1
|
Guan H, Piao FY, Li XW, Li QJ, Xu L, Yokoyama K. Maternal and fetal exposure to four carcinogenic environmental metals. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2010; 23:458-465. [PMID: 21315244 DOI: 10.1016/s0895-3988(11)60008-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 10/31/2010] [Indexed: 05/30/2023]
Abstract
OBJECTIVE To examine maternal and fetal exposure levels to four carcinogenic metals, arsenic (As), cadmium (Cd), nickel (Ni), and beryllium (Be), and to investigate their environmental influences. METHODS Metal concentrations in maternal and umbilical cord blood were measured by inductively coupled plasma-mass spectrometry (ICP-MS). Environmental factors that might play a role in exposure were analyzed using Mann-Whitney nonparametric U-tests and multiple linear regression. RESULTS The concentrations of As, Cd, and Ni in umbilical cord blood (5.41, 0.87, and 139.54 μg/L) were significantly lower than those in maternal blood (6.91, 1.93, and 165.93 μg/L). There were significant positive correlations between the maternal and cord concentrations of each carcinogen. Our results showed that: (i) exposures to potentially harmful occupational factors during pregnancy were associated with high levels of maternal As, Cd, and Ni; (ii) living close to major transportation routes (<500 m) or exposure to second-hand smoke during pregnancy increased the maternal Cd levels and (iii) living close to industrial chimneys induced high maternal Ni levels. Multiple linear regression analysis showed that these environmental factors remained significant in models of the influences of these four carcinogens. CONCLUSION Both mothers and fetuses had been exposed to As, Cd, Ni, and Be. The increased levels of these carcinogens in pregnant women were associated with some detrimental environmental factors, such as occupational exposure, contact with second-hand smoke and living close to major transportation routes or industrial chimneys.
Collapse
Affiliation(s)
- Huai Guan
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, Liaoning, China
| | | | | | | | | | | |
Collapse
|
2
|
DNA-damage induction by eight metal compounds in TK6 human lymphoblastoid cells: results obtained with the alkaline Comet assay. Mutat Res 2008; 654:22-8. [PMID: 18534899 DOI: 10.1016/j.mrgentox.2008.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 04/02/2008] [Accepted: 04/18/2008] [Indexed: 11/21/2022]
Abstract
Metal compounds are long-lived and can react with different macromolecules, producing a wide range of biological effects, including DNA damage. Since their reactivity is associated with their chemical structure, it is important to obtain information on more than one compound from the same metal. In this study, the DNA-damaging potential of two mercury compounds (mercury chloride and methyl mercury chloride), two nickel compounds (nickel chloride and potassium hexafluoronickelate), two palladium compounds (ammonium tetrachloropalladate and ammonium hexachloropalladate), and two tellurium compounds (sodium tellurite and sodium tellurate) was evaluated in human lymphoblastoid TK6 cells by use of the alkaline version of the Comet assay. As the use of computerized image-analysis systems to collect comet data has increased, the metric used for quantifying DNA damage was the Olive tail moment. Treatments lasted for 3h and the range of concentrations tested was different for each metal compound, depending on its toxicity. Both mercury agents produced DNA damage in TK6 cells, with mercury chloride producing considerably more DNA damage than methyl mercury chloride. Of the two nickel compounds, only nickel chloride (a Ni(II) compound) induced DNA breaks. Similarly, of the two palladium compounds, only the Pd(II) compound (ammonium tetrachloropalladate) was positive in the assay. Sodium tellurite was clearly positive, producing concentration-related increases in DNA damage, while sodium tellurate gave a negative response. In conclusion, the ability of inducing DNA damage by the selected metal compounds in human TK6 cells, when measured with the Comet assay, was dependent on the chemical form and, in general, compounds containing the metal in the lower valence state displayed the greater DNA-damaging ability.
Collapse
|
3
|
Abstract
The increasing utilization of heavy metals in modern industries leads to an increase in the environmental burden. Nickel represents a good example of a metal whose use is widening in modern technologies. As the result of accelerated consumption of nickel-containing products nickel compounds are released to the environment at all stages of production and utilization. Their accumulation in the environment may represent a serious hazard to human health. Among the known health related effects of nickel are skin allergies, lung fibrosis, variable degrees of kidney and cardiovascular system poisoning and stimulation of neoplastic transformation. The mechanism of the latter effect is not known and is the subject of detailed investigation. This review provides an analysis of the current state in the field.
Collapse
Affiliation(s)
- E Denkhaus
- Department of Instrumental Analytical Chemistry, Gerhard-Mercator University of Duisburg, Lotharstrasse 1, 47057 Duisburg, Germany
| | | |
Collapse
|
4
|
Touchman JW, D'Souza I, Heckman CA, Zhou R, Biggart NW, Murphy EC. Branchpoint and polypyrimidine tract mutations mediating the loss and partial recovery of the Moloney murine sarcoma virus MuSVts110 thermosensitive splicing phenotype. J Virol 1995; 69:7724-33. [PMID: 7494282 PMCID: PMC189714 DOI: 10.1128/jvi.69.12.7724-7733.1995] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Balanced splicing of retroviral RNAs is mediated by weak signals at the 3' splice site (ss) acting in concert with other cis elements. Moloney murine sarcoma virus MuSVts110 shows a similar balance between unspliced and spliced RNAs, differing only in that the splicing of its RNA is, in addition, growth temperature sensitive. We have generated N-nitroso-N-methylurea (NMU)-treated MuSVts110 revertants in which splicing was virtually complete at all temperatures and have investigated the molecular basis of this reversion on the assumption that the findings would reveal cis-acting elements controlling MuSVts110 splicing thermosensitivity. In a representative revertant (NMU-20), we found that complete splicing was conferred by a G-to-A substitution generating a consensus branchpoint (BP) signal (-CCCUGGC- to -CCCUGAC- [termed G(-25)A]) at -25 relative to the 3' ss. Weakening this BP to -CCCGAC- [G(-25)A,U(-27)C] moderately reduced splicing at the permissive temperature and sharply inhibited splicing at the originally nonpermissive temperature, arguing that MuSVts110 splicing thermosensitivity depends on a suboptimal BP-U2 small nuclear RNA interaction. This conclusion was supported by results indicating that lengthening the short MuSVts110 polypyrimidine tract and altering its uridine content doubled splicing efficiency at permissive temperatures and nearly abrogated splicing thermosensitivity. In vitro splicing experiments showed that MuSVts110 G(-25)A RNA intermediates were far more efficiently ligated than RNAs carrying the wild-type BP, the G(-25)A,U (-27)C BP, or the extended polypyrimidine tract. The efficiency of ligation in vitro roughly paralleled splicing efficiency in vivo [G(-25)A BP > extended polypyrimidine tract > G(-25)A,U(-27)C BP > wild-type BP]. These results suggest that MuSVts110 RNA splicing is balanced by cis elements similar to those operating in other retroviruses and, in addition, that its splicing thermosensitivity is a response to the presence of multiple suboptimal splicing signals.
Collapse
Affiliation(s)
- J W Touchman
- Department of Tumor Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | |
Collapse
|
5
|
Sterner DA, Murphy EC. Regulation of the efficiency and thermodependence of murine sarcoma virus MuSVts110 RNA splicing by sequences in both exons. Virology 1992; 191:638-48. [PMID: 1448919 DOI: 10.1016/0042-6822(92)90239-l] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Efficient splicing of MuSVts110 RNA is restricted to temperatures of 33 degrees or lower. Previously, we have shown that this conditional splicing event is mediated, in part, by cis-acting intronic sequences. We have now examined the role of exon sequences in MuSVts110 RNA splicing. We found that deletion of all but 36 nucleotides of the gag exon (E1) yielded a transcript incapable of supporting splicing. However, inefficient, growth temperature-dependent splicing was recovered after restoration of the 300 nucleotides of E1 proximal to the 5' splice site (5' ss). Increasingly efficient splicing was observed as more E1 was restored. Hence, although MuSVts110 E1 sequences were required for splicing, they were not involved in its thermodependence. Similarly, removal of all but 88 nucleotides of the mos exon (E2) abolished splicing at the usual 3' splice site (3' ss). In contrast to E1, restoration of the 200 nucleotides of E2 adjacent to the 3' ss reactivated efficient, temperature-independent splicing. Thermodependent splicing, however, reappeared with the replacement of E2 sequences located more than 400 nucleotides distal to the 3' splice site. In MuSVts110 mutants containing the minimum amounts of both E1 and E2 which would support splicing, splicing was both far more efficient than predicted and temperature-independent, suggesting that cooperation between E1 and E2 may help to regulate MuSVts110 splicing.
Collapse
Affiliation(s)
- D A Sterner
- Department of Tumor Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | |
Collapse
|
6
|
Huai L, Chiocca SM, Gilbreth MA, Ainsworth JR, Bishop LA, Murphy EC. Moloney murine sarcoma virus MuSVts110 DNA: cloning, nucleotide sequence, and gene expression. J Virol 1992; 66:5329-37. [PMID: 1501276 PMCID: PMC289088 DOI: 10.1128/jvi.66.9.5329-5337.1992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have cloned Moloney murine sarcoma virus (MuSV) MuSVts110 DNA by assembly of polymerase chain reaction (PCR)-amplified segments of integrated viral DNA from infected NRK cells (6m2 cells) and determined its complete sequence. Previously, by direct sequencing of MuSVts110 RNA transcribed in 6m2 cells, we established that the thermosensitive RNA splicing phenotype uniquely characteristic of MuSVts110 results from a deletion of 1,487 nucleotides of progenitor MuSV-124 sequences. As anticipated, the sequence obtained in this study contained precisely this same deletion. In addition, several other unexpected sequence differences were found between MuSVts110 and MuSV-124. For example, in the noncoding region upstream of the gag gene, MuSVts110 DNA contained a 52-nucleotide tract typical of murine leukemia virus rather than MuSV-124, suggesting that MuSVts110 originated as a MuSV-helper murine leukemia virus recombinant during reverse transcription rather than from a straightforward deletion within MuSV-124. In addition, both MuSVts110 long terminal repeats contained head-to-tail duplications of eight nucleotides in the U3 region. Finally, seven single-nucleotide substitutions were found scattered throughout MuSVts110 DNA. Three of the nucleotide substitutions were in the gag gene, resulting in one coding change in p15 and one in p30. All of the remaining nucleotide changes were found in the noncoding region between the 5' long terminal repeat and the gag gene. In NIH 3T3 cells transfected with the cloned MuSVts110 DNA, the pattern of viral RNA expression conformed with that observed in cells infected with authentic MuSVts110 virus in that viral RNA splicing was 30 to 40% efficient at growth temperatures between 28 and 33 degrees C but reduced to trace levels above 37 degrees C.
Collapse
Affiliation(s)
- L Huai
- Department of Tumor Biology, University of Texas, M. D. Anderson Cancer Center, Houston 77030
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Cancer epidemiology has identified several metal compounds as human carcinogens. Recent evidence suggests that carcinogenic metals induce genotoxicity in a multiplicity of ways, either alone or by enhancing the effects of other agents. This review summarizes current information on the genotoxicity of arsenic, chromium, nickel, beryllium and cadmium compounds and their possible roles in carcinogenesis. Each of these metals is distinct in its primary modes of action; yet there are several mechanisms induced by more than one metal, including: the induction of cellular immunity and oxidative stress, the inhibition of DNA metabolism and repair and the formation of DNA- and/or protein-crosslinks.
Collapse
Affiliation(s)
- E T Snow
- Nelson Institute of Environmental Medicine, New York University Medical Center, Tuxedo 10987
| |
Collapse
|
8
|
Chiocca SM, Sterner DA, Biggart NW, Murphy EC. Nickel mutagenesis: alteration of the MuSVts110 thermosensitive splicing phenotype by a nickel-induced duplication of the 3' splice site. Mol Carcinog 1991; 4:61-71. [PMID: 1848987 DOI: 10.1002/mc.2940040110] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We investigated DNA damage caused by carcinogenic metals in a murine sarcoma virus (MuSV)-based mutagenicity assay in which mutations targeted to v-mos expression can be selected. Nickel chloride treatment of NRK cells (termed 6m2 cells) infected with MuSVts110, a retrovirus conditionally defective in viral RNA splicing and cell transformation, caused the outgrowth of transformed "revertants" with changes in the MuSVts110 RNA splicing phenotype. Cadmium and chromium treatment of 6m2 cells resulted in the selection of a second class of revertants with what appeared to be frameshift mutations allowing the translation of a readthrough gag-mos protein. In both classes of metal-induced revertants, viral gene expression was distinct from that observed in revertants arising in untreated 6m2 cultures, arguing that metal treatment did not simply enhance the rate of spontaneous reversion. In one representative nickel revertant line the operative nickel-induced mutation affecting MuSVts110 RNA splicing was a duplication of 70 bases surrounding the 3' splice site. The effect of this mutation was to direct splicing to the most downstream of the duplicated 3' sites and concomitantly relax its characteristic thermosensitivity. These data establish the mutagenic potential of nickel and provide the first example of a defined nickel-induced mutation in a mammalian gene.
Collapse
Affiliation(s)
- S M Chiocca
- Department of Tumor Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | | | | | |
Collapse
|
9
|
Abstract
We have examined splice site activation in relation to intron structure in murine sarcoma virus (MuSV)-124 RNA. MuSV-124 contains inactive murine leukemia virus env gene splice sites (termed 5' env and 3' env) as well as cryptic sites in the gag and v-mos genes (termed 5' gag and 3' mos) which are activated for thermosensitive splicing by a 1,487-base intronic deletion in the MuSV-124 derived MuSVts110 retrovirus. To determine conditions permissive for splice site activation, we examined MuSV-124 mutants deleted in the 1,919-base intron bounded by the 5' gag and 3' mos sites. Several of these deletions activated thermosensitive splicing either at the same sites used in MuSVts110 or in a previously unreported temperature-sensitive splice event between the 5' gag and 3' env sites. These data suggested that the thermosensitive splicing phenotype characteristic of MuSVts110 required neither a specialized intron nor selection of a particular 3' splice site. The 3' env and 3' mos sites were found to compete for splicing to the 5' gag site; the more upstream 3' env site was exclusively used in MuSV-124 mutants containing both sites, whereas selection of the 3' mos site required removal of the 3' env site. Branchpoint sequences were found to have a potential regulatory role in thermosensitive splicing. Insertion of a beta-globin branchpoint sequence in a splicing-inactive MuSV-124 mutant activated efficient nonthermosensitive splicing at the 3' mos site, whereas a mutated branchpoint activated less efficient but thermosensitive splicing.
Collapse
Affiliation(s)
- M de Mars
- Department of Tumor Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | |
Collapse
|
10
|
De Mars M, Sterner DA, Chiocca SM, Biggart NW, Murphy EC. Regulation of RNA splicing in gag-deficient mutants of Moloney murine sarcoma virus MuSVts110. J Virol 1990; 64:1421-8. [PMID: 2157036 PMCID: PMC249274 DOI: 10.1128/jvi.64.4.1421-1428.1990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We investigated whether the MuSVts110 gag gene product (P58gag) can regulate the novel growth temperature dependence of MuSVts110 RNA splicing. MuSVts110 mutants with either frameshifts or deletions in the gag gene were tested for their ability to maintain the MuSVts110 splicing phenotype. Only small decreases in splicing efficiency and no changes in the thermosensitivity of viral RNA splicing were observed in MuSVts110 gag gene frameshift mutants. Deletions within the gag gene, however, variably decreased MuSVts110 splicing efficiency but had no effect on its thermosensitivity. Another class of MuSVts110 splicing mutants generated by treatment of MuSVts110-infected cells with NiCl2 was also examined. In these "nickel revertants," P58gag is made, but splicing of the viral transcript is nearly complete at all growth temperatures. The splicing of "tagged" viral RNA transcribed from a modified MuSVts110 DNA introduced into nickel revertant cells remained thermosensitive, arguing against trans effects of viral gene products on splicing efficiency. These experiments indicated that neither the MuSVts110 P58gag protein nor any other viral gene product acts in trans to regulate MuSVts110 splicing.
Collapse
Affiliation(s)
- M De Mars
- Department of Tumor Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | | | | | | | |
Collapse
|
11
|
Hamelin R, Honore N, Sergiescu D, Singh B, Gerfaux J, Arlinghaus RB. Reversion of thermosensitive splicing defect of Moloney murine sarcoma virus ts110 by oversplicing of viral RNA. J Virol 1990; 64:1378-82. [PMID: 2154617 PMCID: PMC249261 DOI: 10.1128/jvi.64.3.1378-1382.1990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Moloney murine sarcoma virus ts110 possesses a thermosensitive splicing defect. By continuously growing nonproducer cells at the nonpermissive temperature, a new class of revertant cells, termed 6m3, that had lost the thermosensitive splicing defect was produced, and six distinct clones were selected. These cell clones were transformed at either permissive or restrictive temperatures. Unlike parental 6m2 cells, which contain two virus-specific RNA species of 4.0 and 3.5 kilobases (kb) at temperatures permissive for transformation, the 3.5-kb RNA was the only virus-specific RNA species detected in 6m3 clones. No new v-mos-containing DNA fragment was observed in Southern blot analysis of these cell clones compared with parental 6m2 cells, indicating that the 3.5-kb RNA was a splicing product rather than a direct transcript. Moreover, these cells expressed P85gag-mos but not P58gag at any temperature. The reversion of the phenotype in 6m3 cell clones appears to be the result of a selective loss of the temperature sensitivity of the splicing reaction, without affecting the thermosensitivity of the protein kinase activity. This change also appears to alter the mechanism regulating the efficiency of the genomic RNA-splicing reaction.
Collapse
Affiliation(s)
- R Hamelin
- Institut d'Oncologie Cellulaire et Moléculaire Humaine, Bobigny, France
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The toxicity and carcinogenicity of nickel compounds are considered in three broad categories: (1) systemic toxicology, (2) molecular toxicology, and (3) carcinogenicity. The systemic toxicity of nickel compounds is examined based upon human and animal studies. The major organs affected are discussed in three categories: (1) kidney, (2) immune system, and (3) other organs. The second area of concentration is molecular toxicology, which will include a discussion of the chemistry of nickel, its binding to small and large molecular weight ligands, and, finally, its cellular effects. The third major area involves a discussion of the carcinogenicity and genotoxicity of nickel compounds. This section focuses on mechanisms, using studies conducted in vivo and in vitro. It also includes a discussion of the assessment of the carcinogenicity of nickel compounds.
Collapse
Affiliation(s)
- T P Coogan
- Institute of Environmental Medicine, New York University Medical Center, New York
| | | | | | | |
Collapse
|
13
|
Abstract
The spliced form of MuSVts110 viral RNA is approximately 20-fold more abundant at growth temperatures of 33 degrees C or lower than at 37 to 41 degrees C. This difference is due to changes in the efficiency of MuSVts110 RNA splicing rather than selective thermolability of the spliced species at 37 to 41 degrees C or general thermosensitivity of RNA splicing in MuSVts110-infected cells. Moreover, RNA transcribed from MuSVts110 DNA introduced into a variety of cell lines is spliced in a temperature-sensitive fashion, suggesting that the structure of the viral RNA controls the efficiency of the event. We exploited this novel splicing event to study the cleavage and ligation events during splicing in vivo. No spliced viral mRNA or splicing intermediates were observed in MuSVts110-infected cells (6m2 cells) at 39 degrees C. However, after a short (about 30-min) lag following a shift to 33 degrees C, viral pre-mRNA cleaved at the 5' splice site began to accumulate. Ligated exons were not detected until about 60 min following the initial detection of cleavage at the 5' splice site, suggesting that these two splicing reactions did not occur concurrently. Splicing of viral RNA in the MuSVts110 revertant 54-5A4, which lacks the sequence -AG/TGT- at the usual 3' splice site, was studied. Cleavage at the 5' splice site in the revertant viral RNA proceeded in a temperature-sensitive fashion. No novel cryptic 3' splice sites were activated; however, splicing at an alternate upstream 3' splice site used at low efficiency in normal MuSVts110 RNA was increased to a level close to that of 5'-splice-site cleavage in the revertant viral RNA. Increased splicing at this site in 54-5A4 viral RNA is probably driven by the unavailability of the usual 3' splice site for exon ligation. The thermosensitivity of this alternate splice event suggests that the sequences governing the thermodependence of MuSVts110 RNA splicing do not involve any particular 3' splice site or branch point sequence, but rather lie near the 5' end of the intron.
Collapse
|
14
|
de Mars M, Cizdziel PE, Murphy EC. Activation of thermosensitive RNA splicing and production of a heat-labile P85gag-mos kinase by the introduction of a specific deletion in murine sarcoma virus-124 DNA. J Virol 1988; 62:1907-16. [PMID: 2835496 PMCID: PMC253273 DOI: 10.1128/jvi.62.6.1907-1916.1988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Murine sarcoma virus ts110 (MuSVts110) is a conditionally transformation-defective MuSV mutant lacking 1,487 bases found in its wild-type parent, MuSV-349 (MuSV-124). Expression of the MuSVts110 v-mos gene product, P85gag-mos, requires splicing of the viral transcript to align the gag and mos genes in frame. However, this splice event is restricted to growth temperatures of 33 degrees C or lower. No splicing of the viral RNA, no production of P85gag-mos, and, hence, no cell transformation is observed at growth temperatures above 33 degrees C. To determine whether thermosensitive splicing is an intrinsic property of To determine whether thermosensitive splicing is an intrinsic property of MuSVts110 RNA specified by the 1,487-base deletion or a result of a cellular defect, we examined an "equivalent" or MuSVts110 DNA (designated ts32 DNA) constructed by combining wild-type MuSV-124 DNA fragments with a synthetic oligonucleotide to yield an otherwise wild-type viral DNA containing the same 1,487-base deletion as authentic MuSVts110. As observed in control cells (6m2 cells) infected with the authentic MuSVts110 virus, NIH 3T3 cells transfected with ts32 DNA appeared morphologically transformed when grown at 33 degrees C, but were converted to a more normal, flattened shape within a few hours of a shift to 39 degrees C. In concert with these morphological changes, both the processing of the ts32 RNA transcripts and the production of ts32 p85gag-mos kinase were found to be optimal at growth temperatures from 28 to 33 degrees C, but dramatically reduced at 37 to 41 degrees C. Like authentic P85gag-mos, the ts32 P85gag-mos kinase activity was rapidly inactivated by brief exposure to 39 degrees C. These results suggested that the MuSVts110 equivalent is functionally indistinguishable from authentic MuSVts110 and that the novel temperature-sensitive splicing of MuSVts110 transcripts is specified by an intrinsic property of the viral RNA.
Collapse
Affiliation(s)
- M de Mars
- Department of Tumor Biology, University of Texas System Cancer Center, M.D. Anderson Hospital and Tumor Institute, Houston 77030
| | | | | |
Collapse
|
15
|
Cizdziel PE, de Mars M, Murphy EC. Exploitation of a thermosensitive splicing event to study pre-mRNA splicing in vivo. Mol Cell Biol 1988; 8:1558-69. [PMID: 2837647 PMCID: PMC363316 DOI: 10.1128/mcb.8.4.1558-1569.1988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The spliced form of MuSVts110 viral RNA is approximately 20-fold more abundant at growth temperatures of 33 degrees C or lower than at 37 to 41 degrees C. This difference is due to changes in the efficiency of MuSVts110 RNA splicing rather than selective thermolability of the spliced species at 37 to 41 degrees C or general thermosensitivity of RNA splicing in MuSVts110-infected cells. Moreover, RNA transcribed from MuSVts110 DNA introduced into a variety of cell lines is spliced in a temperature-sensitive fashion, suggesting that the structure of the viral RNA controls the efficiency of the event. We exploited this novel splicing event to study the cleavage and ligation events during splicing in vivo. No spliced viral mRNA or splicing intermediates were observed in MuSVts110-infected cells (6m2 cells) at 39 degrees C. However, after a short (about 30-min) lag following a shift to 33 degrees C, viral pre-mRNA cleaved at the 5' splice site began to accumulate. Ligated exons were not detected until about 60 min following the initial detection of cleavage at the 5' splice site, suggesting that these two splicing reactions did not occur concurrently. Splicing of viral RNA in the MuSVts110 revertant 54-5A4, which lacks the sequence -AG/TGT- at the usual 3' splice site, was studied. Cleavage at the 5' splice site in the revertant viral RNA proceeded in a temperature-sensitive fashion. No novel cryptic 3' splice sites were activated; however, splicing at an alternate upstream 3' splice site used at low efficiency in normal MuSVts110 RNA was increased to a level close to that of 5'-splice-site cleavage in the revertant viral RNA. Increased splicing at this site in 54-5A4 viral RNA is probably driven by the unavailability of the usual 3' splice site for exon ligation. The thermosensitivity of this alternate splice event suggests that the sequences governing the thermodependence of MuSVts110 RNA splicing do not involve any particular 3' splice site or branch point sequence, but rather lie near the 5' end of the intron.
Collapse
Affiliation(s)
- P E Cizdziel
- Department of Tumor Biology, University of Texas System Cancer Center, M.D. Anderson Hospital and Tumor Institute, Houston 77030
| | | | | |
Collapse
|
16
|
Biggart NW, Murphy EC. Analysis of metal-induced mutations altering the expression or structure of a retroviral gene in a mammalian cell line. Mutat Res 1988; 198:115-29. [PMID: 2832750 DOI: 10.1016/0027-5107(88)90047-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Carcinogenic metal compounds, with the exception of chromium(VI), have been found to be poorly mutagenic in both prokaryotic and mammalian cell mutagenesis assays, yet they are clearly clastogenic (Hansen and Stern, 1984). Thus, the role of metals as initiators in carcinogenesis has been difficult to delineate. In an effort to develop a model system capable of assaying DNA damage caused by carcinogenic metals, we have investigated the role of NiCl2, CdCl2, Na2CrO4, and NMU in a murine sarcoma virus-infected mammalian cell line in which expression of the retroviral v-mos gene is growth-temperature regulated. This cell line, designated 6m2, contains a single-copy, stably integrated, mutant Moloney murine sarcoma virus DNA (designated MuSVts110) and is temperature sensitive for morphological transformation due to a conditionally defective viral RNA-splicing event that in turn regulates expression of the viral transforming gene. Mutations affecting the viral DNA in 6m2 cells can be detected if these alterations lead to changes in the structure or expression of the transforming protein encoded by the MuSVts110 v-mos gene. Analysis of the viral proteins from 6m2 'revertant' cell lines (as defined by reversion to the transformed phenotype at all growth temperatures) selected after treatment with the above agents showed that NiCl2, NMU, and Na2CrO4 each induced a different yet specific type of mutation. NiCl2 and NMU each altered the temperature sensitivity of viral RNA splicing, possibly due to base substitution mutations, but did so to distinctly different extents. Na2CrO4 affected the structure of the viral proteins by inducing what appear to be short frameshift mutations that resulted in the temperature-dependent translation of a novel virus-encoded transforming protein, P100gag-mos. CdCl2 also induced frameshift mutations but, in one case, induced a mutation which may result from a deletion of about 300 bases within the MuSVts110 DNA.
Collapse
Affiliation(s)
- N W Biggart
- Department of Tumor Biology, University of Texas M.D. Anderson Hospital and Tumor Institute, Houston 77030
| | | |
Collapse
|
17
|
Biggart NW, Murphy EC. Involvement of reactive oxygen intermediates in the mutagenicity of tumor promoters. BASIC LIFE SCIENCES 1988; 49:457-60. [PMID: 2854992 DOI: 10.1007/978-1-4684-5568-7_70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- N W Biggart
- Department of Biology, San Diego State University, California 92116-0057
| | | |
Collapse
|