified TFIIA from wheat germ and characterized it in an in vitro transcription system. Wheat TFIIA is a single polypeptide of Mr approximately 35 kd which functionally replaces human (HeLa) TFIIA to form a wheat/HeLa transcription system. [This polypeptide can be eluted from a SDS-polyacrylamide gel, refolded to a native conformation, and will function as wheat TFIIA in the heterologous system.] The heterologous system requires a lower optimal incubation temperature than the HeLa system. Biochemical characterization, using the adenovirus major late promoter, indicates that transcription reaction parameters for both wheat and HeLa TFIIA are similar but the kinetics of transcription for both TFIIAs are somewhat dissimilar. A plant viral promoter, the cauliflower mosaic virus 35S promoter, accurately and efficiently directs in vitro transcription in both the wheat/HeLa and HeLa systems with identical transcription kinetics. We conclude that TFIIA function has been conserved during evolution.
Collapse
Affiliation(s)
- C Burke
- Biology Department, University of Massachusetts, Boston, MA 02125
| | | | | | | | | |
Collapse
|
11
|
Tada H, Rappaport J, Lashgari M, Amini S, Wong-Staal F, Khalili K. Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells. Proc Natl Acad Sci U S A 1990; 87:3479-83. [PMID: 2159152 PMCID: PMC53924 DOI: 10.1073/pnas.87.9.3479] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the JC virus (JCV), a human papovavirus. PML is a relatively rare disease seen predominantly in immunocompromised individuals and is a frequent complication observed in AIDS patients. The significantly higher incidence of PML in AIDS patients than in other immunosuppressive disorders has suggested that the presence of human immunodeficiency virus type 1 (HIV-1) in the brain may directly or indirectly contribute to the pathogenesis of this disease. In the present study we have examined the expression of the JCV genome in both glial and non-glial cells in the presence of HIV-1 regulatory proteins. We find that the HIV-1-encoded trans-regulatory protein tat increases the basal activity of the JCV late promoter, JCVL, in glial cells. In a reciprocal experiment, the JCV early protein, the large tumor antigen, stimulates expression from JCVL and HIV-1 long terminal repeat promoter in both glial and non-glial cells. This trans-activation occurs at the level of RNA synthesis, as measured by the rate of transcription, stability of the message, and translation. We conclude that the presence of the HIV-1-encoded tat protein may positively affect the JCV lytic cycle in glial cells by stimulating JCV gene expression. Our results suggest a mechanism for the relatively high incidence of PML in AIDS patients than in other immunosuppressive disorders. Furthermore, our findings indicate that the HIV-1 regulatory protein tat may stimulate other viral and perhaps cellular promoters, in addition to its own.
Collapse
Affiliation(s)
- H Tada
- Department of Biochemistry and Molecular Biology, Jefferson Institute of Molecular Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | | | | | | | |
Collapse
|
12
|
Schatz C, Chatton B. Stereoalignment requirements for activation of transcription by the simian virus 40 enhancer. Nucleic Acids Res 1990; 18:421-7. [PMID: 2155399 PMCID: PMC333443 DOI: 10.1093/nar/18.3.421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We investigated the contribution to the enhancer activity of protein-protein interactions between specific trans-acting factors bound to neighbouring sequence elements of the SV40 early enhancer-promoter region. To this end, we altered the distance between the SV40 enhancer-promoter elements by inserting systematically increasing lengths of spacer DNA. We show here that the level of transcription from the SV40 early promoter decreases with the spacing between enhancer and promoter regions. In the case of insertions shorter than 125 bp, the promoter activity exhibits a strong dependence of insertion lengths of multiples of about 10 bp. This periodic effect is no longer observed for layer insertions, reflecting the torsional flexibility of DNA. These data provide evidence that, between promoter and/or enhancer elements, periodic interactions of transcriptional nucleoprotein complexes exist and stereospecific alignments are necessary to obtain an efficient initiation of transcription from the SV40 early promoter.
Collapse
Affiliation(s)
- C Schatz
- Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Faculté de Médecine, Strasbourg, France
| | | |
Collapse
|
13
|
Zhang J, Logan K, Yu XB, Davis EA, Posner M, Ackerman S. Early events of RNA polymerase II transcription initiation. Life Sci 1990; 46:729-35. [PMID: 2314195 DOI: 10.1016/0024-3205(90)90079-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have investigated the earliest stages of assembly of an RNA polymerase II transcription complex. General transcription factors from HeLa cells were partially purified and assayed using the adenovirus-2 major late promoter. Preincubation of either all the transcription factors (TF) with the DNA or only the subset consisting of TFIIA, TFIID, and DNA overcame the 15-20 min lag normally observed. The kinetics demonstrate that TFIIA first interacts with the template over a 5 min. period, and then TFIID interacts with the IIA:DNA complex over a 2 min. period. The remainder of the necessary transcription factors then interact with the IIA:IID:DNA complex. There are apparently interactions between IIA and IID, as a pre-incubation of these factors (without DNA) overcomes the lag period. Both IIA:DNA and IIA:DNA:IID interactions are temperature sensitive, resulting in slower kinetics at 0 degree C. Thus, the kinetics of transcription involve activation processes in addition to DNA binding.
Collapse
Affiliation(s)
- J Zhang
- Biology Department, University of Massachusetts, Boston 02125
| | | | | | | | | | | |
Collapse
|
14
|
Giam CZ, Xu YL. HTLV-I tax gene product activates transcription via pre-existing cellular factors and cAMP responsive element. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84815-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
Lashgari MS, Tada H, Amini S, Khalili K. Regulation of JCVL promoter function: transactivation of JCVL promoter by JCV and SV40 early proteins. Virology 1989; 170:292-5. [PMID: 2541545 DOI: 10.1016/0042-6822(89)90381-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To better understand the basis of cell type specificity of JCV replication, we have analyzed the expression of the viral late promoter in glial cells. Using transient transfection procedures, we show that the late gene expression, like that of the early gene, is restricted to glial cells. However, cotransfection with a plasmid producing the JCV early protein, T-antigen, stimulates expression from the JCV late promoter in both glial and non-glial cells. The SV40-encoded T-antigen acts similarly on transcription of JCV late promoter in both cell types. This transacting effect occurs at the level of RNA synthesis, as measured by the rate of transcription, stability of the message, and translation. These results indicate that basal JCV late promoter activity is restricted to glial cells, whereas in the presence of viral early protein this promoter functions in both glial and non-glial cells.
Collapse
Affiliation(s)
- M S Lashgari
- Department of Biochemistry and Molecular Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | |
Collapse
|
16
|
Abstract
The small (40S) subunit of eukaryotic ribosomes is believed to bind initially at the capped 5'-end of messenger RNA and then migrate, stopping at the first AUG codon in a favorable context for initiating translation. The first-AUG rule is not absolute, but there are rules for breaking the rule. Some anomalous observations that seemed to contradict the scanning mechanism now appear to be artifacts. A few genuine anomalies remain unexplained.
Collapse
Affiliation(s)
- M Kozak
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| |
Collapse
|
17
|
Abstract
We have analyzed the cis-acting sequence elements and properties of the origin of DNA replication of human papovavirus BK (BKV). The precise boundaries of the origin varied, depending on the cell type and the viral T antigen used for assay. The BKV minimal origin of replication consisted of an inverted repeat, T-antigen-binding site II, and a 20-base-pair AT block when assayed in monkey kidney CV1 and HeLa cells by using the BKV T antigen. This 76-base-pair minimal origin did not replicate in COS cells in the presence of the simian virus 40 (SV40) T antigen. Unlike that from the SV40 minimal origin, replication from the BKV minimal origin was not enhanced by BKV ori-flanking sequences in CV1 or HeLa cells, using the BKV T antigen. BKV ori-flanking sequences did activate the SV40 minimal origin of replication in COS cells and relieved the orientation-dependent property of this origin. Finally, the BKV T antigen was found to autoregulate activity of the BKV early transcriptional regulatory region. The BKV origin of replication shows similarities to and differences from those of the related viruses SV40 and polyomavirus, suggesting that the proteins involved in the initiation of replication interact with origin sequences differently in these viruses.
Collapse
Affiliation(s)
- K L Deyerle
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
18
|
Tada H, Lashgari M, Rappaport J, Khalili K. Cell type-specific expression of JC virus early promoter is determined by positive and negative regulation. J Virol 1989; 63:463-6. [PMID: 2535750 PMCID: PMC247709 DOI: 10.1128/jvi.63.1.463-466.1989] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We analyzed control sequences of the human papovavirus JC virus (JCV) to define the cis-acting elements that regulate specific expression of the viral early region genes in glial cells. Nuclear run-on transcription, S1 analysis, and chloramphenicol acetyltransferase enzyme activity in a transient transfection assay established that the cell type-specific expression of JCV early genes is determined at the transcriptional level. Using DNase footprinting analysis of nuclear proteins prepared from glial and nonglial cells, we located four regions within the JCV control sequences that specifically interacted with the proteins. In glial cells, all four domains contributed to the specific expression of a heterologous promoter, whereas in nonglial cells, two protein-binding regions showed no effect on basal transcriptional activity and the other two domains significantly downregulated transcription of the promoter. We conclude that cell type-specific transcription of the JCV early promoter is under both positive and negative regulation in eucaryotic cells.
Collapse
Affiliation(s)
- H Tada
- Department of Biochemistry and Molecular Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | |
Collapse
|
19
|
Abstract
BK virus (BKV) is a human papovavirus which latently infects a majority of the world population. Reactivation of this virus is associated with acute hemorrhagic cystitis, and BKV DNA has been found in human tumor tissue. BKV is one of many highly homologous papovaviruses, including simian virus 40 and JC virus, which display distinct host and cell-type specificities, transformation potentials, and pathologies. These differences are thought to be determined, in part, by the noncoding regulatory region of each virus, which contains the origin of replication and regulatory elements for both early and late gene expression. We have used linker scan mutants to map functional elements of a truncated BKV early promoter and enhancer and have studied the stereospecific requirements of these elements. We have also identified protein-binding regions through DNase protection studies. Our results show that a minimum of four elements are necessary for efficient early transcription, at least three of which correspond to DNase-protected domains. These protein-binding elements map to the TATA box and two nuclear factor 1 consensus sequences, one located within the enhancer repeat unit and the other located to the late side of the enhancer. The sequence of the fourth element is similar to the transcription factor Sp1 consensus sequence. Additional DNase-protected sites are centered over AP-1 and Sp1 consensus sequences. Finally, we find that the functional elements of the BKV early promoter and enhancer lack strict stereospecific requirements for efficient transcription.
Collapse
Affiliation(s)
- K L Deyerle
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|
20
|
Simons SS, Miller PA, Wasner G, Miller NR, Mercier L. Inverse correlation between dexamethasone 21-mesylate agonist activity and sensitivity to dexamethasone for induction of tyrosine aminotransferase in rat hepatoma cells. JOURNAL OF STEROID BIOCHEMISTRY 1988; 31:1-7. [PMID: 2899655 DOI: 10.1016/0022-4731(88)90198-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previous results demonstrated that both the level of induction of the liver specific enzyme tyrosine aminotransferase (TAT) by the irreversible antiglucocorticoid dexamethasone 21-mesylate (Dex-Mes) and the concentration of the reversible glucocorticoid dexamethasone (Dex) required for 50% of maximal TAT induction (i.e. EC50) were different in HTC and Fu5-5 rat hepatoma culture cells. In the present study, a retrospective analysis of these two parameters over an 8 yr period indicates that the absolute values of both parameters varied within each cell line over time in a reversible manner. The variation of both parameters appears to be causally related since a linear, reciprocal relationship exists between the amount of Dex-Mes agonist activity and log10 (Dex EC50) in both cell lines (correlation coefficient is -0.896 for n = 46). This relationship was independent of changes in basal TAT level, culture medium, and serum lot. Results with cloned HTC cells indicate that these temporal variations are not due to fluctuations in the relative abundance of two cell populations displaying either high or low amounts of agonist activity with Dex-Mes. While these analyses relied on the detection of enzyme levels, the amount of TAT mRNA is shown to parallel the enzyme levels. Thus the variation in parameters of TAT induction by Dex and by Dex-Mes appears to be modulated at a pre-translational step. Such variations have not previously been observed for the control of specific gene transcripts by other steroid hormones and may be related to the known differences in agonist activity seen for most antisteroids in various systems.
Collapse
Affiliation(s)
- S S Simons
- Steroid Hormones Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
21
|
Blair ED, Blair CC, Wagner EK. Herpes simplex virus virion stimulatory protein mRNA leader contains sequence elements which increase both virus-induced transcription and mRNA stability. J Virol 1987; 61:2499-508. [PMID: 3037112 PMCID: PMC255679 DOI: 10.1128/jvi.61.8.2499-2508.1987] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To investigate the role of 5' noncoding leader sequence of herpes simplex virus type 1 (HSV-1) mRNA in infected cells, the promoter for the 65,000-dalton virion stimulatory protein (VSP), a beta-gamma polypeptide, was introduced into plasmids bearing the chloramphenicol acetyltransferase (cat) gene together with various lengths of adjacent viral leader sequences. Plasmids containing longer lengths of leader sequence gave rise to significantly higher levels of CAT enzyme in transfected cells superinfected with HSV-1. RNase T2 protection assays of CAT mRNA showed that transcription was initiated from an authentic viral cap site in all VSP-CAT constructs and that CAT mRNA levels corresponded to CAT enzyme levels. Use of cis-linked simian virus 40 enhancer sequences demonstrated that the effect was virus specific. Constructs containing 12 and 48 base pairs of the VSP mRNA leader gave HSV infection-induced CAT activities intermediate between those of the leaderless construct and the VSP-(+77)-CAT construct. Actinomycin D chase experiments demonstrated that the longest leader sequences increased hybrid CAT mRNA stability at least twofold in infected cells. Cotransfection experiments with a cosmid bearing four virus-specified transcription factors (ICP4, ICP0, ICP27, and VSP-65K) showed that sequences from -3 to +77, with respect to the viral mRNA cap site, also contained signals responsive to transcriptional activation.
Collapse
|