1
|
Zhang T, Zou L. Enhancers in T Cell development and malignant lesions. Cell Death Discov 2024; 10:406. [PMID: 39284807 PMCID: PMC11405840 DOI: 10.1038/s41420-024-02160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Enhancers constitute a vital category of cis-regulatory elements with a Mediator complex within DNA sequences, orchestrating gene expression by activating promoters. In the development of T cells, some enhancers regulate the critical genes, which might also regulate T cell malignant lesions. This review is to comprehensively elucidate the contributions of enhancers in both normal T cell development and its malignant pathogenesis, proposing the idea that the precise subunits of the Mediator complex are the potential drug target for disrupting the specific gene enhancer for T cell malignant diseases.
Collapse
Affiliation(s)
- Tong Zhang
- Clinical Medicine Research Department, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
- Postgraduate School in Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lin Zou
- Clinical Medicine Research Department, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
| |
Collapse
|
2
|
Bamunusinghe D, Liu Q, Plishka R, Dolan MA, Skorski M, Oler AJ, Yedavalli VRK, Buckler-White A, Hartley JW, Kozak CA. Recombinant Origins of Pathogenic and Nonpathogenic Mouse Gammaretroviruses with Polytropic Host Range. J Virol 2017; 91:e00855-17. [PMID: 28794032 PMCID: PMC5640873 DOI: 10.1128/jvi.00855-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
Ecotropic, xenotropic, and polytropic mouse leukemia viruses (E-, X-, and P-MLVs) exist in mice as infectious viruses and endogenous retroviruses (ERVs) inserted into mouse chromosomes. All three MLV subgroups are linked to leukemogenesis, which involves generation of recombinants with polytropic host range. Although P-MLVs are deemed to be the proximal agents of disease induction, few biologically characterized infectious P-MLVs have been sequenced for comparative analysis. We analyzed the complete genomes of 16 naturally occurring infectious P-MLVs, 12 of which were typed for pathogenic potential. We sought to identify ERV progenitors, recombinational hot spots, and segments that are always replaced, never replaced, or linked to pathogenesis or host range. Each P-MLV has an E-MLV backbone with P- or X-ERV replacements that together cover 100% of the recombinant genomes, with different substitution patterns for X- and P-ERVs. Two segments are always replaced, both coding for envelope (Env) protein segments: the N terminus of the surface subunit and the cytoplasmic tail R peptide. Viral gag gene replacements are influenced by host restriction genes Fv1 and Apobec3 Pathogenic potential maps to the env transmembrane subunit segment encoding the N-heptad repeat (HR1). Molecular dynamics simulations identified three novel interdomain salt bridges in the lymphomagenic virus HR1 that could affect structural stability, entry or sensitivity to host immune responses. The long terminal repeats of lymphomagenic P-MLVs are differentially altered by recombinations, duplications, or mutations. This analysis of the naturally occurring, sometimes pathogenic P-MLV recombinants defines the limits and extent of intersubgroup recombination and identifies specific sequence changes linked to pathogenesis and host interactions.IMPORTANCE During virus-induced leukemogenesis, ecotropic mouse leukemia viruses (MLVs) recombine with nonecotropic endogenous retroviruses (ERVs) to produce polytropic MLVs (P-MLVs). Analysis of 16 P-MLV genomes identified two segments consistently replaced: one at the envelope N terminus that alters receptor choice and one in the R peptide at the envelope C terminus, which is removed during virus assembly. Genome-wide analysis shows that nonecotropic replacements in the progenitor ecotropic MLV genome are more extensive than previously appreciated, covering 100% of the genome; contributions from xenotropic and polytropic ERVs differentially alter the regions responsible for receptor determination or subject to APOBEC3 and Fv1 restriction. All pathogenic viruses had modifications in the regulatory elements in their long terminal repeats and differed in a helical segment of envelope involved in entry and targeted by the host immune system. Virus-induced leukemogenesis thus involves generation of complex recombinants, and specific replacements are linked to pathogenesis and host restrictions.
Collapse
Affiliation(s)
- Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Ronald Plishka
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Matthew Skorski
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Venkat R K Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Janet W Hartley
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
3
|
The RUNX1–PU.1 axis in the control of hematopoiesis. Int J Hematol 2015; 101:319-29. [DOI: 10.1007/s12185-015-1762-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 01/16/2023]
|
4
|
Lee YK, Chew A, Phan H, Greenhalgh DG, Cho K. Genome-wide expression profiles of endogenous retroviruses in lymphoid tissues and their biological properties. Virology 2008; 373:263-73. [PMID: 18187179 DOI: 10.1016/j.virol.2007.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 08/21/2007] [Accepted: 10/30/2007] [Indexed: 01/31/2023]
Abstract
Endogenous retroviruses (ERVs) constitute approximately 8-10% of the human and mouse genome. Some autoimmune diseases are attributed to the altered expression of ERVs. In this study, we examined the ERV expression profiles in lymphoid tissues and analyzed their biological properties. Tissues (spleen, thymus, and lymph nodes [axillary, inguinal, and mesenteric]) from C57BL/6J mice were analyzed for differential murine ERV (MuERV) expression by RT-PCR examination of polymorphic U3 sequences. Each tissue had a unique profile of MuERV expression. A genomic map identifying 60 putative MuERVs was established using 22 unique U3s as probes and their biological properties (primer binding site, coding potential, transcription regulatory element, tropism, recombination event, and integration age) were characterized. Interestingly, 12 putative MuERVs retained intact coding potentials for all three polypeptides essential for virus assembly and replication. We suggest that MuERV expression is differentially regulated in conjunction with the transcriptional environment of individual lymphoid tissues.
Collapse
Affiliation(s)
- Young-Kwan Lee
- Burn Research, Shriners Hospitals for Children and Department of Surgery, University of California, Davis, 2425 Stockton Blvd., Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
5
|
Xie L, Green PL. Envelope is a major viral determinant of the distinct in vitro cellular transformation tropism of human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2. J Virol 2006; 79:14536-45. [PMID: 16282453 PMCID: PMC1287554 DOI: 10.1128/jvi.79.23.14536-14545.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are related deltaretroviruses but are distinct in their disease-inducing capacity. These viruses can infect a variety of cell types, but only T lymphocytes become transformed, which is defined in vitro as showing indefinite interleukin-2-independent growth. Studies have indicated that HTLV-1 has a preferential tropism for CD4+ T cells in vivo and is associated with the development of leukemia and neurological disease. Conversely, the in vivo T-cell tropism of HTLV-2 is less clear, although it appears that CD8+ T cells preferentially harbor the provirus, with only a few cases of disease association. The difference in T-cell transformation tropism has been confirmed in vitro as shown by the preferential transformation of CD4+ T cells by HTLV-1 versus the transformation of CD8+ T cells by HTLV-2. Our previous studies showed that Tax and overlapping Rex do not confer the distinct T-cell transformation tropisms between HTLV-1 and HTLV-2. Therefore, for this study HTLV-1 and HTLV-2 recombinants were generated to assess the contribution of LTR and env sequences in T-cell transformation tropism. Both sets of proviral recombinants expressed p19 Gag following transfection into cells. Furthermore, recombinant viruses were replication competent and had the capacity to transform T lymphocytes. Our data showed that exchange of the env gene resulted in altered T-cell transformation tropism compared to wild-type virus, while exchange of long terminal repeat sequences had no significant effect. HTLV-2/Env1 preferentially transformed CD4+ T cells similarly to wild-type HTLV-1 (wtHTLV-1), whereas HTLV-1/Env2 had a transformation tropism similar to that of wtHTLV-2 (CD8+ T cells). These results indicate that env is a major viral determinant for HTLV T-cell transformation tropism in vitro and provides strong evidence implicating its contribution to the distinct pathogenesis resulting from HTLV-1 versus HTLV-2 infections.
Collapse
Affiliation(s)
- Li Xie
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
6
|
Sørensen KD, Quintanilla-Martinez L, Kunder S, Schmidt J, Pedersen FS. Mutation of all Runx (AML1/core) sites in the enhancer of T-lymphomagenic SL3-3 murine leukemia virus unmasks a significant potential for myeloid leukemia induction and favors enhancer evolution toward induction of other disease patterns. J Virol 2004; 78:13216-31. [PMID: 15542674 PMCID: PMC524987 DOI: 10.1128/jvi.78.23.13216-13231.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SL3-3 murine leukemia virus is a potent inducer of T-lymphomas in mice. Using inbred NMRI mice, it was previously reported that a mutant of SL3-3 with all enhancer Runx (AML1/core) sites disrupted by 3-bp mutations (SL3-3dm) induces predominantly non-T-cell tumors with severely extended latency (S. Ethelberg, J. Lovmand, J. Schmidt, A. Luz, and F. S. Pedersen, J. Virol. 71:7273-7280, 1997). By use of three-color flow cytometry and molecular and histopathological analyses, we have now performed a detailed phenotypic characterization of SL3-3- and SL3-3dm-induced tumors in this mouse strain. All wild-type induced tumors had clonal T-cell receptor beta rearrangements, and the vast majority were CD3(+) CD4(+) CD8(-) T-lymphomas. Such a consistent phenotypic pattern is unusual for murine leukemia virus-induced T-lymphomas. The mutant virus induced malignancies of four distinct hematopoietic lineages: myeloid, T lymphoid, B lymphoid, and erythroid. The most common disease was myeloid leukemia with maturation. Thus, mutation of all Runx motifs in the enhancer of SL3-3 severely impedes viral T-lymphomagenicity and thereby discloses a considerable and formerly unappreciated potential of this virus for myeloid leukemia induction. Proviral enhancers with complex structural alterations (deletions, insertions, and/or duplications) were found in most SL3-3dm-induced T-lymphoid tumors and immature myeloid leukemias but not in any cases of myeloid leukemia with maturation, mature B-lymphoma, or erythroleukemia. Altogether, our results indicate that the SL3-3dm enhancer in itself promotes induction of myeloid leukemia with maturation but that structural changes may arise in vivo and redirect viral disease specificity to induction of T-lymphoid or immature myeloid leukemias, which typically develop with moderately shorter latencies.
Collapse
Affiliation(s)
- Karina Dalsgaard Sørensen
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé, Bldg. 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
7
|
Takase-Yoden S, Watanabe R. Unique three-repeat sequences containing FVa, LVb/C4, and CORE motifs in LTR-U3 of Friend murine leukemia virus clone A8 accelerate the induction of thymoma in rat. Virology 2004; 326:29-40. [PMID: 15262492 DOI: 10.1016/j.virol.2004.04.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 04/13/2004] [Accepted: 04/30/2004] [Indexed: 11/19/2022]
Abstract
Friend murine leukemia virus (Fr-MLV) clone A8 causes thymoma 7 weeks postinfection in rats with a more rapid progression than clone 57. The U3 region of A8-LTR contains a unique structure of enhancer motifs consisting of three repeats of a 38-bp sequence containing FVa, LVb/C4, and CORE motifs. Replacement or deletion of the 38-bp sequence in the A8-U3 resulted in a marked reduction in tumorigenicity. Furthermore, the virus with 57-U3 gained high tumorigenicity after construction of the three 38-bp repeats in the U3 region. These findings indicated that the repeats of the 38-bp sequence of A8-LTR are essential for the rapid induction of thymoma. Interestingly, the repeat of the 38-bp sequence did not accelerate the amount of integrated viral DNA in the thymus during the early phase of infection, although it contributed to higher production of infectious virus. Thus, it was demonstrated that the ability to induce thymoma, which correlates with virus titer in the thymus, is not determined by the rate of viral DNA integration into the host genome.
Collapse
Affiliation(s)
- Sayaka Takase-Yoden
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan.
| | | |
Collapse
|
8
|
Abstract
Core binding factors are heterodimeric transcription factors containing a DNA binding Runx1, Runx2, or Runx3 subunit, along with a non DNA binding CBF beta subunit. All four subunits are required at one or more stages of hematopoiesis. This review describes the role of Runx1 and CBF beta in the initiation of hematopoiesis in the embryo, and in the emergence of hematopoietic stem cells. We also discuss the later stages of hematopoiesis for which members of the core binding factor family are required, as well as the recently described roles for these proteins in autoimmunity.
Collapse
Affiliation(s)
- Marella F T R de Bruijn
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
9
|
Wilson CA, Laeeq S, Ritzhaupt A, Colon-Moran W, Yoshimura FK. Sequence analysis of porcine endogenous retrovirus long terminal repeats and identification of transcriptional regulatory regions. J Virol 2003; 77:142-9. [PMID: 12477819 PMCID: PMC140639 DOI: 10.1128/jvi.77.1.142-149.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Porcine cells express endogenous retroviruses, some of which are infectious for human cells. To better understand the replication of these porcine endogenous retroviruses (PERVs) in cells of different types and animal species, we have performed studies of the long terminal repeat (LTR) region of known gammaretroviral isolates of PERV. Nucleotide sequence determination of the LTRs of PERV-NIH, PERV-C, PERV-A, and PERV-B revealed that the PERV-A and PERV-B LTRs are identical, whereas the PERV-NIH and PERV-C LTRs have significant sequence differences in the U3 region between each other and with the LTRs of PERV-A and PERV-B. Sequence analysis revealed a similar organization of basal promoter elements compared with other gammaretroviruses, including the presence of enhancer-like repeat elements. The sequences of the PERV-NIH and PERV-C repeat element are similar to that of the PERV-A and PERV-B element with some differences in the organization of these repeats. The sequence of the PERV enhancer-like repeat elements differs significantly from those of other known gammaretroviral enhancers. The transcriptional activities of the PERV-A, PERV-B, and PERV-C LTRs relative to each other were similar in different cell types of different animal species as determined by transient expression assays. On the other hand, the PERV-NIH LTR was considerably weaker in these cell types. The transcriptional activity of all PERV LTRs was considerably lower in porcine ST-IOWA cells than in cell lines from other species. Deletion mutant analysis of the LTR of a PERV-NIH isolate identified regions that transactivate or repress transcription depending on the cell type.
Collapse
Affiliation(s)
- Carolyn A Wilson
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
10
|
Rulli K, Lenz J, Levy LS. Disruption of hematopoiesis and thymopoiesis in the early premalignant stages of infection with SL3-3 murine leukemia virus. J Virol 2002; 76:2363-74. [PMID: 11836414 PMCID: PMC135944 DOI: 10.1128/jvi.76.5.2363-2374.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A time course analysis of SL3-3 murine leukemia virus (SL3) infection in thymus and bone marrow of NIH/Swiss mice was performed to assess changes that occur during the early stages of progression to lymphoma. Virus was detectable in thymocytes, bone marrow, and spleen as early as 1 to 2 weeks postinoculation (p.i.). In bone marrow, virus infection was detected predominantly in immature myeloid or granulocytic cells. Flow cytometry revealed significant reductions of the Ter-119(+) and Mac-1(+) populations, and significant expansions of the Gr-1(+) and CD34(+) populations, between 2 and 4 weeks p.i. Analysis of colony-forming potential confirmed these findings. In the thymus, SL3 replication was associated with significant disruption in thymocyte subpopulation distribution between 4 and 7 weeks p.i. A significant thymic regression was observed just prior to the clonal outgrowth of tumor cells. Proviral long terminal repeats (LTRs) with increasing numbers of enhancer repeats were observed to accumulate exclusively in the thymus during the first 8 weeks p.i. Observations were compared to the early stages of infection with a virtually nonpathogenic SL3 mutant, termed SL3DeltaMyb5, which was shown by real-time PCR to be replication competent. Comparison of SL3 with SL3DeltaMyb5 implicated certain premalignant changes in tumorigenesis, including (i) increased proportions of Gr-1(+) and CD34(+) bone marrow progenitors, (ii) a significant increase in the proportion of CD4(-) CD8(-) thymocytes, (iii) thymic regression prior to tumor outgrowth, and (iv) accumulation of LTR enhancer variants. A model in which disrupted bone marrow hematopoiesis and thymopoiesis contribute to the development of lymphoma in the SL3-infected animal is discussed.
Collapse
Affiliation(s)
- Karen Rulli
- Department of Microbiology and Immunology, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
11
|
Nishigaki K, Hanson C, Thompson D, Yugawa T, Hisasue M, Tsujimoto H, Ruscetti S. Analysis of the disease potential of a recombinant retrovirus containing Friend murine leukemia virus sequences and a unique long terminal repeat from feline leukemia virus. J Virol 2002; 76:1527-32. [PMID: 11773427 PMCID: PMC135779 DOI: 10.1128/jvi.76.3.1527-1532.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We have molecularly cloned a feline leukemia virus (FeLV) (clone 33) from a domestic cat with acute myeloid leukemia (AML). The long terminal repeat (LTR) of this virus, like the LTRs present in FeLV proviruses from other cats with AML, contains an unusual structure in its U3 region upstream of the enhancer (URE) consisting of three tandem direct repeats of 47 bp. To test the disease potential and specificity of this unique FeLV LTR, we replaced the U3 region of the LTR of the erythroleukemia-inducing Friend murine leukemia virus (F-MuLV) with that of FeLV clone 33. When the resulting virus, F33V, was injected into newborn mice, almost all of the mice eventually developed hematopoietic malignancies, with a significant percentage being in the myeloid lineage. This is in contrast to mice injected with an F-MuLV recombinant containing the U3 region of another FeLV that lacks repetitive URE sequences, none of which developed myeloid malignancies. Examination of tumor proviruses from F33V-infected mice failed to detect any changes in FeLV U3 sequences other than that in the URE. Like F-MuLV-infected mice, those infected with the F-MuLV/FeLV recombinants were able to generate and replicate mink cell focus-inducing viruses. Our studies are consistent with the idea that the presence of repetitive sequences upstream of the enhancer in the LTR of FeLV may favor the activation of this promoter in myeloid cells and contribute to the development of malignancies in this hematopoietic lineage.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cats
- Cell Line
- Cloning, Molecular
- DNA, Viral
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/physiology
- Leukemia Virus, Feline/genetics
- Leukemia, Erythroblastic, Acute/virology
- Leukemia, Experimental/virology
- Leukemia, Myeloid/virology
- Lymphoma/virology
- Mice
- Mink Cell Focus-Inducing Viruses/genetics
- Molecular Sequence Data
- Recombination, Genetic
- Retroviridae
- Retroviridae Infections/virology
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Terminal Repeat Sequences
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
- Kazuo Nishigaki
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
DiFronzo NL, Leung CT, Mammel MK, Georgopoulos K, Taylor BJ, Pham QN. Ikaros, a lymphoid-cell-specific transcription factor, contributes to the leukemogenic phenotype of a mink cell focus-inducing murine leukemia virus. J Virol 2002; 76:78-87. [PMID: 11739673 PMCID: PMC135716 DOI: 10.1128/jvi.76.1.78-87.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mink cell focus-inducing (MCF) viruses induce T-cell lymphomas in AKR/J strain mice. MCF 247, the prototype of this group of nonacute murine leukemia viruses, transforms thymocytes, in part, by insertional mutagenesis and enhancer-mediated dysregulation of cellular proto-oncogenes. The unique 3' (U3) regions in the long terminal repeats of other murine leukemia viruses contain transcription factor binding sites known to be important for enhancer function and for the induction of T-cell lymphomas. Although transcription factor binding sites important for the biological properties of MCF 247 have not been identified, pathogenesis studies from our laboratory suggested to us that binding sites for Ikaros, a lymphoid-cell-restricted transcriptional regulator, affect the biological properties of MCF 247. In this report, we demonstrate that Ikaros binds to predicted sites in U3 sequences of MCF 247 and that site-directed mutations in these sites greatly diminish this binding in vitro. Consistent with these findings, ectopic expression of Ikaros in murine cells that do not normally express this protein significantly increases transcription from the viral promoter in transient gene expression assays. Moreover, site-directed mutations in specific Ikaros-binding sites reduce this activity in T-cell lines that express Ikaros endogenously. To determine whether the Ikaros-binding sites are functional in vivo, we inoculated newborn mice with a variant MCF virus containing a mutant Ikaros-binding site. The variant virus replicated in thymocytes less efficiently and induced lymphomas with a delayed onset compared to the wild-type virus. These data are consistent with the hypothesis that the Ikaros-binding sites in the U3 region of MCF 247 are functional and cooperate with other DNA elements for optimal enhancer function in vivo.
Collapse
Affiliation(s)
- Nancy L DiFronzo
- Center for Virology, Immunology, and Infectious Disease Research, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Yoshimura FK, Wang T. Role of the LTR region between the enhancer and promoter in mink cell focus-forming murine leukemia virus pathogenesis. Virology 2001; 283:121-31. [PMID: 11312668 DOI: 10.1006/viro.2001.0879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long terminal repeat (LTR) sequences are important determinants of mink cell focus-forming (MCF) murine leukemia virus pathogenesis. These sequences include the enhancer and sequences between the enhancer and promoter (DEN). In a previous study we showed that a virus missing the DEN region in its LTR was severely attenuated in its ability to induce thymic lymphoma. In this study we observed that a virus with an LTR consisting of DEN but no enhancer sequences was pathogenic. We compared the pathogenicity of this DEN virus with other LTR mutant MCF13 viruses that contained a single enhancer (1R) or a single enhancer plus DEN (1R + DEN). All LTR mutant viruses generated thymic lymphoma, however, at a much lower incidence and with a longer latency compared with wild-type (WT) MCF13 virus. DEN virus replication in the thymus was the lowest compared with the 1R and 1R + DEN viruses. Viral replication in a different thymic subpopulation could not explain the decreased pathogenicity of the LTR mutant viruses compared with WT virus. However, lower levels of mutant virus replication in the thymus compared with WT during the preleukemic period may contribute to the attenuation of pathogenicity. The phenotype of tumors induced by the mutant viruses was similar and differed from tumors induced by WT virus by the presence of CD3(-)CD4(-)CD8(-) cells. Analysis of LTR sequences of infectious virus rescued from tumors induced by the 1R and 1R + DEN viruses showed that amplification of enhancer sequences had occurred during tumor development. The lack of DEN virus expression by tumor cells led us to propose that DEN sequences may play a role at an early step in tumorigenesis.
Collapse
Affiliation(s)
- F K Yoshimura
- Department of Immunology and Microbiology, Wayne State University, 540 E. Canfield Ave., Detroit, MI 48201, USA.
| | | |
Collapse
|
14
|
Maury W, Bradley S, Wright B, Hines R. Cell specificity of the transcription-factor repertoire used by a lentivirus: motifs important for expression of equine infectious anemia virus in nonmonocytic cells. Virology 2000; 267:267-78. [PMID: 10662622 DOI: 10.1006/viro.1999.0144] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The equine infectious anemia virus (EIAV) long-terminal repeat (LTR) has been identified as highly variable, both in infected horses and in cell culture. This nucleotide hypervariation is localized to the LTR enhancer region. The EIAV LTR has been implicated in controlling both the cell tropism and virulence of the virus and it is postulated that the enhancer-region hypervariation may be responsible for the LTR effects. Our previous studies have demonstrated that the presence of DNA motifs bound by the ets transcription-factor family member PU.1 are critically important for EIAV expression in equine macrophages. Here we identify and characterize the EIAV LTR enhancer motifs PEA-2, Lvb, Oct, and CRE, that bind to fibroblast nuclear extracts. Three of these four motifs, PEA-2, Oct, and CRE, were determined to be important for expression of the LTR in a fibroblast cell line that supports productive infection of EIAV. These motifs that are important for expression of the LTR in fibroblasts were found to be interdigitated between the PU.1 sites. We hypothesize that the combination of motif interdigitation and cell-specific usage of these motifs may be responsible for the observed EIAV LTR enhancer-region hypervariation.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Cell Line
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Enhancer Elements, Genetic
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Expression Regulation, Viral
- Horses
- Infectious Anemia Virus, Equine/chemistry
- Infectious Anemia Virus, Equine/genetics
- Infectious Anemia Virus, Equine/metabolism
- Molecular Sequence Data
- Mutation
- Nuclear Proteins/metabolism
- Protein Binding
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Homology, Nucleic Acid
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- W Maury
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota 57069, USA.
| | | | | | | |
Collapse
|
15
|
Kim JH, Lee S, Rho JK, Choe SY. AML1, the target of chromosomal rearrangements in human leukemia, regulates the expression of human complement receptor type 1 (CR1) gene. Int J Biochem Cell Biol 1999; 31:933-40. [PMID: 10533284 DOI: 10.1016/s1357-2725(99)00048-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The human CR1 gene is expressed specifically in hematopoietic cells. It is suggested that some cell-type specific factors which involve in gene-specific activation or repression exist in cells according to the result that the gene expression varies differently depend on differentiation stage. Here, we demonstrate that the integrity of a polyomavirus enhancer core sequence, 5'-TGTGGT-3', is critical to the human CR1 promoter activity. AML1 is a site-specific DNA-binding protein that recognizes the enhancer core motif TGTGGT. We show that the AML1 binds specifically to this site and activates the human CR1 promoter. Furthermore, we demonstrate that the Ets binding site (GGAA) located 2 bp upstream of the AML1 site is also involved in the regulation of the human CR1 promoter activity. Point mutations of either the AML1 or the Ets binding site that abolish the binding of the respective factors result in significant decreases of the human CR1 promoter activity. These results suggest that AML1 and Ets proteins direct the expression of the human CR1 promoter.
Collapse
Affiliation(s)
- J H Kim
- School of Life Sciences, Chungbuk National University, Cheongju, South Korea
| | | | | | | |
Collapse
|
16
|
Martiney MJ, Rulli K, Beaty R, Levy LS, Lenz J. Selection of reversions and suppressors of a mutation in the CBF binding site of a lymphomagenic retrovirus. J Virol 1999; 73:7599-606. [PMID: 10438850 PMCID: PMC104287 DOI: 10.1128/jvi.73.9.7599-7606.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The retrovirus SL3 induces T-cell lymphomas in mice. The transcriptional enhancer in the long terminal repeat (LTR) of SL3 contains two 72-bp repeats. Each repeat contains a binding site for the transcription factor CBF (also called AML1). The CBF binding sites are called core elements. SAA is a mutant that is identical to SL3 except for the presence of a single-base-pair substitution in each of the two core elements. This mutation significantly attenuates viral lymphomagenicity. Most lymphomas that occur in SAA-infected mice contain proviruses with reversions or second-site suppressor mutations within the core element. We examined the selective pressures that might account for the predominance of the reversions and suppressor mutations in tumor proviruses by analyzing when proviruses with altered core sequences became abundant during the course of lymphomagenesis. Altered core sequences were easily detected in thymus DNAs by 4 to 6 weeks after SAA infection of mice, well before lymphomas were grossly evident. This result is consistent with the hypothesis that viruses with the core sequence alterations emerged because they replicated more effectively in mice than SAA. The number of 72-bp tandem, repeats in the viral LTR was found to vary, presumably as a consequence of reverse transcriptase slippage during polymerization. Proviruses with two repeats predominated in the thymuses of SAA- and SL3-infected mice before lymphomas developed, although LTRs with one or three repeats were also present. This suggested that two was the optimal number of 72-bp repeats for viral replication. However, in lymphomas, proviruses with three or four repeats usually predominated. This suggested that a late step in the process of lymphomagenesis led to the abundance of proviruses with additional repeats. We hypothesize that proviruses with additional 72-bp repeats endowed the cells containing them with a selective growth advantage.
Collapse
Affiliation(s)
- M J Martiney
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
17
|
Lewis AF, Stacy T, Green WR, Taddesse-Heath L, Hartley JW, Speck NA. Core-binding factor influences the disease specificity of Moloney murine leukemia virus. J Virol 1999; 73:5535-47. [PMID: 10364302 PMCID: PMC112611 DOI: 10.1128/jvi.73.7.5535-5547.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The core site in the Moloney murine leukemia virus (Moloney MLV) enhancer was previously shown to be an important determinant of the T-cell disease specificity of the virus. Mutation of the core site resulted in a significant shift in disease specificity of the Moloney virus from T-cell leukemia to erythroleukemia. We and others have since determined that a protein that binds the core site, one of the core-binding factors (CBF) is highly expressed in thymus and is essential for hematopoiesis. Here we test the hypothesis that CBF plays a critical role in mediating pathogenesis of Moloney MLV in vivo. We measured the affinity of CBF for most core sites found in MLV enhancers, introduced sites with different affinities for CBF into the Moloney MLV genome, and determined the effects of these sites on viral pathogenesis. We found a correlation between CBF affinity and the latent period of disease onset, in that Moloney MLVs with high-affinity CBF binding sites induced leukemia following a shorter latent period than viruses with lower-affinity sites. The T-cell disease specificity of Moloney MLV also appeared to correlate with the affinity of CBF for its binding site. The data support a role for CBF in determining the pathogenic properties of Moloney MLV.
Collapse
Affiliation(s)
- A F Lewis
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
18
|
Ghosh SK, Faller DV. Feline leukemia virus long terminal repeat activates collagenase IV gene expression through AP-1. J Virol 1999; 73:4931-40. [PMID: 10233955 PMCID: PMC112537 DOI: 10.1128/jvi.73.6.4931-4940.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/1998] [Accepted: 03/15/1999] [Indexed: 11/20/2022] Open
Abstract
Leukemia and lymphoma induced by feline leukemia viruses (FeLVs) are the commonest forms of illness in domestic cats. These viruses do not contain oncogenes, and the source of their pathogenic activity is not clearly understood. Mechanisms involving proto-oncogene activation subsequent to proviral integration and/or development of recombinant viruses with enhanced replication properties are thought to play an important role in their disease pathogenesis. In addition, the long terminal repeat (LTR) regions of these viruses have been shown to be important determinants for pathogenicity and tissue specificity, by virtue of their ability to interact with various transcription factors. Previously, we have shown that, in the case of Moloney murine leukemia virus, the U3 region of the LTR independently induces transcriptional activation of specific cellular genes through an LTR-generated RNA transcript (S. Y. Choi and D. V. Faller, J. Biol. Chem. 269:19691-19694, 1994; S.-Y. Choi and D. V. Faller, J. Virol. 69:7054-7060, 1995). In this report, we show that the U3 region of exogenous FeLV LTRs can induce transcription from collagenase IV (matrix metalloproteinase 9) and monocyte chemotactic protein 1 (MCP-1) promoters up to 12-fold. We also show that AP-1 DNA-binding activity and transcriptional activity are strongly induced in cells expressing FeLV LTRs and that LTR-specific RNA transcripts are generated in those cells. Activation of mitogen-activated protein kinase kinases 1 and 2 (MEK1 and -2) by the LTR is an intermediate step in the FeLV LTR-mediated induction of AP-1 activity. These findings thus suggest that the LTRs of FeLVs can independently activate transcription of specific cellular genes. This LTR-mediated cellular gene transactivation may play an important role in tumorigenesis or preleukemic states and may be a generalizable activity of leukemia-inducing retroviruses.
Collapse
Affiliation(s)
- S K Ghosh
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
19
|
Yoshimura FK, Wang T, Cankovic M. Sequences between the enhancer and promoter in the long terminal repeat affect murine leukemia virus pathogenicity and replication in the thymus. J Virol 1999; 73:4890-8. [PMID: 10233950 PMCID: PMC112532 DOI: 10.1128/jvi.73.6.4890-4898.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We previously showed that the 93-bp region between the enhancer and promoter (named DEN for downstream of enhancer) of the long terminal repeat (LTR) of the MCF13 murine leukemia virus is an important determinant of the ability of this virus to induce thymic lymphoma. In this study we observed that DEN plays a role in the regulation of virus replication in the thymus during the preleukemic period. A NF-kappaB site in the DEN region partially contributes to the effect of DEN on both lymphomagenicity and virus replication. To further study the effects of DEN and the NF-kappaB site on viral pathogenicity during the preleukemic period, we examined replication of wild-type and mutant viruses with a deletion of the NF-kappaB site or the entire DEN region in the thymus. Thymic lymphocytes which were infected with wild-type and mutant viruses were predominantly the CD3(-) CD4(+) CD8(+) and CD3(+) CD4(+) CD8(+) cells. The increase in infection by wild-type virus and both mutant viruses of these two subpopulations during the preleukemic period ranged from 9- to 84-fold, depending upon the time point and virus. The major difference between the wild-type and both mutant viruses was the lower rate and lower level of mutant virus replication in these thymic subpopulations. Significant differences in replication between wild-type and both mutant viruses were seen in the CD3(-) CD4(+) CD8(+) and CD3(-) CD4(-) CD8(-) subpopulations, suggesting that these thymic cell types are important targets for viral transformation.
Collapse
Affiliation(s)
- F K Yoshimura
- Department of Immunology and Microbiology and Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
20
|
Martiney MJ, Levy LS, Lenz J. Suppressor mutations within the core binding factor (CBF/AML1) binding site of a T-cell lymphomagenic retrovirus. J Virol 1999; 73:2143-52. [PMID: 9971797 PMCID: PMC104459 DOI: 10.1128/jvi.73.3.2143-2152.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional enhancer of the lymphomagenic mouse retrovirus SL3 contains a binding site for the transcription factor core binding factor (CBF; also called AML1, PEBP2, and SEF1). The SL3 CBF binding site is called the core. It differs from the core of the weakly lymphomagenic mouse retrovirus Akv by one nucleotide (the sequences are TGTGGTTAA and TGTGGTCAA, respectively). A mutant virus called SAA that was identical to SL3 except that its core was mutated to the Akv sequence was only moderately attenuated for lymphomagenicity. In most SAA-infected mice, tumor proviruses contained either reversions of the original mutation or one of two novel core sequences. In 20% of the SAA-infected mice, tumor proviruses retained the original SAA/Akv core mutation but acquired one of two additional mutations (underlined), TGCGGTCAA or TGTGGTCTA, that generated core elements called So and T*, respectively. We tested whether the novel base changes in the So and T* cores were suppressor mutations. SL3 mutants that contained So or T* cores in place of the wild-type sequence were generated. These viruses induced T-cell lymphomas in mice more quickly than SAA. Therefore, the mutations in the So and T* cores are indeed second-site suppressor mutations. The suppressor mutations increased CBF binding in vitro and transcriptional activity of the viral long terminal repeats (LTRs) in T lymphocytes to levels comparable to those of SL3. Thus, CBF binding was increased by any of three different nucleotide changes within the sequence of the SAA core. Increased CBF binding resulted in increased LTR transcriptional activity in T cells and in increased viral lymphomagenicity.
Collapse
Affiliation(s)
- M J Martiney
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
21
|
Barat C, Rassart E. Nuclear factors that bind to the U3 region of two murine myeloid leukemia-inducing retroviruses, Cas-Br-E and Graffi. Virology 1998; 252:82-95. [PMID: 9875319 DOI: 10.1006/viro.1998.9435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cas-Br-E and Graffi are two myeloid leukemia-inducing murine viruses. Cas-Br-E induces, in NIH-Swiss mice, mostly non-T, non-B leukemia composed of very immature cells with no specific characteristics (Bergeron et al. (1993). Leukemia 7, 954-962). The Graffi murine leukemia virus causes exclusively myeloid leukemia, but the tumor cells are clearly of granulocytic nature (Ru et al. (1993). J. Virol. 67, 4722). We were interested to understand the role of the long terminal repeat (LTR) U3 region in the myeloid specificity of these two retroviruses. We used DNase I footprinting and gel mobility shift assays to identify a number of protein binding sites within Cas-Br-E and Graffi U3 regions. The pattern of protected regions is highly similar for the two viruses. Some factors identified in other murine leukemia viruses, like the core binding factor, also bind to Cas-Br-E and Graffi LTR; however, other binding sites seem specific for these two viruses. Only one difference between them was noted, at the 5' end of the U3 region. Transcriptional activity of both LTRs was also analyzed in various cell lines and compared with other murine leukemia viruses. The results show a slight myeloid specificity for the two LTRs, and indicate that the Graffi enhancer is quite strong in a broad range of cell types.
Collapse
Affiliation(s)
- C Barat
- Département des Sciences Biologiques, Université du Québec à Montréal, Canada
| | | |
Collapse
|
22
|
Granger SW, Fan H. In vivo footprinting of the enhancer sequences in the upstream long terminal repeat of Moloney murine leukemia virus: differential binding of nuclear factors in different cell types. J Virol 1998; 72:8961-70. [PMID: 9765441 PMCID: PMC110313 DOI: 10.1128/jvi.72.11.8961-8970.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enhancer sequences in the Moloney murine leukemia virus (M-MuLV) long terminal repeat (LTR) are of considerable interest since they are crucial for virus replication and the ability of the virus to induce T lymphomas. While extensive studies have identified numerous nuclear factors that can potentially bind to M-MuLV enhancer DNA in vitro, it has not been made clear which of these factors are bound in vivo. To address this problem, we carried out in vivo footprinting of the M-MuLV enhancer in infected cells by in vivo treatment with dimethyl sulfate (DMS) followed by visualization through ligation-mediated PCR (LMPCR) and gel electrophoresis. In vivo DMS-LMPCR footprinting of the upstream LTR revealed evidence for factor binding at several previously characterized motifs. In particular, protection of guanines in the central LVb/Ets and Core sites within the 75-bp repeats was detected in infected NIH 3T3 fibroblasts, Ti-6 lymphoid cells, and thymic tumor cells. In contrast, factor binding at the NF-1 sites was found in infected fibroblasts but not in T-lymphoid cells. These results are consistent with the results of previous experiments indicating the importance of the LVb/Ets and Core sequences for many retroviruses and the biological importance especially of the NF-1 sites in fibroblasts and T-lymphoid cells. No evidence for factor binding to the glucocorticoid responsive element and LVa sites was found. Additional sites of protein binding included a region in the GC-rich sequences downstream of the 75-bp repeats (only in fibroblasts), a hypersensitive guanine on the minus strand in the LVc site (only in T-lymphoid cells), and a region upstream of the 75-bp repeats. These experiments provide concrete evidence for the differential in vivo binding of nuclear factors to the M-MuLV enhancers in different cell types.
Collapse
Affiliation(s)
- S W Granger
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|
23
|
Barat C, Rassart E. Members of the GATA family of transcription factors bind to the U3 region of Cas-Br-E and graffi retroviruses and transactivate their expression. J Virol 1998; 72:5579-88. [PMID: 9621016 PMCID: PMC110213 DOI: 10.1128/jvi.72.7.5579-5588.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cas-Br-E and Graffi are two murine viruses that induce myeloid leukemia in mice: while Cas-Br-E induces mostly non-T, non-B leukemia composed of very immature cells, Graffi causes exclusively a granulocytic leukemia (E. Rassart, J. Houde, C. Denicourt, M. Ru, C. Barat, E. Edouard, L. Poliquin, and D. Bergeron, Curr. Top. Microbiol. Immunol. 211:201-210, 1995). In an attempt to understand the basis of the myeloid specificity of these two retroviruses, we used DNase I footprinting analysis and gel mobility shift assays to identify a number of protein binding sites within the Cas-Br-E and Graffi U3 regions. Two protected regions include potential GATA binding sites. Methylation interference analysis with different hematopoietic nuclear extracts showed the importance of the G residues in these GATA sites, and supershift assays clearly identified the binding factors as GATA-1, GATA-2, and GATA-3. Transient assays with long terminal repeat (LTR)-chloramphenicol acetyltransferase constructs showed that these three GATA family members are indeed able to transactivate Cas-Br-E and Graffi LTRs. Thus, the availability and relative abundance of the various members of the GATA family of transcription factors in a given cell type could influence the transcriptional tissue specificity of murine leukemia viruses and hence their disease specificity.
Collapse
Affiliation(s)
- C Barat
- Laboratoire de Biologie Moléculaire, Département de Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada H3C 3P8
| | | |
Collapse
|
24
|
Zaiman AL, Nieves A, Lenz J. CBF, Myb, and Ets binding sites are important for activity of the core I element of the murine retrovirus SL3-3 in T lymphocytes. J Virol 1998; 72:3129-37. [PMID: 9525638 PMCID: PMC109765 DOI: 10.1128/jvi.72.4.3129-3137.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transcriptional enhancers within the long terminal repeats of murine leukemia viruses are major determinants of the pathogenic properties of these viruses. Mutations were introduced into the adjacent binding sites for three transcription factors within the enhancer of the T-cell-lymphomagenic virus SL3-3. The sites that were tested were, in 5'-to-3' order, a binding site for core binding factor (CBF) called core II, a binding site for c-Myb, a site that binds members of the Ets family of factors, and a second CBF binding site called core I. Mutation of each site individually reduced transcriptional activity in T lymphocytes. However, mutation of the Myb and core I binding sites had larger effects than mutation of the Ets or core II site. The relative effects on transcription in T cells paralleled the effects of the same mutations on viral lymphomagenicity, consistent with the idea that the role of these sequences in viral lymphomagenicity is indeed to regulate transcription in T cells. Mutations were also introduced simultaneously into multiple sites in the SL3-3 enhancer. The inhibitory effects of these mutations indicated that the transcription factor in T cells that recognizes the core I element of SL3-3, presumably CBF, needed to synergize with one or more factors bound at the upstream sites to function. This was tested further by generating a multimer construct that contained five tandem core I elements linked to a basal long terminal repeat promoter. This construct was inactive in T cells. However, transcriptional activity was detected with a multimer construct in which the transcription factor binding sites upstream of the core were also present. These results are consistent with the hypothesis that CBF requires heterologous transcription factors bound at nearby sites to function in T cells.
Collapse
Affiliation(s)
- A L Zaiman
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
25
|
Starkey CR, Lobelle-Rich PA, Granger SW, Granger S, Brightman BK, Fan H, Levy LS. Tumorigenic potential of a recombinant retrovirus containing sequences from Moloney murine leukemia virus and feline leukemia virus. J Virol 1998; 72:1078-84. [PMID: 9445002 PMCID: PMC124580 DOI: 10.1128/jvi.72.2.1078-1084.1998] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A recombinant retrovirus, termed MoFe2-MuLV, was constructed in which the U3 region of T-lymphomagenic Moloney murine leukemia virus (Mo-MuLV) was replaced by that of FeLV-945, a provirus of unique long terminal repeat (LTR) structure identified only in non-T-cell, non-B-cell lymphomas of the domestic cat. The LTR of FeLV-945 is unusual in that it contains only a single copy of the transcriptional enhancer followed 25 bp downstream by a 21-bp sequence in triplicate in tandem. Infectivity of MoFe2-MuLV was demonstrated in vitro in SC-1 cells and in vivo in neonatal NIH-Swiss mice. Tumors occurred in MoFe2-MuLV-infected animals following a latency period of 4 to 10 months (average, 6 months). The results of Southern blot analysis of the T-cell receptor beta locus demonstrated that all tumors were lymphomas of T-cell origin. MoFe2-MuLV LTRs were amplified by PCR from tumor DNA and were characterized by nucleotide sequence analysis. LTRs from the tumors that occurred with relatively shorter latency predominantly retained the original MoFe2-MuLV sequence intact and unaltered. Tumors that occurred with relatively longer latency contained LTRs that also retained the 21-bp sequence triplication characteristic of the original virus but had acquired various duplications of enhancer sequences. The repeated identification of enhancer duplications in late-appearing tumors suggests that the duplication affords a selective advantage, although apparently not in the efficient induction of T-cell lymphoma. Proto-oncogenes known to be targets of insertional mutagenesis in the majority of Mo-MuLV-induced tumors or in feline non-T-cell, non-B-cell lymphomas were shown not to be rearranged in any tumor examined. Mink cell focus-inducing (MCF) proviral DNA was readily detectable in some, but not all, tumors. The presence or absence of MCF did not correlate with the kinetics of tumor induction. These studies indicate that the single-enhancer, triplication-containing FeLV LTR, typical of non-T-cell, non-B-cell lymphomas in cats, is competent in the induction of T-cell lymphoma in mice. The findings suggest that the mechanism of MoFe2-MuLV-mediated lymphomagenesis may differ from that of Mo-MuLV-mediated disease, considering the possible involvement of novel oncogenes and the variable presence of MCF recombinants.
Collapse
Affiliation(s)
- C R Starkey
- Department of Microbiology and Immunology and Tulane Cancer Center, Tulane Medical School, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Diaz RM, Eisen T, Hart IR, Vile RG. Exchange of viral promoter/enhancer elements with heterologous regulatory sequences generates targeted hybrid long terminal repeat vectors for gene therapy of melanoma. J Virol 1998; 72:789-95. [PMID: 9420288 PMCID: PMC109437 DOI: 10.1128/jvi.72.1.789-795.1998] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/1997] [Accepted: 09/24/1997] [Indexed: 02/05/2023] Open
Abstract
To generate transcriptionally targeted vectors, tissue-specific elements of the human tyrosinase promoter were exchanged with corresponding viral elements in the Moloney murine leukemia virus long terminal repeat (LTR). From these experiments, a vesicular stomatitis virus type G pseudotyped, hybrid LTR vector that contained three tyrosinase enhancer elements and gave high-level, tightly tissue-specific expression at high titers (3 x 10(7) CFU/ml) was constructed.
Collapse
Affiliation(s)
- R M Diaz
- Richard Dimbleby Department of Cancer Research/ICRF Laboratory, Rayne Institute, St. Thomas' Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
27
|
Fuller FJ. Genes controlling retroviral virulence. ADVANCES IN VETERINARY MEDICINE 1997; 40:135-55. [PMID: 9395732 DOI: 10.1016/s0065-3519(97)80007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- F J Fuller
- Department of Microbiology, Pathology, and Parasitology, North Carolina State University, College of Veterinary Medicine, Raleigh 27606, USA
| |
Collapse
|
28
|
Pantginis J, Beaty RM, Levy LS, Lenz J. The feline leukemia virus long terminal repeat contains a potent genetic determinant of T-cell lymphomagenicity. J Virol 1997; 71:9786-91. [PMID: 9371646 PMCID: PMC230290 DOI: 10.1128/jvi.71.12.9786-9791.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Feline leukemia virus (FeLV) is an important pathogen of domestic cats. The most common type of malignancy associated with FeLV is T-cell lymphoma. SL3-3 (SL3) is a potent T-cell lymphomagenic murine leukemia virus. Transcriptional enhancer sequences within the long terminal repeats (LTRs) of SL3 and other murine retroviruses are crucial genetic determinants of the pathogenicities of these viruses. The LTR enhancer sequences of FeLV contain identical binding sites for some of the transcription factors that are known to affect the lymphomagenicity of SL3. To test whether the FeLV LTR contains a genetic determinant of lymphomagenicity, a recombinant virus that contained the U3 region of a naturally occurring FeLV isolate, LC-FeLV, linked to the remainder of the genome of SL3 was generated. When inoculated into mice, the recombinant virus induced T-cell lymphomas nearly as quickly as SL3. Moreover, the U3 sequences of LC-FeLV were found to have about half as much transcriptional activity in T lymphocytes as the corresponding sequences of SL3. This level of activity was severalfold higher than that of the LTR of weakly leukemogenic Akv virus. Thus, the FeLV LTR contains a potent genetic determinant of T-cell lymphomagenicity. Presumably, it is adapted to be recognized by transcription factors present in T cells of cats, and this yields a relatively high level of transcription that allows the enhancer to drive the requisite steps in the process of lymphomagenesis.
Collapse
Affiliation(s)
- J Pantginis
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
29
|
Kim V, Green WR. The role of proximal and distal sequence variations in the presentation of an immunodominant CTL epitope encoded by the ecotropic AK7 MuLV. Virology 1997; 236:221-33. [PMID: 9325230 DOI: 10.1006/viro.1997.8747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An emv-14-derived, replication-competent ecotropic murine leukemia virus [MuLV], designated AK7, was previously cloned from the AKXL-5 recombinant inbred mouse strain and partially characterized. While genetically encoding for an envelope-derived immunodominant CTL epitope [KSPWFTTL] located in the transmembrane region of p15TM, this virus, unlike the emv-11-derived virus AKR623, fails to be efficiently recognized by AKR/Gross MuLV-specific cytotoxic T lymphocytes [CTL]. AK7 thus provides the opportunity to study the role of retroviral sequence variations that are located outside of the immunodominant epitope as a mechanism of escape from CTL-mediated immune surveillance. In an attempt to identify which region[s] of the AK7 genome could account for its ability to evade efficient recognition by AKR/Gross MuLV-specific CTL, we have constructed recombinant murine retroviruses. The direct influence of a sequence variation twelve amino acids N-terminal to KSPWFTTL was explored with the use of chimeric viruses and determined not to significantly impair the presentation of KSPWFTTL to AKR/Gross MuLV-specific CTL. The long terminal repeat [LTR] derived from the AK7 virus, which possesses only one copy of the 99-base pair transcriptional enhancer in the U3 region, in contrast to AKR623 that possesses two copies of the tandem direct repeat enhancers, was also analyzed for its influence on the presentation of KSPWFTTL. Interestingly, our data indicate that the enhancer region derived from AK7 negatively influences the presentation of KSPWFTTL in the context of a recombinant AKR623 virus.
Collapse
Affiliation(s)
- V Kim
- Department of Microbiology, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | | |
Collapse
|
30
|
Amtoft HW, Sørensen AB, Bareil C, Schmidt J, Luz A, Pedersen FS. Stability of AML1 (core) site enhancer mutations in T lymphomas induced by attenuated SL3-3 murine leukemia virus mutants. J Virol 1997; 71:5080-7. [PMID: 9188573 PMCID: PMC191741 DOI: 10.1128/jvi.71.7.5080-5087.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Murine retrovirus SL3-3 is highly T lymphomagenic. Its pathogenic properties are determined by the transcriptional enhancer of the U3 repeat region which shows preferential activity in T cells. Within the U3 repeats, the major determinant of T-cell specificity has been mapped to binding sites for the AML1 transcription factor family (also known as the core binding factor [CBF], polyomavirus enhancer binding protein 2 [PEBP2], and SL3-3 enhancer factor 1 [SEF-1]). SL3-3 viruses with AML1 site mutations have lost a major determinant of T-cell-specific enhancer function but have been found to retain a lymphomagenic potential, although disease induction is slower than for the SL3-3 wild type. To compare the specificities and mechanisms of disease induction of wild-type and mutant viruses, we have examined lymphomas induced by mutant viruses harboring transversions of three consecutive base pairs critical to AML1 site function (B. Hallberg, J. Schmidt, A. Luz, F. S. Pedersen, and T. Grundström. J. Virol. 65:4177-4181, 1991). Our results show that the mutated AML1 sites are genetically stable during lymphomagenesis and that ecotropic provirus numbers in DNA of tumors induced by wild-type and mutant viruses fall within the same range. Moreover, proviruses were found to be integrated at the c-myc locus in similar proportions of wild-type and mutant SL3-3-induced tumors, and the mutated AML1 sites of proviruses at c-myc are unaltered. In some cases, however, including one c-myc-integrated provirus, a single-base pair change was detected in a second, weaker AML1 binding site. By DNA rearrangement analysis of the T-cell receptor beta-locus, tumors induced by the AML1 site mutants are found to be of the T-cell type. Thus, although the AML1 site mutants have weakened T-cell-specific enhancers they are T-lymphomagenic, and wild-type- and mutant-virus-induced tumor DNAs are similar with respect to the number of overall ecotropic and c-myc-integrated clonal proviruses. The SL3-3 wild-type and AML1 site mutant viruses may therefore induce disease by similar mechanisms.
Collapse
Affiliation(s)
- H W Amtoft
- Department of Molecular and Structural Biology, University of Aarhus, Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
31
|
Sutton KA, Lin CT, Harkiss GD, McConnell I, Sargan DR. Regulation of the long terminal repeat in visna virus by a transcription factor related to the AML/PEBP2/CBF superfamily. Virology 1997; 229:240-50. [PMID: 9123866 DOI: 10.1006/viro.1996.8432] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The long terminal repeats of maedi visna virus strain 1514 contain a consensus AP-1 binding site which has been shown to be important in controlling virus transcription. However, this consensus site is absent in strain EV-1. Here, we have compared the ability of oligonucleotides corresponding to LTR sequences from EV-1 with those from 1514 to bind transcription factors in competitive gel retardation assays and activate reporter gene expression. The experiments demonstrated no observable binding of AP-1 to the EV-1-derived sequences and significant differences in the abilities of the 1514 and EV-1 sequences to activate transcription. However, both viral sequences interacted with a second, previously undetected, transcription factor. This factor gave specific gel shifts which were competed by an oligonucleotide containing the consensus sequence for the AML/PEBP2/CBF family of transcriptional factors, but not by control AP-1 or OCT-1 oligonucleotides. The factor was therefore denoted AML (vis). A second AML (vis) site, noted upstream of the TATA box proximal AP-1 site, gave single shifts which were competed by the downstream AML (vis) oligonucleotide. Both sites were functional in transfection assays. In gel shift retardation assays, polyclonal antisera directed against known runt domain proteins were able to supershift part of the AML (vis) binding activity in nuclear extracts from physiologically relevant cell types. The results thus suggest that the AML (vis) binding factor belongs to the AML/PEBP2/CBF family of transcription factors and may be important in controlling virus replication in these and other strains of ruminant lentiviruses.
Collapse
Affiliation(s)
- K A Sutton
- Department of Veterinary Pathology, University of Edinburgh, Summerhall, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Abstract
All murine leukemia viruses (MuLVs) and related type C retroviruses contain a highly conserved binding site for the Ets family of transcription factors within the enhancer sequences in the viral long terminal repeats (LTRs). The T-cell lymphomagenic MuLV SL3-3 (SL3-3) also contains a c-Myb binding site adjacent to the Ets site. The presence of this Myb site distinguishes SL3 from most other MuLVs. We tested the importance of these two sites for the lymphomagenicity of SL3-3. Mutation of the Ets site had little effect on viral pathogenicity, as it only slightly extended the latency period to disease onset. In contrast, mutation of the Myb site strongly inhibited pathogenicity, as only a minority of the inoculated mice developed tumors in the two mouse strains that were tested. All tumors that were induced by either mutant appeared to be lymphomas, and no evidence for reversion of either mutation was detected. The effects of the Ets and Myb site mutations on transcriptional activity of the SL3 LTR were tested by inserting the viral enhancer sequences into a plasmid containing the promoter region of the c-myc gene linked to a reporter gene. Mutation the Myb site almost eliminated enhancer activity in T lymphocytes, while mutation of the Ets site had smaller effects. Thus, the effects of the enhancer mutations on transcriptional activity in T cells paralleled their effects on viral lymphomagenicity. The absence of the c-Myb site in the LTR enhancer of the weakly lymphomagenic MuLV, Akv, likely contributes to the low pathogenicity of this virus relative to SL3-3. However, Moloney MuLV also lacks the Myb site in its LTR, although it induces T-cell lymphomas with a potency similar to that of SL3-3. Thus, it appears that SL3-3 and Moloney MuLV evolved genetic determinants of T-cell lymphomagenicity that are, at least in part, distinct.
Collapse
Affiliation(s)
- A Nieves
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
33
|
Akamatsu Y, Tsukumo S, Kagoshima H, Tsurushita N, Shigesada K. A simple screening for mutant DNA binding proteins: application to murine transcription factor PEBP2alpha subunit, a founding member of the Runt domain protein family. Gene X 1997; 185:111-7. [PMID: 9034321 DOI: 10.1016/s0378-1119(96)00644-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mouse transcription factor PEBP2 (polyomavirus enhancer-binding protein (2) is composed of two distinct subunits alpha and beta. The alpha subunit has an ability to bind the specific DNA sequences, which is enhanced by formation of a heterodimer with the beta subunit. The DNA binding and heterodimerization activities of the alpha subunit are both localized within a 128-amino-acid (aa) region termed as the Runt domain for its homology to the Drosophila segmentation gene runt. To characterize the molecular determinants for these activities, the Runt domain was randomly mutagenized and produced in E. coli as a secreted form. Using E. coli culture supernatant, the DNA binding and heterodimerization of mutant Runt domains were analyzed by gel retardation assay. Nine randomly picked single-aa substitution mutants showed various functional alterations in DNA binding and heterodimerization either separately or simultaneously. This observation suggests that the structure of Runt domain is highly ordered and is quite sensitive to modulations in its primary structure. The method presented here provides a simple and quick method to characterize a large number of mutant DNA binding proteins.
Collapse
Affiliation(s)
- Y Akamatsu
- Department of Genetics and Molecular Biology, Institute for Virus Research, Kyoto University, Syogoin, Sakyo-ku, Japan
| | | | | | | | | |
Collapse
|
34
|
Kagoshima H, Akamatsu Y, Ito Y, Shigesada K. Functional dissection of the alpha and beta subunits of transcription factor PEBP2 and the redox susceptibility of its DNA binding activity. J Biol Chem 1996; 271:33074-82. [PMID: 8955155 DOI: 10.1074/jbc.271.51.33074] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mouse transcription factor PEBP2 is a heterodimer of two subunits: a DNA binding subunit alpha and its partner subunit beta. The alpha subunit shares a region of high homology, termed the Runt domain, with the products of the Drosophila melanogaster segmentation gene runt and the human acute myeloid leukemia-related gene AML1. To study the molecular basis for the DNA binding and heterodimerization functions of this factor, we constructed series of deletions of the alpha and beta subunits and examined their activities by electrophoretic mobility shift and affinity column assays. The minimal functional region of the alpha subunit for DNA binding and dimerization was shown to coincide with the Runt domain. On the other hand, the region of the beta subunit required for heterodimerization was localized to the N-terminal 135 amino acids. Furthermore, it was found that the DNA binding activity of the Runt domain is regulated by a reduction/oxidization (redox) mechanism and that its reductively activated state, which is extremely labile, is stabilized by the beta subunit. These findings add a new layer to the mechanism and significance of the regulatory interplay between the two subunits of PEBP2.
Collapse
Affiliation(s)
- H Kagoshima
- Laboratory of Biochemistry, Department of Genetics and Molecular Biology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606, Japan.
| | | | | | | |
Collapse
|
35
|
Jackson ML, Haines DM, Misra V. Sequence analysis of the putative viral enhancer in tissues from 33 cats with various feline leukemia virus-related diseases. Vet Microbiol 1996; 53:213-25. [PMID: 9008333 DOI: 10.1016/s0378-1135(96)01228-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Diseases resulting from infection by feline leukemia virus (FeLV) and several other retroviruses relate in part, to non-coding regulatory sequences within the viral long terminal repeat (LTR). Both enhancer repeats and mutations within the LTR have been implicated in FeLV related disease. In order to investigate the relationship between nucleotide sequence of the FeLV LTR and disease, tissues from 33 cats with different types of degenerative and proliferative FeLV-related disease were studied. An FeLV LTR region containing the putative transcriptional enhancer unit was amplified by polymerase chain reaction (PCR) from FeLV-infected tissues. Phylogenetic analysis of FeLV 3'unique (U3) sequences revealed only one meaningful grouping which contained 4 of the 5 antigen-negative lymphosarcomas (LSAs). No sequence duplications were found in any of the 33 FeLV U3 regions. Point mutations relative to the corresponding region of FeLV-A/Glasgow, were identified at 102 positions; 68 of these were accounted for by mutations at 5 locations. Only 1 point mutation was found within the leukemia virus b-simian virus 40-like core (LVb-CORE) site. However, the nuclear factor 1 (NF1) site contained 11 mutations, and the FeLV-specific (FLV-1) site contained 26 mutations. Most of the remaining mutations were upstream of the LVB site between glucocorticoid response element (GRE) and FLV-1. The 10 LSAs, particularly the 5 antigen-negative LSAs, deviated least from the corresponding sequence for FeLV-A/Glasgow. Conclusions were that the spectrum of neoplastic and non-neoplastic FeLV-related diseases investigated in this study, developed in the presence of FeLVs containing the single enhancer unit. The significance of the point mutations is unknown, however, those occurring with high frequency and within nuclear protein binding should be first to be investigated in functional studies.
Collapse
Affiliation(s)
- M L Jackson
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
36
|
Zaiman AL, Lenz J. Transcriptional activation of a retrovirus enhancer by CBF (AML1) requires a second factor: evidence for cooperativity with c-Myb. J Virol 1996; 70:5618-29. [PMID: 8764076 PMCID: PMC190522 DOI: 10.1128/jvi.70.8.5618-5629.1996] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcriptional enhancer sequences within the long terminal repeats (LTRs) of murine leukemia viruses are the primary genetic determinants of the tissue specificity and potency of the oncogenic potential of these retroviruses. SL3-3 (SL3) is a murine leukemia virus that induces T-cell lymphomas. The LTR enhancer of this virus contains two binding sites for the transcription factor CBF (also called AML1 and PEBP2) that flank binding sites for c-Myb and the Ets family of factors. Using cotransfection assays in P19 cells, we report here that CBF and c-Myb cooperatively stimulate transcription from the SL3 LTR. By itself, c-Myb had no stimulatory effect on transcription. However, when cotransfected with a cDNA encoding one form of the alpha subunit of CBF called CBFalpha2-451, a level of transactivation higher than that seen with CBFalpha2-451 alone was detected. The negative regulatory domain near the carboxyl terminus of c-Myb did not affect this activity. Electrophoretic mobility shift assays indicated that CBF and c-Myb bind to DNA independently. Therefore, it appears that the cooperative stimulation of transcription by these factors occurs at a step in the process of transcription after the two factors are bound to the enhancer. Sequences near the carboxyl terminus of CBFalpha2-451 were important for cooperativity with c-Myb, consistent with previous reports that this region contains an activation domain. However, CBFalpha2-451 failed to activate transcription from a version of the SL3 LTR in which the enhancer was replaced with five tandem CBF-binding sites. Thus, it appears that transcriptional activation of the SL3 enhancer by CBF requires that an appropriate heterologous transcription factor be bound to a neighboring site in the regulatory sequences.
Collapse
Affiliation(s)
- A L Zaiman
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
37
|
Sambasivarao D, Paetkau V. Interactions of a transcriptional activator in the env gene of the mouse mammary tumor virus with activation-dependent, T cell-specific transacting factors. J Biol Chem 1996; 271:8942-50. [PMID: 8621538 DOI: 10.1074/jbc.271.15.8942] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mouse mammary tumor virus env gene contains a transcriptional activator (META) that can control transcription of the adjacent long terminal repeat region. Transcriptional control by META parallels that of several lymphokine genes, being specific to T cells, dependent on their activation, and inhibited by the immunosuppressive drug cyclosporine (CsA). DNase I footprinting indicated that nuclear factors from activated T lymphocytes bound a promoter-proximal site, META(P), and a promoter-distal site, META(D+), within the 400-base pair META region. Nuclear factors from unstimulated, but not from activated cells, bound a site, META(D-), adjacent to META(D+). META(D+) directed transcription of a linked luciferase gene, and gel shift analysis revealed binding of inducible, CsA-sensitive T cell factors, in parallel with transfection results. Authentic NFAT and NF-kappaB targets did not compete for the META(D+) binding factor(s). The SV40 core sequence competed for META(D+) binding factors, but META(D+) failed to compete for the complexes obtained with the SV40 probe. Our results, taken together, indicate that META(D+) is a novel transcriptional enhancer element that is similar in its cell-type specificity, activation dependence, and CsA sensitivity to the NFAT element. It may be relevant to the role of MMTV in expression of Mls antigens or the induction of T cell lymphomas.
Collapse
Affiliation(s)
- D Sambasivarao
- Department of Biochemistry, Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
38
|
Newbound GC, Andrews JM, O'Rourke JP, Brady JN, Lairmore MD. Human T-cell lymphotropic virus type 1 Tax mediates enhanced transcription in CD4+ T lymphocytes. J Virol 1996; 70:2101-6. [PMID: 8642630 PMCID: PMC190046 DOI: 10.1128/jvi.70.4.2101-2106.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma and is associated with a variety of immunoregulatory disorders. HTLV-1 has been shown to bind to and infect a variety of hematopoietic and nonhematopoietic cells. However, both in vivo and in vitro, the provirus is mostly detected in and preferentially transforms CD4+ T cells. The molecular mechanism that determines the CD4+ T-cell tropism of HTLV-1 has not been determined. Using cocultures of purified CD4+ and CD8+ T cells with an HTLV-1 producing cell line, we measured viral transcription by using Northern (RNA) blot analysis, protein production by using a p24 antigen capture assay and flow cytometric analysis for viral envelope, and proviral integration by using DNA slot blot analysis. We further measured HTLV-1 long terminal repeat-directed transcription in purified CD4+ and CD8+ T cells by using transient transfection assays and in vitro transcription. We demonstrate a higher rate of viral transcription in primary CD4+ T cells than in CD8+ T cells. HTLV-1 protein production was 5- to 25-fold greater in CD4+ cocultures and mRNA levels were 5-fold greater in these cultures than in the CD8+ cocultures. Transient transfection and in vitro transcription indicated a modest increase in basal transcription in CD4+ T cells, whereas there was a 20-fold increase in reporter gene activity in CD4+ T cells cotransfected with tax. These data suggest that unique or activated transcription factors, particularly Tax-responsive factors in CD4+ T cells, recognize regulatory sequences within the HTLV-1 long terminal repeat, and this mediates the observed enhanced viral transcription and ultimately the cell tropism and leukemogenic potential of the virus.
Collapse
Affiliation(s)
- G C Newbound
- Center for Retrovirus Research, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
39
|
Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84:321-30. [PMID: 8565077 DOI: 10.1016/s0092-8674(00)80986-1] [Citation(s) in RCA: 1470] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The AML1-CBF beta transcription factor is the most frequent target of chromosomal rearrangements in human leukemia. To investigate its normal function, we generated mice lacking AML1. Embryos with homozygous mutations in AML1 showed normal morphogenesis and yolk sac-derived erythropoiesis, but lacked fetal liver hematopoiesis and died around E12.5. Sequentially targeted AML1-/-es cell retained their capacity to differentiate into primitive erythroid cells in vitro; however, no myeloid or erythroid progenitors of definitive hematopoietic origin were detected in either the yolk sac or fetal livers of mutant embryos. Moreover, this hematopoietic defect was intrinsic to the stem cells in that AML1-/-ES cells failed to contribute to hematopoiesis in chimeric animals. These results suggest that AML1-regulated target genes are essential for definitive hematopoiesis of all lineages.
Collapse
Affiliation(s)
- T Okuda
- Department of Pathology and Laboratory Medicine, St. Jude Children's Research Hospital Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
40
|
Rassart E, Houde J, Denicourt C, Ru M, Barat C, Edouard E, Poliquin L, Bergeron D. Molecular analysis and characterization of two myeloid leukemia inducing murine retroviruses. Curr Top Microbiol Immunol 1996; 211:201-10. [PMID: 8585951 DOI: 10.1007/978-3-642-85232-9_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- E Rassart
- Département des sciences biologiques, Université du Québec à Montréal, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sun W, Graves BJ, Speck NA. Transactivation of the Moloney murine leukemia virus and T-cell receptor beta-chain enhancers by cbf and ets requires intact binding sites for both proteins. J Virol 1995; 69:4941-9. [PMID: 7609063 PMCID: PMC189309 DOI: 10.1128/jvi.69.8.4941-4949.1995] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Moloney murine leukemia virus (Mo-MLV) enhancer contains binding sites (LVb and LVc) for the ets gene family of proteins and a core site that binds the polyomavirus enhancer-binding protein 2/core-binding factor (cbf) family of proteins. The LVb and core sites in the Mo-MLV enhancer contribute to its constitutive activity in T cells. All three binding sites (LVb, LVc, and core) are required for phorbol ester inducibility of the Mo-MLV enhancer. Adjacent binding sites for the ets and cbf proteins likewise constitute a phorbol ester response element within the human T-cell receptor beta-chain (TCR beta) enhancer and contribute to constitutive transcriptional activity of the TCR beta enhancer in T cells. Here we show that the CBF alpha subunit encoded by the mouse Cbfa2 gene (the murine homolog of human AML1) and three ets proteins, Ets-1, Ets-2, and GA-binding protein (GABP), transactivate both the Mo-MLV and mouse TCR beta enhancer in transient-expression assays. Moreover, we show that transactivation by Cbf alpha 2 requires both intact ets and cbf binding sites. Transactivation by Ets-1, Ets-2, and GABP likewise requires intact binding sites for ets proteins and CBF. Supportive biochemical analyses demonstrate that both proteins can bind simultaneously to a composite enhancer element. These findings suggest that ets and cbf proteins cooperate in vivo to regulate transcription from the Mo-MLV and TCR beta enhancers.
Collapse
Affiliation(s)
- W Sun
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
42
|
Athas GB, Lobelle-Rich P, Levy LS. Function of a unique sequence motif in the long terminal repeat of feline leukemia virus isolated from an unusual set of naturally occurring tumors. J Virol 1995; 69:3324-32. [PMID: 7745680 PMCID: PMC189044 DOI: 10.1128/jvi.69.6.3324-3332.1995] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Feline leukemia virus (FeLV) proviruses have been characterized from naturally occurring non-B-cell, non-T-cell tumors occurring in the spleens of infected cats. These proviruses exhibit a unique sequence motif in the long terminal repeat (LTR), namely, a 21-bp tandem triplication beginning 25 bp downstream of the enhancer. The repeated finding of the triplication-containing LTR in non-B-cell, non-T-cell lymphomas of the spleen suggests that the unique LTR is an essential participant in the development of tumors of this particular phenotype. The nucleotide sequence of the triplication-containing LTR most closely resembles that of FeLV subgroup C. Studies performed to measure the ability of the triplication-containing LTR to modulate gene expression indicate that the 21-bp triplication provides transcriptional enhancer function to the LTR that contains it and that it substitutes at least in part for the duplication of the enhancer. The 21-bp triplication confers a bona fide enhancer function upon LTR-directed reporter gene expression; however, the possibility of a spacer function was not eliminated. The studies demonstrate further that the triplication-containing LTR acts preferentially in a cell-type-specific manner, i.e., it is 12-fold more active in K-562 cells than is an LTR lacking the triplication. A recombinant, infectious FeLV bearing the 21-bp triplication in U3 was constructed. Cells infected with the recombinant were shown to accumulate higher levels of viral RNA transcripts and virus particles in culture supernatants than did cells infected with the parental type. The triplication-containing LTR is implicated in the induction of tumors of a particular phenotype, perhaps through transcriptional regulation of the virus and/or adjacent cellular genes, in the appropriate target cell.
Collapse
Affiliation(s)
- G B Athas
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
43
|
Abstract
This review focuses on the roles of transcription factors in hematopoietic lineage commitment. A brief introduction to lineage commitment and asymmetric cell division is followed by a discussion of several methods used to identify transcription factors important in specifying hematopoietic cell types. Next is presented a discussion of the use of embryonic stem cells in the analysis of hematopoietic gene expression and the use of targeted gene disruption to analyze the role of transcription factors in hematopoiesis. Finally, the status of our current knowledge concerning the roles of transcription factors in the commitment to erythroid, myeloid and lymphoid cell types is summarized.
Collapse
Affiliation(s)
- J H Kehrl
- B Cell Molecular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
44
|
Zaiman AL, Lewis AF, Crute BE, Speck NA, Lenz J. Transcriptional activity of core binding factor-alpha (AML1) and beta subunits on murine leukemia virus enhancer cores. J Virol 1995; 69:2898-906. [PMID: 7707514 PMCID: PMC188987 DOI: 10.1128/jvi.69.5.2898-2906.1995] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Core binding factor (CBF), also known as polyomavirus enhancer-binding protein 2 and SL3 enhancer factor 1, is a mammalian transcription factor that binds to an element termed the core within the enhancers of the murine leukemia virus family of retroviruses. The core elements of the SL3 virus are important genetic determinants of the ability of this virus to induce T-cell lymphomas and the transcriptional activity of the viral long terminal repeat in T lymphocytes. CBF consists of two subunits, a DNA binding subunit, CBF alpha, and a second subunit, CBF beta, that stimulates the DNA binding activity of CBF alpha. One of the genes that encodes a CBF alpha subunit is AML1, also called Cbf alpha 2. This locus is rearranged by chromosomal translocations in human myeloproliferative disorders and leukemias. An exogenously expressed Cbf alpha 2-encoded subunit (CBF alpha 2-451) stimulated transcription from the SL3 enhancer in P19 and HeLa cells. Activity was mediated through the core elements. Three different isoforms of CBF beta were also tested for transcriptional activity on the SL3 enhancer. The longest form, CBF beta-187, increased the transcriptional stimulation by CBF alpha 2-451 twofold in HeLa cells, although it had no effect in P19 cells. Transcriptional activation by CBF beta required binding to the CBF alpha subunit, as a form of CBF beta that lacked binding ability, CBF beta-148, failed to increase activity. These results indicated that at least in certain cell types, the maximum activity of CBF required both subunits. They also provided support for the hypothesis that CBF is a factor in T lymphocytes that is responsible for recognition of the SL3 cores. We also examined whether CBF could distinguish a 1-bp difference between the enhancer core of SL3 and the core of the nonleukemogenic virus, Akv. This difference strongly affects transcription in T cells and leukemogenicity of SL3. However, no combination of CBF alpha and CBF beta subunits that we tested was able to distinguish the 1-bp difference in transcription assays. Thus, a complete understanding of how T cells recognize the SL3 core remains to be elucidated.
Collapse
Affiliation(s)
- A L Zaiman
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
45
|
Meyers S, Lenny N, Hiebert SW. The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol Cell Biol 1995; 15:1974-82. [PMID: 7891692 PMCID: PMC230424 DOI: 10.1128/mcb.15.4.1974] [Citation(s) in RCA: 319] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The AML-1/CBF beta transcription factor complex is targeted by both the t(8;21) and the inv(16) chromosomal alterations, which are frequently observed in acute myelogenous leukemia. AML-1 is a site-specific DNA-binding protein that recognizes the enhancer core motif TGTGGT. The t(8;21) translocation fuses the first 177 amino acids of AML-1 to MTG8 (also known as ETO), generating a chimeric protein that retains the DNA-binding domain of AML-1. Analysis of endogenous AML-1 DNA-binding complexes suggested the presence of at least two AML-1 isoforms. Accordingly, we screened a human B-cell cDNA library and isolated a larger, potentially alternatively spliced, form of AML1, termed AML1B. AML-1B is a protein of 53 kDa that binds to a consensus AML-1-binding site and complexes with CBF beta. Subcellular fractionation experiments demonstrated that both AML-1 and AML-1/ETO are efficiently extracted from the nucleus under ionic conditions but that AML-1B is localized to a salt-resistant nuclear compartment. Analysis of the transcriptional activities of AML-1, AML-1B, and AML-1/ETO demonstrated that only AML-1B activates transcription from the T-cell receptor beta enhancer. Mixing experiments indicated that AML-1/ETO can efficiently block AML-1B-dependent transcriptional activation, suggesting that the t(8;21) translocation creates a dominant interfering protein.
Collapse
Affiliation(s)
- S Meyers
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | |
Collapse
|
46
|
Duch M, Paludan K, Lovmand J, Sørensen MS, Jørgensen P, Pedersen FS. The effect of selection for high-level vector expression on the genetic and functional stability of a single transcript vector derived from a low-leukemogenic murine retrovirus. Hum Gene Ther 1995; 6:289-96. [PMID: 7779912 DOI: 10.1089/hum.1995.6.3-289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Single-gene murine leukemia virus-based retroviral vectors carrying the G418-resistance gene (neo) under transcriptional control of the long terminal repeat were used to study the effect of selection on long-term vector expression in a murine lymphoid cell line, L691. We used two isogenic vectors carrying either a strong or a weak transcriptional enhancer from low-leukemogenic Akv and high-leukemogenic SL3-3 murine leukemia virus, respectively. Effects of G418 selection were studied at the level of vector-transduced cell populations and at the level of single-vector-transduced cell clones obtained without selection for vector expression. Selection for vector expression prior to isolation of cell clones changed the range of vector expression for the two populations of cell clones. Cell clones harboring the Akv enhancer, isolated without selection and then subjected to prolonged growth under selective conditions, exhibited no mutations in the enhancer region or major vector rearrangements although showing increased vector expression in some cases. Our results are discussed in terms of retrovirus-mediated gene transfer strategies employing selection for expression of a selective marker in single-gene or bicistronic vectors with a low- or nonleukemogenic virus-derived backbone.
Collapse
Affiliation(s)
- M Duch
- Department of Molecular Biology, University of Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
47
|
Yoshimura FK, Diem K. Characterization of nuclear protein binding to a site in the long terminal repeat of a murine leukemia virus: comparison with the NFAT complex. J Virol 1995; 69:994-1000. [PMID: 7815567 PMCID: PMC188668 DOI: 10.1128/jvi.69.2.994-1000.1995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We previously identified a protein-binding site (MLPal) that is located downstream of the enhancer element in the long terminal repeat (LTR) of a mink cell focusing-forming (MCF) murine leukemia virus (F. K. Yoshimura, K. Diem, H. Chen, and J. Tupper, J. Virol. 67:2298-2304, 1993). We determined that the MLPal site regulates transcription specifically in T cells and affects the lymphomagenicity of the MCF isolate 13 murine leukemia virus with a single enhancer repeat in its LTR. In this report, we present evidence that two different proteins, a T-cell-specific protein and a ubiquitous protein, bind the MLPal site in a sequence-specific manner. By mutational analysis, we determined that the T-cell-specific and the ubiquitous proteins require different nucleotides in the MLPal sequence for DNA binding. By competitive electrophoretic mobility shift assays, we demonstrated that the T-cell-specific protein that binds MLPal is identical or similar to a protein from nonactivable T cells that interacts with the binding site of the nuclear factor of activated T cells (NFAT). Unlike the NFAT-binding site, however, the MLPal site does not bind proteins that are inducible by T-cell activation. We observed that the MLPal sequence is conserved in the LTRs of other mammalian retroviruses that cause T-cell diseases. Furthermore, the MLPal sequence is present in the transcriptional regulatory regions of cellular genes that either are expressed specifically in T cells or are commonly rearranged by provirus integration in thymic lymphomas. Thus, the MLPal-binding proteins may play a role in the transcriptional regulation not only of the MCF virus LTR but also of cellular genes involved in T-cell development.
Collapse
Affiliation(s)
- F K Yoshimura
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | | |
Collapse
|
48
|
Rohn JL, Overbaugh J. In vivo selection of long terminal repeat alterations in feline leukemia virus-induced thymic lymphomas. Virology 1995; 206:661-5. [PMID: 7831823 DOI: 10.1016/s0042-6822(95)80085-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To determine what genetic changes are selected in the enhancer sequences of the feline leukemia virus (FeLV) long terminal repeat in cats that develop T cell tumors, we cloned proviral U3 sequences in cats that died with thymic lymphoma following infection with molecularly cloned FeLV. Analysis of the U3 enhancer region revealed single base changes, including point mutations in the core and FLV-1 sequences. Additionally, in clones from two of four cat tumors, portions of the enhancer including Lvb and core were duplicated with respect to the single enhancer unit of the inoculating virus. In contrast, a PCR survey of necropsy DNA samples derived from five cats that did not develop tumors revealed that all retained the single enhancer unit of the infecting virus. These results demonstrate that viruses with duplicated enhancers can be generated and selected after only a single passage in cats, and furthermore, that such viruses may be particularly selected in tumors.
Collapse
Affiliation(s)
- J L Rohn
- Department of Microbiology, University of Washington, Seattle 98195
| | | |
Collapse
|
49
|
Morrison HL, Soni B, Lenz J. Long terminal repeat enhancer core sequences in proviruses adjacent to c-myc in T-cell lymphomas induced by a murine retrovirus. J Virol 1995; 69:446-55. [PMID: 7983741 PMCID: PMC188593 DOI: 10.1128/jvi.69.1.446-455.1995] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The transcriptional enhancer in the long terminal repeat (LTR) of the T-lymphomagenic retrovirus SL3-3 differs from that of the nonleukemogenic virus Akv at several sites, including a single base pair difference in an element termed the enhancer core. Mutation of this T-A base pair to the C-G C-G sequence found in Akv significantly attenuated the leukemogenicity of SL3-3. Thus, this difference is important for viral leukemogenicity. Since Akv is an endogenous virus, this suggests that the C-G in its core is an adaptation to being minimally pathogenic. Most tumors that occurred in mice inoculated with the mutant virus, called SAA, contained proviruses with reversion or potential suppressor mutations in the enhancer core. We also found that the 72-bp tandem repeats constituting the viral enhancer could vary in number. Most tumors contained mixtures of proviruses with various numbers of 72-bp units, usually between one and four. Variation in repeat number was most likely due to recombination events involving template misalignment during viral replication. Thus, two processes during viral replication, misincorporation and recombination, combined to alter LTR enhancer structure and generate more pathogenic variants from the mutant virus. In SAA-induced tumors, enhancers of proviruses adjacent to c-myc had the largest number of core reversion or suppressor mutations of all of the viral enhancers in those tumors. This observation was consistent with the hypothesis that one function of the LTR enhancers in leukemogenesis is to activate proto-oncogenes such as c-myc.
Collapse
Affiliation(s)
- H L Morrison
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
50
|
Lawrenz-Smith SC, Massey AC, Innes DJ, Thomas CY. Pathogenic determinants in the U3 region of recombinant murine leukemia viruses isolated from CWD and HRS/J mice. J Virol 1994; 68:5174-83. [PMID: 8035516 PMCID: PMC236461 DOI: 10.1128/jvi.68.8.5174-5183.1994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recombinant murine leukemia viruses (MuLVs) from high-leukemia-incidence mouse strains typically acquire pathogenic U3 region sequences from the genome of the endogenous xenotropic virus, Bxv-1. However, a recombinant virus isolated from a leukemic HRS/J mouse and another from a CWD mouse contained U3 regions that lacked genetic markers of Bxv-1. The U3 regions of both recombinants were derived from the endogenous ecotropic virus Env-1 and had retained a single enhancer element. However, compared with that of Emv-1, the U3 region of each of the recombinant viruses contained five nucleotide substitutions, one of which was shared. To determine the biological significance of these substitutions, chimeric ecotropic viruses that contained the U3 region from one of the two recombinant viruses or from Emv-1 were injected into NIH Swiss mice. All three of the chimeric ecotropic viruses were leukemogenic following a long latency. Despite the presence of an enhancer core motif that is known to contribute to the leukemogenicity of the AKR MuLV SL3-3, the HRS/J virus U3 region induced lymphomas only slightly more rapidly than the allelic Emv-1 sequences. The chimeric virus with the U3 region of the CWD recombinant caused lymphomas more frequently and more rapidly than either of the other two viruses. The results support the hypothesis that one or more of the five nucleotide substitutions in the U3 regions of the recombinants contribute to viral pathogenicity. Comparison of DNA sequences suggests that the pathogenicity of the CWD virus U3 region was related to a sequence motif that is shared with Bxv-1 and is recognized by the basic helix-loop-helix class of transcription factors.
Collapse
Affiliation(s)
- S C Lawrenz-Smith
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | | | |
Collapse
|