1
|
Ying M, Wang H, Liu T, Han Z, Lin K, Shi Q, Zheng N, Ye T, Gong H, Xu F. CLEAR Strategy Inhibited HSV Proliferation Using Viral Vectors Delivered CRISPR-Cas9. Pathogens 2023; 12:814. [PMID: 37375504 DOI: 10.3390/pathogens12060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a leading cause of encephalitis and infectious blindness. The commonly used clinical therapeutic drugs are nucleoside analogues such as acyclovir. However, current drugs for HSV cannot eliminate the latent virus or viral reactivation. Therefore, the development of new treatment strategies against latent HSV has become an urgent need. To comprehensively suppress the proliferation of HSV, we designed the CLEAR strategy (coordinated lifecycle elimination against viral replication). VP16, ICP27, ICP4, and gD-which are crucial genes that perform significant functions in different stages of the HSV infection lifecycle-were selected as targeting sites based on CRISPR-Cas9 editing system. In vitro and in vivo investigations revealed that genome editing by VP16, ICP27, ICP4 or gD single gene targeting could effectively inhibit HSV replication. Moreover, the combined administration method (termed "Cocktail") showed superior effects compared to single gene editing, which resulted in the greatest decrease in viral proliferation. Lentivirus-delivered CRISPR-Cas9/gRNA editing could effectively block HSV replication. The CLEAR strategy may provide new insights into the potential treatment of refractory HSV-1-associated diseases, particularly when conventional approaches have encountered resistance.
Collapse
Affiliation(s)
- Min Ying
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huadong Wang
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtan Liu
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zengpeng Han
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunzhang Lin
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qing Shi
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ning Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tao Ye
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Huinan Gong
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, College of Life Sciences, Xuzhou Medical University, Xuzhou 221004, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
Arlt H, Lang D, Gebert S, Stamminger T. Identification of binding sites for the 86-kilodalton IE2 protein of human cytomegalovirus within an IE2-responsive viral early promoter. J Virol 1994; 68:4117-25. [PMID: 8207790 PMCID: PMC236335 DOI: 10.1128/jvi.68.7.4117-4125.1994] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The 86-kDa IE2 protein (IE86) of human cytomegalovirus (HCMV) can act as both an activator and a repressor of gene expression. The mechanisms for both of these functions are not well defined. It has recently been demonstrated that this protein has sequence-specific DNA binding properties: it interacts directly with a target sequence that is located between the TATA box and the cap site of its own promoter. This sequence, termed the CRS (cis repression signal) element, is required for negative autoregulation of the IE1/IE2 enhancer/promoter by IE2. We demonstrate now that binding of this protein to DNA is not confined to this site but occurs also within an early promoter of HCMV that has previously been shown to be strongly IE2 responsive. By DNase I protection analysis using a purified, procaryotically expressed IE2 protein, we could identify three binding sites within the region of -290 to -120 of the UL112 promoter of HCMV. Competition in DNase I protection experiments as well as gel retardation experiments showed that the identified binding sites are specific and have high affinity. Deletion of IE2 binding sites from this promoter reduced the level of transactivation; however, the remaining promoter could still be stimulated about 40-fold. Constructs in which IE2 binding sites were fused directly to the TATA box of the UL112 promoter did not reveal a significant contribution of these sequences to transactivation. However, if an IE2 binding site was reinserted upstream of nucleotide -117 of the UL112 promoter, an increase in transactivation by IE2 was obvious, whereas a mutated sequence could not mediate this effect. This finding suggests that DNA-bound IE2 can contribute to transactivation but seems to require the presence of additional transcription factors. Moreover, a comparison of the detected IE2 binding sites could not detect a strong homology, suggesting that this protein may be able to interact with a broad spectrum of different target sequences.
Collapse
Affiliation(s)
- H Arlt
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
3
|
Kerry JA, Priddy MA, Stenberg RM. Identification of sequence elements in the human cytomegalovirus DNA polymerase gene promoter required for activation by viral gene products. J Virol 1994; 68:4167-76. [PMID: 8207792 PMCID: PMC236339 DOI: 10.1128/jvi.68.7.4167-4176.1994] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To determine the mechanisms involved in the regulation of human cytomegalovirus early gene expression, we have examined the gene that encodes the viral DNA polymerase (UL54, pol). Our previous studies demonstrated that sequences required for activation of the pol promoter by immediate-early proteins are contained within a region from -128 to +20 and that cellular proteins can bind to this activation domain. In this study, we demonstrate by competition analysis that binding of cellular proteins to pol is associated with an 18-bp region containing a single copy of a novel inverted repeat, IR1. Time course analysis indicated that viral infection increased the level of protein binding to IR1, concurrent with the activation of the pol promoter. Mutation of the IR1 element abrogated binding of cellular factors to the pol promoter and reduced by threefold the activation by immediate-early proteins. Similarly, mutation of IR1 rendered the promoter poorly responsive to activation by viral infection. Mutation of additional sequence elements in the pol promoter had little effect, indicating that IR1 plays the major role in pol promoter regulation. These studies demonstrate that the interaction between cellular factors and IR1 is important for the regulation of expression of the polymerase gene by viral proteins.
Collapse
Affiliation(s)
- J A Kerry
- Department of Microbiology and Immunology, Eastern Virginia Medical School, Norfolk 23501
| | | | | |
Collapse
|
4
|
Koop KE, Duncan J, Smiley JR. Binding sites for the herpes simplex virus immediate-early protein ICP4 impose an increased dependence on viral DNA replication on simple model promoters located in the viral genome. J Virol 1993; 67:7254-63. [PMID: 8230448 PMCID: PMC238188 DOI: 10.1128/jvi.67.12.7254-7263.1993] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We examined the ability of binding sites for the herpes simplex virus immediate-early protein ICP4 to alter the regulation of closely linked promoters by placing strong ICP4 binding sites upstream or downstream of simple TATA promoters in the intact viral genome. We found that binding sites strongly reduced the levels of expression at early times postinfection and that this effect was partially overcome after the onset of viral DNA replication. These data confirm that DNA-bound ICP4 can inhibit the activity of a closely linked promoter and raise the possibility that ICP4 binding sites contribute to temporal regulation during infection.
Collapse
Affiliation(s)
- K E Koop
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
5
|
Lang D, Stamminger T. The 86-kilodalton IE-2 protein of human cytomegalovirus is a sequence-specific DNA-binding protein that interacts directly with the negative autoregulatory response element located near the cap site of the IE-1/2 enhancer-promoter. J Virol 1993; 67:323-31. [PMID: 8380080 PMCID: PMC237366 DOI: 10.1128/jvi.67.1.323-331.1993] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The 86-kDa IE-2 protein of human cytomegalovirus is able to autoregulate its own expression via a short nucleotide sequence, termed the cis repression signal (CRS), that is located between the TATA box and the cap site of the IE-1/2 enhancer-promoter. Here we report that the 86-kDa IE-2 protein can interact directly with the CRS, thus demonstrating that IE-2 is a DNA-binding protein. This could be shown by both DNase I protection and gel retardation experiments using a procaryotically expressed IE-2 protein that was purified to near homogeneity. The interaction was sequence specific since a mutated form of the CRS that had previously been reported to be defective in mediating negative regulation could no longer compete for binding in DNase I protection experiments. In addition, an IE-2-reactive monoclonal antibody was able to elicit a supershift in gel retardation experiments, thus proving the presence of IE-2 within the protein-DNA complex. These results suggest that formation of a specific complex between an IE protein and a target sequence located near the cap site of its own gene promoter may be a common mechanism used by both alphaherpesviruses and betaherpesviruses to autoregulate IE gene transcription, although the sequence requirements differ between the two herpesviral subgroups.
Collapse
Affiliation(s)
- D Lang
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
6
|
Imbalzano AN, DeLuca NA. Substitution of a TATA box from a herpes simplex virus late gene in the viral thymidine kinase promoter alters ICP4 inducibility but not temporal expression. J Virol 1992; 66:5453-63. [PMID: 1323706 PMCID: PMC289102 DOI: 10.1128/jvi.66.9.5453-5463.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The role of cis-acting promoter elements associated with herpes simplex virus type 1 (HSV-1) early and late genes was evaluated during productive infection with regard to activation of gene expression by the HSV-1 transactivator ICP4 and control of temporal regulation. A set of recombinant viruses was constructed such that expression of an HSV-1 early gene, thymidine kinase (tk), was placed under the control of either the tk TATA box or the TATA box from the late gene, glycoprotein C (gC), in the presence or absence of the upstream Sp1 and CCAAT sites normally found in the tk promoter. The presence of Sp1 sites in the promoter or replacement of the tk TATA box with the gC TATA box resulted in a decreased activation of tk mRNA expression by ICP4. Substitution of the A + T-rich region from the gC TATA box in the context of the remainder of the surrounding tk sequences resulted in a promoter that bound recombinant TATA-binding protein (TBP) better at lower concentrations than the wild-type tk promoter did. These results indicate that tk promoters that are better able to utilize TBP are less responsive to ICP4 activation and suggest that activation by ICP4 involves the general transcription factors that interact with TBP or TBP itself. Additionally, all of the viruses expressed tk at early times postinfection, indicating that cis-acting promoter elements that control the level of expression of HSV-1 early and late genes do not determine temporal regulation.
Collapse
Affiliation(s)
- A N Imbalzano
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
7
|
Romanelli MG, Mavromara-Nazos P, Spector D, Roizman B. Mutational analysis of the ICP4 binding sites in the 5' transcribed noncoding domains of the herpes simplex virus 1 UL 49.5 gamma 2 gene. J Virol 1992; 66:4855-63. [PMID: 1321274 PMCID: PMC241316 DOI: 10.1128/jvi.66.8.4855-4863.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A previous report (P. Mavromara-Nazos and B. Roizman, Proc. Natl. Acad. Sci. USA 86:4071-4075, 1989) demonstrated that substitution of sequences of the thymidine kinase (tk) gene, a beta gene, extending from -16 to +51 with sequences extending from -12 to +104 of the gamma 2 UL 49.5 gene in viral recombinant R3820 conferred upon the chimeric gene gamma 2 attributes in the context of the viral genome in a productive infection. The UL49.5 gene sequences extending from -179 to +104 contain four DNA binding sites for the major regulatory protein ICP4. Of these sites, two map between nucleotides +20 and +80 within the sequence which confers gamma 2 regulation upon the chimeric gene. To determine the role of these ICP4 binding sites in conferring the gamma 2 gene attributes, sequences comprising the two ICP4 binding sites were mutagenized and used to reconstruct the R3820 recombinant virus. In addition, a new recombinant virus (R8023) was constructed in which tk sequences extending from -240 to +51 were replaced with wild-type or mutated sequences contained between nucleotides -179 to +104 of the UL 49.5 gene. Vero cells infected with the recombinant viruses in the presence or absence of phosphonoacetate, a specific inhibitor of viral DNA synthesis, were then tested for accumulation of tk RNA by using an RNase protection assay. The results indicate that in the recombinant R3820, a mutation which destroyed one of the two UL49.5 ICP4 DNA binding sites significantly reduced the accumulation of tk RNA at both early and late times after infection. The effect of this mutation was less pronounced in cells infected with the R8023 virus, whose chimeric tk gene contains the two upstream UL49.5 ICP4 binding sites. None of the mutations affected the sensitivity of the chimeric genes to phosphonoacetate. The mutated site appears to be involved in the accumulation of RNA.
Collapse
Affiliation(s)
- M G Romanelli
- Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, Illinois 60637
| | | | | | | |
Collapse
|
8
|
Chen S, Mills L, Perry P, Riddle S, Wobig R, Lown R, Millette RL. Transactivation of the major capsid protein gene of herpes simplex virus type 1 requires a cellular transcription factor. J Virol 1992; 66:4304-14. [PMID: 1318406 PMCID: PMC241236 DOI: 10.1128/jvi.66.7.4304-4314.1992] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The purpose of this investigation was to identify and characterize the regulatory elements involved in the transcriptional activation of the beta gamma (leaky-late or gamma 1) genes of herpes simplex virus type 1 (HSV-1) by using the major capsid protein (VP5 or ICP5) gene as model. Gel mobility shift assays with nuclear extracts from uninfected and infected HeLa cells enabled us to identify two major protein-DNA complexes involving the VP5 promoter. The mobilities of these two complexes remained unaltered, and no unique complexes were observed when infected cell nuclear extracts were used. DNase I and orthophenanthroline-Cu+ footprint analyses revealed that the two complexes involve a single binding site, GGCCATCTTGAA, located between -64 and -75 bp relative to the VP5 cap site. To determine the function of this leaky-late binding site (LBS) in VP5 gene activation, we tested the effect of mutations in this region by using transient expression of a cis-linked chloramphenicol acetyltransferase gene. Deletion of the above sequence resulted in a seven- to eightfold reduction in the level of transactivation of the chloramphenicol acetyltransferase gene by superinfection with HSV-1 or by cotransfection of HSV-1 immediate-early genes. From these results, we conclude that the LBS sequence and a cellular factor(s) are involved in the transactivation of the VP5 gene. A search of published gene sequences revealed that sequences related to the LBS exist in a number of other HSV-1, cytomegalovirus, retrovirus, and cellular promoters. Sequence homologies of binding sites and results of unpublished competition binding studies suggest that this leaky-late binding factor may be related to, or the same as, a ubiquitous cellular transcriptional factor called YY1 or common factor-1 (also known as NF-E1, delta, and UCRBP).
Collapse
Affiliation(s)
- S Chen
- Department of Biology, Portland State University, Oregon
| | | | | | | | | | | | | |
Collapse
|
9
|
Smiley JR, Johnson DC, Pizer LI, Everett RD. The ICP4 binding sites in the herpes simplex virus type 1 glycoprotein D (gD) promoter are not essential for efficient gD transcription during virus infection. J Virol 1992; 66:623-31. [PMID: 1309905 PMCID: PMC240760 DOI: 10.1128/jvi.66.2.623-631.1992] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Activation of the early and late genes of herpes simplex virus type 1 during infection in tissue culture requires functional immediate-early regulatory protein ICP4. ICP4 is a specific DNA-binding protein which recognizes a variety of DNA sequences, many of which contain the consensus ATCGTC. In general, mutations which impair the ability of ICP4 to bind to DNA also eliminate its ability to activate viral early and late promoters both in transfection assays and in the infected cell. However, the role of ICP4 binding sites in the viral genome is unclear; many early and late promoters do not contain consensus binding sites in their vicinity. The glycoprotein D (gD) gene contains two well-characterized ICP4 binding sites upstream of its promoter and a third downstream of the transcription start site. Multimerization of one of these sites has been shown to increase the response of the gD promoter to ICP4 in transfection assays, while their removal reduces stimulation of the gD promoter by ICP4 in vitro. To assess the role of these binding sites during virus infection, we have constructed a recombinant viral genome which has mutations affecting all three. Comparison of the amounts of gD RNA synthesized by the recombinant and wild-type viruses indicated that the mutations had little or no effect on the activity of the gD promoter. Therefore, either the sites have no essential role in gD promoter regulation in the presence of all of the herpes simplex virus type 1 IE polypeptides during a normal infection or they can be functionally substituted by other ICP4 binding sites elsewhere in the genome.
Collapse
Affiliation(s)
- J R Smiley
- Molecular Virology and Immunology Program, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
DiDonato JA, Spitzner JR, Muller MT. A predictive model for DNA recognition by the herpes simplex virus protein ICP4. J Mol Biol 1991; 219:451-70. [PMID: 1646893 DOI: 10.1016/0022-2836(91)90186-a] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The herpes simplex virus (HSV) type 1 immediate early protein ICP4 is an essential regulatory enzyme that binds DNA directly in order to stimulate or repress gene expression. The degree of transaction is related to the locations and affinities of the ICP4 binding sites. A number of binding sites have been identified; some sites showed obvious homology to one another, and these were called consensus ICP4 binding sites. Other binding sites did not appear to be related, and these were termed non-consensus sites. We hypothesized, however, that a single model could describe all ICP4 binding sites, given the appropriate characterizations of sites. We performed statistical analyses on a set of ICP4 binding sites and found that the bases important for defining binding were located within a 13 base region. Missing contact analyses on several high-affinity binding sites revealed the same 13 base region as important for critical protein-DNA contacts. From these data we derived the consensus sequence RTCGTCNNYNYSG, where R is purine, Y is pyrimidine, S is C or G, and N is any base. In addition, we found that a better profile for ICP4 binding sites involves use of a matrix of base proportions from the binding site data; sites are analyzed by calculating the Matrix Mean score. We show that this Matrix Mean model could accurately predict the locations of novel ICP4 binding sites. Finally, we analyzed the entire HSV-1 genome for potential ICP4 binding sites and speculate about what these results suggest for the role of ICP4 in viral gene regulation.
Collapse
Affiliation(s)
- J A DiDonato
- Ohio State University, Department of Molecular Genetics, Columbus 43210
| | | | | |
Collapse
|
11
|
Pizer LI, Everett RD, Tedder DG, Elliott M, Litman B. Nucleotides within both proximal and distal parts of the consensus sequence are important for specific DNA recognition by the herpes simplex virus regulatory protein ICP4. Nucleic Acids Res 1991; 19:477-83. [PMID: 1849261 PMCID: PMC333636 DOI: 10.1093/nar/19.3.477] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The herpes simplex virus type 1 regulatory protein ICP4 is a sequence specific DNA binding protein which associates with a number of different sites, some of which include the consensus ATCGTCnnnnYCGRC. In order to investigate the involvement in DNA binding of conserved bases within the consensus, we have synthesised a family of mutant oligonucleotides and tested their ability to form a complex with ICP4. We have also compared the binding specificities of bacterially expressed fragments of ICP4 which include the DNA binding domain. Mutation of most (but not all) bases in the proximal part of the consensus greatly reduced binding by ICP4, as did a mutation affecting the distal part. Most (but not all) G residues identified in methylation interference assays were required for efficient binding. While a bacterially expressed ICP4 peptide encompassing amino acid residues 252-523 bound to DNA with a specificity similar to that of the whole protein, a shorter protein (residues 275-523) had a slightly relaxed DNA binding specificity.
Collapse
Affiliation(s)
- L I Pizer
- Department of Microbiology/Immunology, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | | | |
Collapse
|
12
|
Flowers CC, Eastman EM, O'Callaghan DJ. Sequence analysis of a glycoprotein D gene homolog within the unique short segment of the EHV-1 genome. Virology 1991; 180:175-84. [PMID: 1845821 DOI: 10.1016/0042-6822(91)90021-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA sequence analysis of one-third of the unique short (Us) segment of the equine herpesvirus type 1 (EHV-1) genome revealed an open reading frame (ORF) whose translated sequence exhibits significant homology to glycoprotein D of herpes simplex virus (HSV) types 1 and 2 and to pseudorabies virus (PRV) glycoprotein 50, the gD equivalent. The ORF of the EHV-1 gD homolog lies within the pSZ-4 BamHI/KpnI fragment (map units 0.865 to 0.872 and 0.869 to 0.884) and is capable of encoding a polypeptide of 385 amino acids (43,206 molecular weight). Analysis of the nucleotide sequence revealed a complete transcriptional unit including CAAT and TATA elements and signals for polyadenylation. The predicted protein exhibits features typical of a transmembrane protein: a hydrophobic N-terminal signal sequence followed by a probable cleavage site, four potential N-linked glycosylation sites, and a hydrophobic membrane-spanning domain near the carboxyl terminus followed by a charged membrane anchor sequence.
Collapse
Affiliation(s)
- C C Flowers
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130
| | | | | |
Collapse
|
13
|
Everett RD, Paterson T, Elliott M. The major transcriptional regulatory protein of herpes simplex virus type 1 includes a protease resistant DNA binding domain. Nucleic Acids Res 1990; 18:4579-85. [PMID: 2167472 PMCID: PMC331279 DOI: 10.1093/nar/18.15.4579] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Herpes simplex virus type 1 expresses five immediate-early (IE) polypeptides. In the absence of functional Vmw175 (the product of IE gene 3) activation of transcription of later classes of viral genes and repression of IE gene expression does not occur. The recognition of specific DNA sequences by Vmw175 requires, as determined by sensitivity to mutation, a part of the protein highly conserved in the corresponding proteins of related herpes viruses. However, mutations in other parts of the protein can also disrupt specific DNA binding. This paper shows that the DNA binding domain of Vmw175 can be liberated as a functional unit by digestion with proteinase K. Analysis of mutant Vmw175 proteins showed that the proteinase K resistant domain has an amino terminus between amino acid residues 229 and 292, while its carboxy terminus is between residues 495 and 518. Mutations outside this region which affect DNA binding by the intact protein do not eliminate binding of the proteinase K resistant domain. This implies that direct DNA binding by Vmw175 involves a linear subsection of the polypeptide, and that mutations in other parts of the polypeptide which affect DNA binding of the whole protein do so by indirect means.
Collapse
Affiliation(s)
- R D Everett
- MRC Virology Unit, Institute of Virology, Glasgow, UK
| | | | | |
Collapse
|
14
|
Shepard AA, Tolentino P, DeLuca NA. trans-dominant inhibition of herpes simplex virus transcriptional regulatory protein ICP4 by heterodimer formation. J Virol 1990; 64:3916-26. [PMID: 2164603 PMCID: PMC249687 DOI: 10.1128/jvi.64.8.3916-3926.1990] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Herpes simplex virus encodes a 175-kilodalton immediate-early transactivating protein referred to as ICP4. A mutant ICP4 molecule expressed from a stable transformed cell line lacks the sequences required for transactivation yet retains the ability to specifically associate with DNA and to form homodimers. Expression of the mutant ICP4 peptide from this cell line, designated X25, resulted in the inhibition of herpes simplex virus growth. Wild-type ICP4 homodimers were depleted in X25-infected cells by the formation of heterodimers containing the wild-type ICP4 molecule and the mutant peptide. While the ICP4 heterodimer retained DNA-binding activity, immunological studies suggest that the wild-type subunit of the heterodimer is conformationally altered in a region that serves as the antigenic epitope. Physical studies that determined the composition of the heterodimer and its native size and approximate shape support this observation. The structural change is in a region of ICP4 genetically implicated as important for transactivation and may result in an alteration in an interaction between ICP4 and a target protein essential to promote transcriptional activation. Sequestering wild-type monomers of a viral regulatory protein into heterodimers which are less proficient in transactivation may explain the dominant inhibitory activity of the X25 cells, resulting in attenuation of viral growth.
Collapse
Affiliation(s)
- A A Shepard
- Laboratory of Tumor Virus Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | |
Collapse
|
15
|
Papavassiliou AG, Silverstein SJ. Interaction of cell and virus proteins with DNA sequences encompassing the promoter/regulatory and leader regions of the herpes simplex virus thymidine kinase gene. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38863-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Forghani B, Mahalingam R, Vafai A, Hurst JW, Dupuis KW. Monoclonal antibody to immediate early protein encoded by varicella-zoster virus gene 62. Virus Res 1990; 16:195-210. [PMID: 2166981 DOI: 10.1016/0168-1702(90)90023-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monoclonal antibodies (mAbs) were prepared against varicella-zoster virus (VZV)-infected cell proteins, and 10 mAbs which reacted with nuclear antigens were selected. These mAbs recognized a major 175-180 kDa and three minor VZV-specific phosphoprotein species. Immunofluorescence staining of VZV-infected cells showed that the 175-180 kDa protein was synthesized within 6 h after infection. The synthesis of this protein was inhibited by cycloheximide (CH); however, reversal of CH treatment and addition of actinomycin D (ActD) resulted in the synthesis of the 175-180 kDa protein. To determine whether the 175-180 kDa protein seen in the infected cells is encoded by VZV immediate early (IE) gene 62, the predicted open reading frames of VZV genes 61 and 62 were cloned into pGEM transcription vectors. RNA was transcribed from each gene, translated in vitro and immunoprecipitated with a mAb which recognizes a major 175-180 kDa and three minor proteins. The reactivity of the in vitro translation products encoded by gene 62 with this mAb suggested that the 175-180 kDa protein is encoded by VZV IE gene 62.
Collapse
Affiliation(s)
- B Forghani
- Viral and Rickettsial Disease Laboratory, California State Department of Health Services, Berkeley 94704
| | | | | | | | | |
Collapse
|
17
|
Imbalzano AN, Shepard AA, DeLuca NA. Functional relevance of specific interactions between herpes simplex virus type 1 ICP4 and sequences from the promoter-regulatory domain of the viral thymidine kinase gene. J Virol 1990; 64:2620-31. [PMID: 2159535 PMCID: PMC249440 DOI: 10.1128/jvi.64.6.2620-2631.1990] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The herpes simplex virus (HSV) type 1 immediate-early regulatory protein ICP4 is required for induced expression of HSV early and late genes, yet the mechanism by which this occurs is not known. We examined the promoter and flanking sequences of the HSV early gene that encodes thymidine kinase for the ability to interact specifically with ICP4 in gel retardation assays. Protein-DNA complexes containing ICP4 were observed with several distinct regions flanking the tk promoter. cis-Acting elements that interact with cellular transcription factors were apparently not required for these interactions to form. Purified ICP4 formed protein-DNA complexes with fragments from these regions, and Southwestern (DNA-protein blot) analysis indicated that the interaction between ICP4 and these sequences can be direct. None of the tk sequences that interact with ICP4 contains a consensus binding site for ICP4 (S. W. Faber and K. W. Wilcox, Nucleic Acids Res. 14:6067-6083, 1986), reflecting the ability of ICP4 to interact with more than one DNA sequence. A mutated ICP4 protein expressed from the viral genome that retains the ability to bind to a consensus binding site but does not bind specifically to the identified sites flanking the tk promoter results in induced transcription of the tk gene. These data support hypotheses for ICP4-mediated transactivation of the tk promoter in Vero cells that do not require the intrinsic ability of ICP4 to bind specifically in or near the promoter of the tk gene.
Collapse
Affiliation(s)
- A N Imbalzano
- Laboratory of Tumor Virus Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
18
|
Wu CL, Wilcox KW. Codons 262 to 490 from the herpes simplex virus ICP4 gene are sufficient to encode a sequence-specific DNA binding protein. Nucleic Acids Res 1990; 18:531-8. [PMID: 2155403 PMCID: PMC333458 DOI: 10.1093/nar/18.3.531] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The HSV-1 immediate early (IE) protein ICP4 (alpha 4, IE175, Vmw175) is an oligomeric molecule which activates transcription of viral early genes, represses transcription of viral IE genes, and binds to specific sequences in certain viral promoters. The extent to which these functions are interrelated has not been fully established. We have expressed truncated portions of the ICP4 gene in E. coli as trpE fusion proteins. DNA-binding studies with these hybrid proteins revealed that ICP4 residues 262 to 490 are sufficient for sequence-specific DNA-binding. DNA-binding was not detected with polypeptides extending from residue 262 to 464 or from residue 306 to 490. Multiple bands of protein-DNA complexes observed in gel mobility shift assays indicate that residues 262 to 490 may also contribute to the oligomerization of ICP4.
Collapse
Affiliation(s)
- C L Wu
- Department of Microbiology, Medical College of Wisconsin, Milwaukee 53226
| | | |
Collapse
|
19
|
Hardwicke MA, Vaughan PJ, Sekulovich RE, O'Conner R, Sandri-Goldin RM. The regions important for the activator and repressor functions of herpes simplex virus type 1 alpha protein ICP27 map to the C-terminal half of the molecule. J Virol 1989; 63:4590-602. [PMID: 2552143 PMCID: PMC251092 DOI: 10.1128/jvi.63.11.4590-4602.1989] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) alpha or immediate-early proteins ICP4 (IE175), ICP0 (IE110), and ICP27 (IE63) are trans-acting proteins which affect HSV-1 gene expression. We previously showed that ICP27 in combination with ICP4 and ICP0 could act as a repressor or an activator in transfection assays, depending on the target gene (R. E. Sekulovich, K. Leary, and R. M. Sandri-Goldin, J. Virol. 62:4510-4522, 1988). To investigate the regions of the ICP27 protein which specify these functions, we constructed a series of in-frame insertion and deletion mutants in the ICP27 gene. These mutants were analyzed in transient expression assays for the ability to repress or to activate two different target genes. The target plasmids used consisted of the promoter regions from the HSV-1 beta or early gene which encodes thymidine kinase and from the beta-gamma or leaky late gene. VP5, which encodes the major capsid protein, each fused to the chloramphenicol acetyltransferase gene. Our previous studies showed that induction of pTK-CAT expression by ICP4 and ICP0 was repressed by ICP27, whereas the stimulation of pVP5-CAT expression seen with ICP4 and ICP0 was significantly increased when ICP27 was also added. In this study, a series of transfection assays was performed with each of the ICP27 mutant plasmids in combination with plasmids containing the ICP4 and ICP0 genes with each target. The results of these experiments showed that mutants containing insertions or deletions in the region from amino acids 262 to 406 in the carboxy-terminal half of the protein were unable to stimulate expression of pVP5-CAT but were able to repress induction of pTK-CAT activity by ICP4 and ICP0. Mutants in the carboxy-terminal 78 amino acids lost both activities; that is, these mutants did not show repression of pTK-CAT activity or stimulation of pVP5-CAT activity, whereas mutants in the hydrophilic amino-terminal half of ICP27 were able to perform both functions. These results show that the carboxy-terminal half of ICP27 is important for the activation and repression functions. Furthermore, the carboxy-terminal 62 amino acids are required for the repressor activity, because mutants with this region intact were able to repress. Analysis of the DNA sequence showed that there are a number of cysteine and histidine residues encoded by this region which have some similarity to zinc finger metal-binding regions found in other eucaryotic regulatory proteins. These results suggest that the structural integrity of this region is important for the function of ICP27.
Collapse
Affiliation(s)
- M A Hardwicke
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717
| | | | | | | | | |
Collapse
|
20
|
Resnick J, Boyd BA, Haffey ML. DNA binding by the herpes simplex virus type 1 ICP4 protein is necessary for efficient down regulation of the ICP0 promoter. J Virol 1989; 63:2497-503. [PMID: 2542567 PMCID: PMC250711 DOI: 10.1128/jvi.63.6.2497-2503.1989] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The herpes simplex virus type 1 ICP4 and ICP0 polypeptides are immediate-early proteins that positively and negatively regulate expression of other viral genes in trans. ICP4 has recently been shown to bind DNA bearing the consensus sequence 5'-ATCGTCNNNN(T/C)CG(A/G)C-3', present upstream of a number of viral genes. To test the hypothesis that this DNA-binding activity is involved in ICP4-mediated gene regulation, site-specific mutagenesis was employed to mutate the version of this sequence in the promoter of the ICP0 gene. The mutation eliminated detectable binding of ICP4 to the promoter as measured in vitro by a gel electrophoresis band shift assay. The ability of the mutated ICP0 promoter to direct synthesis of a reporter gene was also investigated in a transient transfection assay. Whereas ICP4 was found to transactivate the wild-type ICP0 promoter two- to threefold, the mutated promoter was transactivated seven- to ninefold. In assays containing the ICP0 transactivator gene, ICP4 down regulated the wild-type promoter far more efficiently than the mutated promoter. Finally, both the wild-type and mutated ICP0 promoters exhibited a similar response to ICP4 in transfections that included a vector expressing the viral transactivator protein VP16. These experiments suggest that the sequence-specific DNA-binding activity of ICP4 is an essential element of its role as a negative regulator of gene expression.
Collapse
Affiliation(s)
- J Resnick
- Department of Virology, Squibb Institute for Medical Research, Princeton, New Jersey 08540
| | | | | |
Collapse
|
21
|
Tedder DG, Everett RD, Wilcox KW, Beard P, Pizer LI. ICP4-binding sites in the promoter and coding regions of the herpes simplex virus gD gene contribute to activation of in vitro transcription by ICP4. J Virol 1989; 63:2510-20. [PMID: 2542568 PMCID: PMC250714 DOI: 10.1128/jvi.63.6.2510-2520.1989] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The herpes simplex virus immediate-early gene product ICP4 activates the transcription of viral early and late genes. We characterized the DNA sequence elements of the early glycoprotein D (gD) gene that play a role in the response to ICP4 in vitro. Using gel mobility shift assays and DNase I footprinting, we identified three ICP4-binding sites, two 5' to the mRNA start site and a third within the coding region. Site II, which gave a footprint between nucleotides -75 and -111 relative to the RNA start site, was previously identified by Faber and Wilcox and contained the reported consensus ICP4-binding site. Site III, which was located between nucleotides +122 and +163, was very similar to the site II sequence, including a core consensus binding sequence, TCGTC. The site I sequence (nucleotides -308 to -282), however, did not share significant homology with either site II or site III. In vitro transcription experiments from mutant constructs of the gD promoter indicated that all three ICP4-binding sites contribute to the stimulation of transcription by ICP4. DNase I footprinting of the gD promoter with uninfected nuclear extracts of HeLa cells showed protection of two very G-rich sequences between nucleotides -33 and -75. We propose that optimal transcription of the gD gene depends on the interaction of ICP4 with multiple binding sites across the gene and cellular factors that recognize specific sequence elements in the promoter.
Collapse
Affiliation(s)
- D G Tedder
- Department of Microbiology, University of Colorado School of Medicine, Denver 80262
| | | | | | | | | |
Collapse
|
22
|
Mavromara-Nazos P, Roizman B. Delineation of regulatory domains of early (beta) and late (gamma 2) genes by construction of chimeric genes expressed in herpes simplex virus 1 genomes. Proc Natl Acad Sci U S A 1989; 86:4071-5. [PMID: 2542962 PMCID: PMC287390 DOI: 10.1073/pnas.86.11.4071] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The expression of the gamma 2 class of viral genes in cells infected with herpes simplex virus 1 requires viral DNA synthesis and functional viral products made earlier in infection. To identify the sequences required for gamma 2 gene expression, we constructed recombinant viruses in which regions of the thymidine kinase gene (tk), a beta gene normally expressed early in infection, were replaced by specific domains of a gamma 2 gene. The phenotypic attributes examined were (i) sensitivity or resistance of expression in cells exposed to sufficient phosphonoacetate to block viral DNA synthesis, properties of gamma 2 and beta genes, respectively; (ii) expression early in infection, a property of beta genes; and (iii) expression late in infection, a property of gamma 2 genes. We report that replacement of nucleotides -200 to +51 of tk with nucleotides -77 to +104 of the gamma 2 gene conferred upon tk all of the tested attributes of gamma 2 genes. The tk sequence in the 5' transcribed noncoding domain downstream of nucleotide +51 played no apparent role in the expression of the chimeric genes. Similarly, tk sequence downstream of -16 and gamma 2 sequence upstream of -12, when juxtaposed in correct orientations, yielded a chimeric gene that was poorly expressed. In contrast, the chimeric gene consisting of tk sequence upstream of -16 fused to gamma 2 sequence downstream of -12 had the attributes of both beta and gamma 2 genes in that it was expressed both early and late in infection and was partially resistant to phosphonoacetate. The capacity for expression late in infection encoded in the gamma 2 5' transcribed noncoding domain was observed in cells infected with a recombinant virus in which gamma 2 nucleotides +17 to +104 were inserted into the 5' transcribed noncoding domain of the tk gene. We conclude that whereas in the beta genes exemplified by the tk gene the regulatory domains are mainly upstream from nucleotide +51, the sequence(s) that confers gamma 2 regulation is downstream from the TATAA box.
Collapse
Affiliation(s)
- P Mavromara-Nazos
- Marjorie B. Kovler Viral Oncology Laboratory, University of Chicago, IL 60637
| | | |
Collapse
|
23
|
Cromlish WA, Abmayr SM, Workman JL, Horikoshi M, Roeder RG. Transcriptionally active immediate-early protein of pseudorabies virus binds to specific sites on class II gene promoters. J Virol 1989; 63:1869-76. [PMID: 2539489 PMCID: PMC250597 DOI: 10.1128/jvi.63.5.1869-1876.1989] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the presence of partially purified pseudorabies virus immediate-early protein, multiple sites of DNase I protection were observed on the adenovirus major late and human hsp 70 promoters. Southwestern (DNA-protein blot) analysis demonstrated that the immediate-early protein bound directly to the sequences contained in these sites. These sequences share only limited homology, differ in their affinities for the immediate-early protein, and are located at different positions on these two promoters. In addition, the site-specific binding of a temperature-sensitive immediate-early protein was eliminated by the same heat treatment which eliminates its transcriptional activating function, whereas the binding of the wild-type protein was unaffected by heat treatment. Thus, site-specific binding requires a functionally active immediate-early protein. Furthermore, immediate-early-protein-dependent in vitro transcription from the major late promoter was preferentially inhibited by oligonucleotides which are homologous to the high-affinity binding sites on the major late or hsp 70 promoters. These observations suggest that transcriptional stimulation by the immediate-early protein involves binding to cis-acting elements.
Collapse
Affiliation(s)
- W A Cromlish
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021-6399
| | | | | | | | | |
Collapse
|