1
|
Sorel O, Messaoudi I. Varicella Virus-Host Interactions During Latency and Reactivation: Lessons From Simian Varicella Virus. Front Microbiol 2018; 9:3170. [PMID: 30619226 PMCID: PMC6308120 DOI: 10.3389/fmicb.2018.03170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/07/2018] [Indexed: 01/11/2023] Open
Abstract
Varicella zoster virus (VZV) is a neurotropic alphaherpesvirus and the causative agent of varicella (chickenpox) in humans. Following primary infection, VZV establishes latency in the sensory ganglia and can reactivate to cause herpes zoster, more commonly known as shingles, which causes significant morbidity, and on rare occasions mortality, in the elderly. Because VZV infection is highly restricted to humans, the development of a reliable animal model has been challenging, and our understanding of VZV pathogenesis remains incomplete. As an alternative, infection of rhesus macaques with the homologous simian varicella virus (SVV) recapitulates the hallmarks of VZV infection and thus constitutes a robust animal model to provide critical insights into VZV pathogenesis and the host antiviral response. In this model, SVV infection results in the development of varicella during primary infection, generation of an adaptive immune response, establishment of latency in the sensory ganglia, and viral reactivation upon immune suppression. In this review, we discuss our current knowledge about host and viral factors involved in the establishment of SVV latency and reactivation as well as the important role played by T cells in SVV pathogenesis and antiviral immunity.
Collapse
Affiliation(s)
- Océane Sorel
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
2
|
Abstract
Viruses have long been implicated as triggers of disease onset and progression in multiple sclerosis (MS) and similar neuroinflammatory disorders. Decades of epidemiological, molecular, and pathologic studies have most strongly linked the human herpesviruses Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV-6) with MS. However, these viruses are ubiquitous in the general population and typically acquired decades before disease presentation, complicating the study of how they might contribute to disease. As experimental animal models may help elucidate mechanisms that have linked viruses with MS, we have been studying HHV-6 infections in a small nonhuman primate. We recently demonstrated that the subsequent induction of an MS-like experimental neuroinflammatory disease results in significantly accelerated disease in HHV-6 inoculated marmosets compared to controls. Ultimately, disease intervention in the form of clinical trials with an antiviral agent is the best way to concretely demonstrate a role for HHV-6 or any other virus in MS.
Collapse
Affiliation(s)
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, NINDS/NIH, Bethesda, MD
| |
Collapse
|
3
|
Abortive intrabronchial infection of rhesus macaques with varicella-zoster virus provides partial protection against simian varicella virus challenge. J Virol 2014; 89:1781-93. [PMID: 25410871 DOI: 10.1128/jvi.03124-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Varicella-zoster virus (VZV) is a human neurotropic alphaherpesvirus and the etiological agent of varicella (chickenpox) and herpes zoster (HZ, shingles). Previously, inoculation of monkeys via the subcutaneous, intratracheal, intravenous, or oral-nasal-conjunctival routes did not recapitulate all the hallmarks of VZV infection, including varicella, immunity, latency, and reactivation. Intrabronchial inoculation of rhesus macaques (RMs) with simian varicella virus (SVV), a homolog of VZV, recapitulates virologic and immunologic hallmarks of VZV infection in humans. Given that VZV is acquired primarily via the respiratory route, we investigated whether intrabronchial inoculation of RMs with VZV would result in a robust model. Despite the lack of varicella and viral replication in either the lungs or whole blood, all four RMs generated an immune response characterized by the generation of VZV-specific antibodies and T cells. Two of 4 VZV-inoculated RMs were challenged with SVV to determine cross-protection. VZV-immune RMs displayed no varicella rash and had lower SVV viral loads and earlier and stronger humoral and cellular immune responses than controls. In contrast to the results for SVV DNA, no VZV DNA was detected in sensory ganglia at necropsy. In summary, following an abortive VZV infection, RMs developed an adaptive immune response that conferred partial protection against SVV challenge. These data suggest that a replication-incompetent VZV vaccine that does not establish latency may provide sufficient protection against VZV disease and that VZV vaccination of RMs followed by SVV challenge provides a model to evaluate new vaccines and therapeutics against VZV. IMPORTANCE Although VZV vaccine strain Oka is attenuated, it can cause mild varicella, establish latency, and in rare cases, reactivate to cause herpes zoster (HZ). Moreover, studies suggest that the HZ vaccine (Zostavax) only confers short-lived immunity. The development of more efficacious vaccines would be facilitated by a robust animal model of VZV infection. The data presented in this report show that intrabronchial inoculation of rhesus macaques (RMs) with VZV resulted in an abortive VZV infection. Nevertheless, all animals generated a humoral and cellular immune response that conferred partial cross-protection against simian varicella virus (SVV) challenge. Additionally, VZV DNA was not detected in the sensory ganglia, suggesting that viremia might be required for the establishment of latency. Therefore, VZV vaccination of RMs followed by SVV challenge is a model that will support the development of vaccines that boost protective T cell responses against VZV.
Collapse
|
4
|
Powell DS, Walker RC, Heflin DT, Fisher D, Kosky JB, Homer LC, Reed DS, Stefano-Cole K, Trichel AM, Hartman AL. Development of novel mechanisms for housing, handling, and remote monitoring of common marmosets at animal biosafety level 3. Pathog Dis 2014; 71:219-26. [PMID: 24453160 DOI: 10.1111/2049-632x.12140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/13/2013] [Accepted: 01/08/2014] [Indexed: 11/29/2022] Open
Abstract
The use of common marmosets as an alternative non-human primate model for infectious disease research using BSL-3 viruses such as Rift Valley fever virus (RVFV) presents unique challenges with respect to housing, handling, and safety. Subject matter experts from veterinary care, animal husbandry, biosafety, engineering, and research were consulted to design a pilot experiment using marmosets infected with RVFV. This paper reviews the caging, handling, and safety-related adaptations and modifications that were required to humanely utilize marmosets as a model for high-hazard BSL-3 viral diseases.
Collapse
Affiliation(s)
- Diana S Powell
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Haberthur K, Messaoudi I. Animal models of varicella zoster virus infection. Pathogens 2013; 2:364-82. [PMID: 25437040 PMCID: PMC4235715 DOI: 10.3390/pathogens2020364] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 04/16/2013] [Accepted: 05/01/2013] [Indexed: 11/16/2022] Open
Abstract
Primary infection with varicella zoster virus (VZV) results in varicella (chickenpox) followed by the establishment of latency in sensory ganglia. Declining T cell immunity due to aging or immune suppressive treatments can lead to VZV reactivation and the development of herpes zoster (HZ, shingles). HZ is often associated with significant morbidity and occasionally mortality in elderly and immune compromised patients. There are currently two FDA-approved vaccines for the prevention of VZV: Varivax® (for varicella) and Zostavax® (for HZ). Both vaccines contain the live-attenuated Oka strain of VZV. Although highly immunogenic, a two-dose regimen is required to achieve a 99% seroconversion rate. Zostavax vaccination reduces the incidence of HZ by 51% within a 3-year period, but a significant reduction in vaccine-induced immunity is observed within the first year after vaccination. Developing more efficacious vaccines and therapeutics requires a better understanding of the host response to VZV. These studies have been hampered by the scarcity of animal models that recapitulate all aspects of VZV infections in humans. In this review, we describe different animal models of VZV infection as well as an alternative animal model that leverages the infection of Old World macaques with the highly related simian varicella virus (SVV) and discuss their contributions to our understanding of pathogenesis and immunity during VZV infection.
Collapse
Affiliation(s)
- Kristen Haberthur
- Department of Microbiology and Molecular Immunology, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Ilhem Messaoudi
- Department of Microbiology and Molecular Immunology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
6
|
Novel marmoset (Callithrix jacchus) model of human Herpesvirus 6A and 6B infections: immunologic, virologic and radiologic characterization. PLoS Pathog 2013; 9:e1003138. [PMID: 23382677 PMCID: PMC3561285 DOI: 10.1371/journal.ppat.1003138] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022] Open
Abstract
Human Herpesvirus 6 (HHV-6) is a ubiquitous virus with an estimated seroprevalence of 95% in the adult population. HHV-6 is associated with several neurologic disorders, including multiple sclerosis, an inflammatory demyelinating disease affecting the CNS. Animal models of HHV-6 infection would help clarify its role in human disease but have been slow to develop because rodents lack CD46, the receptor for cellular entry. Therefore, we investigated the effects of HHV-6 infections in a non-human primate, the common marmoset Callithrix jacchus. We inoculated a total of 12 marmosets with HHV-6A and HHV-6B intravenously and HHV-6A intranasally. Animals were monitored for 25 weeks post-inoculation clinically, immunologically and by MRI. Marmosets inoculated with HHV-6A intravenously exhibited neurologic symptoms and generated virus-specific antibody responses, while those inoculated intravenously with HHV-6B were asymptomatic and generated comparatively lower antibody responses. Viral DNA was detected at a low frequency in paraffin-embedded CNS tissue of a subset of marmosets inoculated with HHV-6A and HHV-6B intravenously. When different routes of HHV-6A inoculation were compared, intravenous inoculation resulted in virus-specific antibody responses and infrequent detection of viral DNA in the periphery, while intranasal inoculation resulted in negligible virus-specific antibody responses and frequent detection of viral DNA in the periphery. Moreover, marmosets inoculated with HHV-6A intravenously exhibited neurologic symptoms, while marmosets inoculated with HHV-6A intranasally were asymptomatic. We demonstrate that a marmoset model of HHV-6 infection can serve to further define the contribution of this ubiquitous virus to human neurologic disorders.
Collapse
|
7
|
Gilden D, Nagel MA, Mahalingam R, Mueller NH, Brazeau EA, Pugazhenthi S, Cohrs RJ. Clinical and molecular aspects of varicella zoster virus infection. FUTURE NEUROLOGY 2009; 4:103-117. [PMID: 19946620 PMCID: PMC2782836 DOI: 10.2217/14796708.4.1.103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A declining cell-mediated immunity to varicella zoster virus (VZV) with advancing age or immunosuppression results in virus reactivation from latently infected human ganglia anywhere along the neuraxis. Virus reactivation produces zoster, often followed by chronic pain (postherpetic neuralgia or PHN) as well as vasculopathy, myelopathy, retinal necrosis and cerebellitis. VZV reactivation also produces pain without rash (zoster sine herpete). Vaccination after age 60 reduces the incidence of shingles by 51%, PHN by 66% and the burden of illness by 61%. However, even if every healthy adult over age 60 years is vaccinated, there would still be about 500,000 zoster cases annually in the United States alone, about 200,000 of whom will experience PHN. Analyses of viral nucleic acid and gene expression in latently infected human ganglia and in an animal model of varicella latency in primates are serving to determine the mechanism(s) of VZV reactivation with the aim of preventing reactivation and the clinical sequelae.
Collapse
Affiliation(s)
- Don Gilden
- Author for correspondence: Department of Neurology, University of Colorado Denver School of Medicine, 4200 E. 9 Avenue, Mail Stop B182, Denver, CO 80262, USA. Tel: 1-303-315-8281; Fax: 1-303-315-8281;
| | | | | | | | | | | | | |
Collapse
|
8
|
Mueller NH, Gilden DH, Cohrs RJ, Mahalingam R, Nagel MA. Varicella zoster virus infection: clinical features, molecular pathogenesis of disease, and latency. Neurol Clin 2008; 26:675-97, viii. [PMID: 18657721 PMCID: PMC2754837 DOI: 10.1016/j.ncl.2008.03.011] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Varicella zoster virus (VZV) is an exclusively human neurotropic alphaherpesvirus. Primary infection causes varicella (chickenpox), after which virus becomes latent in cranial nerve ganglia, dorsal root ganglia, and autonomic ganglia along the entire neuraxis. Years later, in association with a decline in cell-mediated immunity in elderly and immunocompromised individuals, VZV reactivates and causes a wide range of neurologic disease. This article discusses the clinical manifestations, treatment, and prevention of VZV infection and reactivation; pathogenesis of VZV infection; and current research focusing on VZV latency, reactivation, and animal models.
Collapse
Affiliation(s)
- Niklaus H Mueller
- Department of Neurology, University of Colorado School of Medicine, 4200 East 9th Avenue, Mail Stop B182, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Simian varicella virus (SVV) causes a natural varicella-like disease in nonhuman primates. Epizootics of simian varicella occur sporadically in facilities housing Old World monkeys. SVV is antigenically and genetically related to varicella-zoster virus (VZV), the etiologic agent of varicella (chickenpox) and herpes zoster (shingles) in humans. The SVV and VZV genomes are similar in size and structure, share 70%-75% DNA homology and are co-linear with respect to gene organisation. Simian varicella is a highly contagious disease characterised by fever and vesicular skin rash and may progress to pneumonia and hepatitis. Infected monkeys may resolve the disease within 2 weeks although epizootics are sometimes associated with high morbidity and mortality. SVV, like VZV, establishes life-long latent infection, as indicated by detection of viral DNA within neural ganglia. Subsequently, SVV may reactivate to cause secondary disease and spread of the virus to susceptible monkeys. The relatedness of VZV and SVV and the similarities in the clinical symptoms and pathogenesis of human and simian varicella make SVV infection of nonhuman primates an excellent animal model to investigate VZV pathogenesis and latency, and to evaluate potential antiviral strategies.
Collapse
Affiliation(s)
- Wayne L Gray
- Department of Microbiology and Immunology, 4301 West Markham Street, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| |
Collapse
|
10
|
Brack M, Schwartz P, Heinrichs T, Schultz M, Fuchs E. Tumors of the respiratory tract observed at the German Primate Center, 1978-1994. J Med Primatol 1996; 25:424-34. [PMID: 9210028 DOI: 10.1111/j.1600-0684.1996.tb00039.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Eight spontaneous pulmonary tumors (four bronchiolar tubular adenomas, two bronchiolar adenocarcinomas, two squamous-cell carcinomas) occurred in a total of 54 adult tree shrews (Tupaia belangeri) of the GPC colonies between 1978 and 1994. The adenomas and adenocarcinomas consisted of tubularly or trabecularly arranged cuboidal to cylindrical cells interspersed with some PAS-positive goblet cells, thus resembling the epithelial lining of respiratory bronchioles of tree shrews. The two squamous-cell carcinomas probably originated from the pulmonary alveoles. Three more pulmonary tumors (one small-cell carcinoma, one bronchial adenoma, one squamous-cell carcinoma) developed in 409 adult callitrichids of the GPC colonies during the same period, and one more bronchial adenoma was observed in a common marmoset (Callithrix jacchus) of another colony located in Göttingen. With regard to the adenomas and squamous-cell carcinomas, a similar cellular origin with the three shrews is assumed. The small-cell carcinoma possibly developed from the bronchial epithelium, provided a pathogenesis parallel to that of human small-cell carcinoma is suggested. Four of the tree shrew pulmonary adenomas/adenocarcinomas and the small-cell Ca were macroscopically visible as yellowish-grey nodules of 1 mm x 1 mm to 15 mm x 15 mm diameter, predominantly involving the main lobes (2 x right main lobes, 2 x left main lobes, 1 x all lobes). The pulmonary tumors of the other animals were below macroscopical detectability.
Collapse
Affiliation(s)
- M Brack
- Department of Pathology, German Primate Center, Göttingen, Germany
| | | | | | | | | |
Collapse
|
11
|
Abstract
The live attenuated varicella vaccine, which is available for the prevention of chickenpox, was produced by a classic technology that also has been used for polio, measles, mumps, and rubella vaccines. There are many newer technologies that have been applied to the research and development of other vaccines. Each of these other approaches offers potential advantages and disadvantages relative to the current varicella vaccine.
Collapse
Affiliation(s)
- R W Ellis
- Merck Research Laboratories, West Point, Pennsylvania, USA
| |
Collapse
|
12
|
Abstract
The biological complexities of the human herpesviruses and the wide range of diseases that they cause present many difficulties for vaccine development. Until recently, progress towards this aim has been slow; however, advances in immunology and molecular biology have yielded an exciting array of new approaches for vaccination that have shown promise in model systems. This explosion in technology, together with renewed appreciation of the public-health benefits of vaccination, has sparked a resurgence of interest in the development of new vaccines and several are in, or near, clinical trials in humans. These look set to have a major impact on the incidence of herpesvirus diseases in the future.
Collapse
Affiliation(s)
- S C Inglis
- Cantab Pharmaceuticals Research Ltd., Cambridge, UK
| |
Collapse
|
13
|
Asano Y, Yoshikawa T, Urisu A, Yazaki T, Mizoguchi Y, Kurata T. Varicella-zoster virus replication site in internal organs of an otherwise healthy child with varicella and sudden death. ACTA PAEDIATRICA JAPONICA : OVERSEAS EDITION 1993; 35:348-51. [PMID: 8397467 DOI: 10.1111/j.1442-200x.1993.tb03068.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pathological findings of an otherwise healthy 17 month old boy who was exposed to Varicella-zoster virus (VZV) in his family and unexpectedly died 3 days after onset of varicella are reported. They showed a disseminated VZV infection with involvement of skin, lung, liver, spleen, gastrointestinal tract and other organs where VZV antigen was detected by the enzyme-immunoassay with monoclonal antibodies to VZV. Since the subject was the full-term product of an uncomplicated pregnancy, who grew and developed normally, and had no symptoms or laboratory findings suggestive of immunodeficiency until his death, these findings suggest that many organs are involved as major internal sites of viral replication before or during infection of skin with VZV in the immunocompetent host.
Collapse
Affiliation(s)
- Y Asano
- Department of Pediatrics, Fujita Health University School of Medicine, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Stephen Potkay
- USPHSNIHNational Center for Research ResourcesVeterinary Resources ProgramBethesdaMDU.S.A
| |
Collapse
|
15
|
Mahalingam R, Clarke P, Wellish M, Dueland AN, Soike KF, Gilden DH, Cohrs R. Prevalence and distribution of latent simian varicella virus DNA in monkey ganglia. Virology 1992; 188:193-7. [PMID: 1314451 DOI: 10.1016/0042-6822(92)90749-f] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We used polymerase chain reaction to analyze the prevalence and distribution of latent simian varicella virus (SVV) in ganglionic and nonganglionic tissues from nine African green monkeys experimentally infected with SVV. Primers specific for three different regions of the SVV genome were used for amplification. SVV DNA sequences were detected in trigeminal ganglia from seven of nine monkeys and in thoracic ganglia from seven of nine monkeys. Analysis of DNA from nonneuronal tissues of three monkeys and from adrenal glands of nine monkeys revealed the presence of SVV-specific sequences in the adrenal gland of one monkey. The results indicate that, like human varicella, SVV becomes latent primarily in ganglia at multiple levels of the neuraxis, and more than one region of the SVV genome is present in latently infected ganglia. SVV latency in primates may be a useful model for varicella latency in humans.
Collapse
Affiliation(s)
- R Mahalingam
- Department of Neurology, University of Colorado School of Medicine, Denver 80262
| | | | | | | | | | | | | |
Collapse
|
16
|
Johnston DA, Knight AM, Naylor BA, Wedderburn N, Mitchell GH. Monoclonal antibodies from Epstein-Barr virus-transformed lymphocytes of common marmosets (Callithrix jacchus) immune to malaria. J Immunol Methods 1990; 127:187-95. [PMID: 2155967 PMCID: PMC7130502 DOI: 10.1016/0022-1759(90)90068-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The B lymphocytes of the common marmoset Callithrix jacchus can be immortalized by infection with Epstein-Barr virus (EBV) in vitro (Desgranges et al., 1976). C. jacchus is susceptible to infection with the blood stages of several species of malaria parasite including the line designated MVF1 (Mitchell et al., 1988) from which it recovers and shows immunity to reinfection. By exploiting these two phenomena, EBV-transformed, marmoset lymphoblastoid cell lines secreting antibodies to malaria parasite antigens have been generated and cloned. We believe this to be the first time that monoclonal antibodies (MAbs) have been raised from common marmosets. Since numerous and diverse human pathogens can infect this small primate in the laboratory, these methods may prove generally applicable for the generation of MAbs whose specificities derive from immune responses to infection.
Collapse
Key Words
- common marmoset
- epstein-barr virus
- feeder cell
- malaria
- monoclonal antibody
- dmso, dimethyl sulphoxide
- ebv, epstein-barr virus
- edta, ethylenediaminetetraacetic acid
- egta, 1,2-di(2-aminoethoxy)ethane-n,n,n′,n′-tetraacetic acid
- fcs, heat-inactevated foetal calf serum
- fitc, fluorescein iso-thiocyanate
- ig, immunoglobulin
- lcl, lymphoblastoid cell line
- mab, monoclonal antibody
- nd, not done
- np40, nonidet p-40
- pbl, peripheral blood lymphocyte
- pi, post infection
- pmsf, phenylmethylsulfonyl fluoride
- pro, 2,5-diphenyloxazole
- pt, post transformation
- rbc, red blood cell
- sds-page, sodium dodecyl sulphate-polyacrylamide gel electrophoresis
- t, transformation
- tes, n-tris(hydroxymethyl)methyl-2amino-ethanesulphonic acid
- tlck, nα-tosyl-l-lysyl chloromethane hydrochloride
- tris, tris(hydroxymethyl)methylamine
Collapse
Affiliation(s)
- D A Johnston
- Department of Immunology, United Medical Hospital, London, U.K
| | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- J M Ostrove
- Medical Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
18
|
Affiliation(s)
- C Flexner
- Department of Medicine, and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|