1
|
Fc-Dependent Immunomodulation Induced by Antiviral Therapeutic Antibodies: New Perspectives for Eliciting Protective Immune Responses. Antibodies (Basel) 2022; 11:antib11030050. [PMID: 35892710 PMCID: PMC9331007 DOI: 10.3390/antib11030050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
The multiple mechanisms of action of antiviral monoclonal antibodies (mAbs) have made these molecules a potential therapeutic alternative for treating severe viral infections. In addition to their direct effect on viral propagation, several studies have shown that mAbs are able to enhance the host's adaptive immune response and generate long-lasting protective immunity. Such immunomodulatory effects occur in an Fc-dependent manner and rely on Fc-FcγR interactions. It is noteworthy that several FcγR-expressing cells have been shown to play a key role in enhancing humoral and cellular immune responses (so-called "vaccinal effects") in different experimental settings. This review recalls recent findings concerning the vaccinal effects induced by antiviral mAbs, both in several preclinical animal models and in patients treated with mAbs. It summarizes the main cellular and molecular mechanisms involved in these immunomodulatory properties of antiviral mAbs identified in different pathological contexts. It also describes potential therapeutic interventions to enhance host immune responses that could guide the design of improved mAb-based immunotherapies.
Collapse
|
2
|
Lambour J, Naranjo-Gomez M, Boyer-Clavel M, Pelegrin M. Differential and sequential immunomodulatory role of neutrophils and Ly6C hi inflammatory monocytes during antiviral antibody therapy. Emerg Microbes Infect 2021; 10:964-981. [PMID: 33858301 PMCID: PMC8158214 DOI: 10.1080/22221751.2021.1913068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Antiviral monoclonal antibodies (mAbs) can generate protective immunity through Fc-FcγRs interactions. We previously showed a role for immune complexes (ICs) in the enhancement of antiviral T-cell responses through FcγR-mediated activation of dendritic cells (DCs). Here we addressed how mAb therapy in retrovirus-infected mice affects the activation of neutrophils and inflammatory monocytes, two FcγR-expressing innate effector cells rapidly recruited to sites of infection. We found that both cell-types activated in vitro by viral ICs secreted chemokines able to recruit monocytes and neutrophils themselves. Moreover, inflammatory cytokines potentiated chemokines and cytokines release by IC-activated cells and induced FcγRIV upregulation. Similarly, infection and mAb-treatment upregulated FcγRIV on neutrophils and inflammatory monocytes and enhanced their cytokines/chemokines secretion. Notably, upon antibody therapy neutrophils and inflammatory monocytes displayed distinct functional activation states and sequentially modulated the antiviral immune response by secreting Th1-type polarizing cytokines and chemokines, which occurred in a FcγRIV-dependent manner. Consistently, FcγRIV- blocking in mAb-treated, infected mice led to reduced immune protection. Our work provides new findings on the immunomodulatory role of neutrophils and monocytes in the enhancement of immune responses upon antiviral mAb therapy.
Collapse
Affiliation(s)
| | - Mar Naranjo-Gomez
- IGMM, Univ Montpellier, CNRS, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Myriam Boyer-Clavel
- Montpellier Ressources Imagerie, Biocampus, Univ Montpellier, CNRS, Montpellier, France
| | - Mireia Pelegrin
- IGMM, Univ Montpellier, CNRS, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
3
|
Naranjo-Gomez M, Cahen M, Lambour J, Boyer-Clavel M, Pelegrin M. Immunomodulatory Role of NK Cells during Antiviral Antibody Therapy. Vaccines (Basel) 2021; 9:137. [PMID: 33567792 PMCID: PMC7914599 DOI: 10.3390/vaccines9020137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Monoclonal antibodies (mAbs) are now considered as a therapeutic approach to prevent and treat severe viral infections. Using a mouse retroviral model, we showed that mAbs induce protective immunity (vaccinal effects). Here, we investigated the role of natural killer (NK) cells on this effect. NK cells are effector cells that are crucial to control viral propagation upon mAb treatment. However, their immunomodulatory activity during antiviral mAb immunotherapies has been little studied. Our data reveal that the mAb treatment of infected mice preserves the functional activation of NK cells. Importantly, functional NK cells play an essential role in preventing immune dysfunction and inducing antiviral protective immunity upon mAb therapy. Thus, NK cell depletion in mAb-treated, viral-infected mice leads to the upregulation of molecules involved in immunosuppressive pathways (i.e., PD-1, PD-L1 and CD39) on dendritic cells and T cells. NK cell depletion also abrogates the vaccinal effects induced by mAb therapy. Our data also reveal a role for IFNγ-producing NK cells in the enhancement of the B-cell responses through the potentiation of the B-cell helper properties of neutrophils. These findings suggest that preserved NK cell functions and counts might be required for achieving mAb-induced protective immunity. They open new prospects for improving antiviral immunotherapies.
Collapse
Affiliation(s)
- Mar Naranjo-Gomez
- IGMM, Univ Montpellier, CNRS, Montpellier, France; (M.N.-G.); (M.C.); (J.L.)
| | - Marine Cahen
- IGMM, Univ Montpellier, CNRS, Montpellier, France; (M.N.-G.); (M.C.); (J.L.)
| | - Jennifer Lambour
- IGMM, Univ Montpellier, CNRS, Montpellier, France; (M.N.-G.); (M.C.); (J.L.)
| | - Myriam Boyer-Clavel
- Montpellier Ressources Imagerie, Biocampus, Univ Montpellier, CNRS, Montpellier, France;
| | - Mireia Pelegrin
- IGMM, Univ Montpellier, CNRS, Montpellier, France; (M.N.-G.); (M.C.); (J.L.)
| |
Collapse
|
4
|
Cardona SM, Dunphy JM, Das AS, Lynch CR, Lynch WP. Astrocyte Infection Is Required for Retrovirus-Induced Spongiform Neurodegeneration Despite Suppressed Viral Protein Expression. Front Neurosci 2019; 13:1166. [PMID: 31736699 PMCID: PMC6828646 DOI: 10.3389/fnins.2019.01166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
The ability of retroviruses (RVs) to cause neurodegeneration is critically dependent upon two activities of the envelope protein (Env). First, Env facilitates viral genome delivery to CNS target cells through receptor binding and membrane fusion. Second, Env expression within one or more targets indirectly alters the physiology of certain neurons. Although the major Env expressing CNS cell types have been identified for many neurovirulent RVs, it remains unresolved, which targets play a causal role in neuropathogenesis. Moreover, this issue is complicated by the potential for post-infection virus suppression. To address these questions we explored herein, whether and how cryptic neurotropism differences between ecotropic and amphotropic murine leukemia viruses (MLVs) impacted neurovirulence. Neurotropism was first explored ex vivo using (1) acute primary glial cell cultures and (2) neural progenitor cell (NPC)- neural stem cell (NSC) neural sphere (NPH) chimeras. These experiments indicated that primary astrocytes and NPCs acutely restrict amphotropic but not ecotropic virus entry. CNS tropism was investigated using NSC transplant-based Cre-vector pseudotyping wherein mTmG transgenic fluorescent protein reporter mice revealed both productive and suppressed infection. Cre-pseudotyping with FrCasE, a prototypic neurovirulent ecotropic virus, identified glia and endothelia, but not neurons, as targets. Almost two-thirds (62%) of mGFP+ cells failed to show Env expression, suggesting widespread virus suppression. To circumvent RV superinfection interference confounds, targets were also identified using ecotropic packaging NSCs. These experiments identified known ecotropic targets: microglia, oligodendrocyte progenitor cells (OPCs) and endothelia. Additionally, one third of mGFP+ cells were identified as protoplasmic astrocytes, cells that rarely express virus in vivo. A CNS targeting comparison between isogenic ecotropic (FrCasE) and amphotropic (FrAmE) viruses showed a fourfold higher astrocyte targeting by FrCasE. Since ecotropic Env pseudotyping of amphotropic virus in the CNS dramatically exacerbates neurodegeneration, these results strongly suggest that astrocyte infection is a major disease requirement. Moreover, since viral Env protein expression is largely subdetectable in astrocytes, minimal viral protein expression appears sufficient for affecting neuronal physiology. More broadly, these findings raise the specter that subdetectable astrocyte expression of exogenous or endogenous RVs could play a major role in human and animal neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra M Cardona
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.,Program in Cellular and Molecular Biology, School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jaclyn M Dunphy
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.,Program in Neuroscience, School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Alvin S Das
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Connor R Lynch
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - William P Lynch
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.,Program in Cellular and Molecular Biology, School of Biomedical Sciences, Kent State University, Kent, OH, United States.,Program in Neuroscience, School of Biomedical Sciences, Kent State University, Kent, OH, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
5
|
Pelegrin M, Naranjo-Gomez M, Piechaczyk M. Antiviral Monoclonal Antibodies: Can They Be More Than Simple Neutralizing Agents? Trends Microbiol 2016; 23:653-665. [PMID: 26433697 PMCID: PMC7127033 DOI: 10.1016/j.tim.2015.07.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/06/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022]
Abstract
Monoclonal antibodies (mAbs) are increasingly being considered as agents to fight severe viral diseases. So far, they have essentially been selected and used on the basis of their virus-neutralizing activity and/or cell-killing activity to blunt viral propagation via direct mechanisms. There is, however, accumulating evidence that they can also induce long-lasting protective antiviral immunity by recruiting the endogenous immune system of infected individuals during the period of immunotherapy. Exploiting this property may revolutionize antiviral mAb-based immunotherapies, with benefits for both patients and healthcare systems. Antiviral monoclonal antibodies (mAbs) are promising, high-added-value biotherapeutics. During recent years, the number of antiviral mAbs developed against both acute and chronic viruses has grown exponentially, some of them being currently tested in clinical trials. Antiviral mAbs can be used to blunt viral propagation through direct effects. They can also engage the host's immune system, leading to the induction of long-lasting protective vaccine-like effects. The assessment of mechanisms at play in the induction of vaccine-like effects by antiviral mAbs will help in improving antiviral treatments. Exploiting this effect will translate into therapeutic benefit for patients. The benefit will also help healthcare systems through the reduction of treatment costs.
Collapse
Affiliation(s)
- Mireia Pelegrin
- Equipe Labellisée par la Ligue contre le Cancer - Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France.
| | - Mar Naranjo-Gomez
- Equipe Labellisée par la Ligue contre le Cancer - Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée par la Ligue contre le Cancer - Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
6
|
Li Y, Dunphy JM, Pedraza CE, Lynch CR, Cardona SM, Macklin WB, Lynch WP. Ecotropic Murine Leukemia Virus Infection of Glial Progenitors Interferes with Oligodendrocyte Differentiation: Implications for Neurovirulence. J Virol 2016; 90:3385-99. [PMID: 26764005 PMCID: PMC4794655 DOI: 10.1128/jvi.03156-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Certain murine leukemia viruses (MLVs) are capable of inducing fatal progressive spongiform motor neuron disease in mice that is largely mediated by viral Env glycoprotein expression within central nervous system (CNS) glia. While the etiologic mechanisms and the glial subtypes involved remain unresolved, infection of NG2 glia was recently observed to correlate spatially and temporally with altered neuronal physiology and spongiogenesis. Since one role of NG2 cells is to serve as oligodendrocyte (OL) progenitor cells (OPCs), we examined here whether their infection by neurovirulent (FrCasE) or nonneurovirulent (Fr57E) ecotropic MLVs influenced their viability and/or differentiation. Here, we demonstrate that OPCs, but not OLs, are major CNS targets of both FrCasE and Fr57E. We also show that MLV infection of neural progenitor cells (NPCs) in culture did not affect survival, proliferation, or OPC progenitor marker expression but suppressed certain glial differentiation markers. Assessment of glial differentiation in vivo using transplanted transgenic NPCs showed that, while MLVs did not affect cellular engraftment or survival, they did inhibit OL differentiation, irrespective of MLV neurovirulence. In addition, in chimeric brains, where FrCasE-infected NPC transplants caused neurodegeneration, the transplanted NPCs proliferated. These results suggest that MLV infection is not directly cytotoxic to OPCs but rather acts to interfere with OL differentiation. Since both FrCasE and Fr57E viruses restrict OL differentiation but only FrCasE induces overt neurodegeneration, restriction of OL maturation alone cannot account for neuropathogenesis. Instead neurodegeneration may involve a two-hit scenario where interference with OPC differentiation combined with glial Env-induced neuronal hyperexcitability precipitates disease. IMPORTANCE A variety of human and animal retroviruses are capable of causing central nervous system (CNS) neurodegeneration manifested as motor and cognitive deficits. These retroviruses infect a variety of CNS cell types; however, the specific role each cell type plays in neuropathogenesis remains to be established. The NG2 glia, whose CNS functions are only now emerging, are a newly appreciated viral target in murine leukemia virus (MLV)-induced neurodegeneration. Since one role of NG2 glia is that of oligodendrocyte progenitor cells (OPCs), we investigated here whether their infection by the neurovirulent MLV FrCasE contributed to neurodegeneration by affecting OPC viability and/or development. Our results show that both neurovirulent and nonneurovirulent MLVs interfere with oligodendrocyte differentiation. Thus, NG2 glial infection could contribute to neurodegeneration by preventing myelin formation and/or repair and by suspending OPCs in a state of persistent susceptibility to excitotoxic insult mediated by neurovirulent virus effects on other glial subtypes.
Collapse
Affiliation(s)
- Ying Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Jaclyn M Dunphy
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA Programs in Neurosciences, and Cell and Molecular Biology, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Carlos E Pedraza
- EMD Serono Research and Development Institute, Inc., Billerica, Massachusetts, USA
| | - Connor R Lynch
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Sandra M Cardona
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA Programs in Neurosciences, and Cell and Molecular Biology, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - William P Lynch
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA Programs in Neurosciences, and Cell and Molecular Biology, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
7
|
Li Y, Davey RA, Sivaramakrishnan S, Lynch WP. Postinhibitory rebound neurons and networks are disrupted in retrovirus-induced spongiform neurodegeneration. J Neurophysiol 2014; 112:683-704. [PMID: 25252336 DOI: 10.1152/jn.00227.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Certain retroviruses induce progressive spongiform motor neuron disease with features resembling prion diseases and amyotrophic lateral sclerosis. With the neurovirulent murine leukemia virus (MLV) FrCasE, Env protein expression within glia leads to postsynaptic vacuolation, cellular effacement, and neuronal loss in the absence of neuroinflammation. To understand the physiological changes associated with MLV-induced spongiosis, and its neuronal specificity, we employed patch-clamp recordings and voltage-sensitive dye imaging in brain slices of the mouse inferior colliculus (IC), a midbrain nucleus that undergoes extensive spongiosis. IC neurons characterized by postinhibitory rebound firing (PIR) were selectively affected in FrCasE-infected mice. Coincident with Env expression in microglia and in glia characterized by NG2 proteoglycan expression (NG2 cells), rebound neurons (RNs) lost PIR, became hyperexcitable, and were reduced in number. PIR loss and hyperexcitability were reversed by raising internal calcium buffer concentrations in RNs. PIR-initiated rhythmic circuits were disrupted, and spontaneous synchronized bursting and prolonged depolarizations were widespread. Other IC neuron cell types and circuits within the same degenerative environment were unaffected. Antagonists of NMDA and/or AMPA receptors reduced burst firing in the IC but did not affect prolonged depolarizations. Antagonists of L-type calcium channels abolished both bursts and slow depolarizations. IC infection by the nonneurovirulent isogenic virus Friend 57E (Fr57E), whose Env protein is structurally similar to FrCasE, showed no RN hyperactivity or cell loss; however, PIR latency increased. These findings suggest that spongiform neurodegeneration arises from the unique excitability of RNs, their local regulation by glia, and the disruption of this relationship by glial expression of abnormal protein.
Collapse
Affiliation(s)
- Ying Li
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas; and
| | | | - William P Lynch
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
8
|
Unique N-linked glycosylation of CasBrE Env influences its stability, processing, and viral infectivity but not its neurotoxicity. J Virol 2013; 87:8372-87. [PMID: 23698308 DOI: 10.1128/jvi.00392-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The envelope protein (Env) from the CasBrE murine leukemia virus (MLV) can cause acute spongiform neurodegeneration analogous to that induced by prions. Upon central nervous system (CNS) infection, Env is expressed as multiple isoforms owing to differential asparagine (N)-linked glycosylation. Because N-glycosylation can affect protein folding, stability, and quality control, we explored whether unique CasBrE Env glycosylation features could influence neurovirulence. CasBrE Env possesses 6/8 consensus MLV glycosylation sites (gs) but is missing gs3 and gs5 and contains a putative site (gs*). Twenty-nine mutants were generated by modifying these three sites, individually or in combination, to mimic the amino acid sequence in the nonneurovirulent Friend 57 MLV. Three basic viral phenotypes were observed: replication defective (dead; titer < 1 focus-forming unit [FFU]/ml), replication compromised (RC) (titer = 10(2) to 10(5) FFU/ml); and wild-type-like (WTL) (titer > 10(5) FFU/ml). Env protein was undetectable in dead mutants, while RC and WTL mutants showed variations in Env expression, processing, virus incorporation, virus entry, and virus spread. The newly introduced gs3 and gs5 sites were glycosylated, whereas gs* was not. Six WTL mutants tested in mice showed no clear attenuation in disease onset or severity versus controls. Furthermore, three RC viruses tested by neural stem cell (NSC)-mediated brainstem dissemination also induced acute spongiosis. Thus, while unique N-glycosylation affected structural features of Env involved in protein stability, proteolytic processing, and virus assembly and entry, these changes had minimal impact on CasBrE Env neurotoxicity. These findings suggest that the Env protein domains responsible for spongiogenesis represent highly stable elements upon which the more variable viral functional domains have evolved.
Collapse
|
9
|
Seki Y, Hirano N, Mizukura M, Watanabe R, Takase-Yoden S. Narrowing down the critical region within env gene for determining neuropathogenicity of murine leukemia virus A8. Microbiol Immunol 2012; 55:694-703. [PMID: 21831205 DOI: 10.1111/j.1348-0421.2011.00374.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Friend murine leukemia virus clone A8 causes spongiform neurodegeneration in the rat brain, and the env gene of A8 is a primary determinant of neuropathogenicity. In order to narrow down the critical region within the env gene that determines neuropathogenicity, we constructed chimeric viruses having chimeric env between A8 and non-neuropathogenic 57 on the background of A8 virus. After replacement of the BamHI (at nucleotide 5715)-AgeI (at nucleotide 6322) fragment of A8 virus with the corresponding fragment of 57, neuropathogenicity was lost. In contrast, the chimeric viruses that have the BamHI (5715)-AgeI (6322) fragment of A8 induced spongiosis in 100% of infected rats at the same or slightly lower intensity than A8 virus. These results indicate that the BamHI (5715)-AgeI (6322) fragment of A8, which contains the signal sequence and the N-terminal half of RBD, is crucial for the induction of spongiform neurodegeneration. In the BamHI (5715)-AgeI (6322) fragment, seven amino acids differed between A8 and 57, one in the signal sequence and six in RBD, which suggests that these amino acids significantly contribute to the neuropathogenicity of A8.
Collapse
Affiliation(s)
- Yohei Seki
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | |
Collapse
|
10
|
Carlson Scholz JA, Garg R, Compton SR, Allore HG, Zeiss CJ, Uchio EM. Poliomyelitis in MuLV-infected ICR-SCID mice after injection of basement membrane matrix contaminated with lactate dehydrogenase-elevating virus. Comp Med 2011; 61:404-411. [PMID: 22330347 PMCID: PMC3193062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/03/2011] [Accepted: 05/09/2011] [Indexed: 05/31/2023]
Abstract
The arterivirus lactate dehydrogenase-elevating virus (LDV) causes life-long viremia in mice. Although LDV infection generally does not cause disease, infected mice that are homozygous for the Fv1(n) allele are prone to develop poliomyelitis when immunosuppressed, a condition known as age-dependent poliomyelitis. The development of age-dependent poliomyelitis requires coinfection with endogenous murine leukemia virus. Even though LDV is a common contaminant of transplantable tumors, clinical signs of poliomyelitis after inadvertent exposure to LDV have not been described in recent literature. In addition, LDV-induced poliomyelitis has not been reported in SCID or ICR mice. Here we describe the occurrence of poliomyelitis in ICR-SCID mice resulting from injection of LDV-contaminated basement membrane matrix. After exposure to LDV, a subset of mice presented with clinical signs including paresis, which was associated with atrophy of the hindlimb musculature, and tachypnea; in addition, some mice died suddenly with or without premonitory signs. Mice presenting within the first 6 mo after infection had regions of spongiosis, neuronal necrosis and astrocytosis of the ventral spinal cord, and less commonly, brainstem. Axonal degeneration of ventral roots prevailed in more chronically infected mice. LDV was identified by RT-PCR in 12 of 15 mice with typical neuropathology; positive antiLDV immunolabeling was identified in all PCR-positive animals (n = 7) tested. Three of 8 mice with neuropathology but no clinical signs were LDV negative by RT-PCR. RT-PCR yielded murine leukemia virus in spinal cords of all mice tested, regardless of clinical presentation or neuropathology.
Collapse
Affiliation(s)
- Jodi A Carlson Scholz
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Dyer KD, Garcia-Crespo KE, Percopo CM, Bowen AB, Ito T, Peterson KE, Gilfillan AM, Rosenberg HF. Defective eosinophil hematopoiesis ex vivo in inbred Rocky Mountain White (IRW) mice. J Leukoc Biol 2011; 90:1101-9. [PMID: 21878543 DOI: 10.1189/jlb.0211059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We examine the proliferation and differentiation of bone marrow (BM) progenitors from inbred Rocky Mountain White (IRW) mice, a strain used primarily for retrovirus infection studies. In contrast to findings with BALB/c and C57BL/6 strains, IRW BM cells cannot proliferate or generate pure eosinophil cultures ex vivo in response to a defined cytokine regimen. Analysis of IRW BM at baseline was unremarkable, including 0.08 ± 0.03% Lin(-)Sca-1(+)c-kit(+) (LSK) hematopoietic stem cells and 5.2 ± 0.3% eosinophils; the percentage of eosinophil progenitors (EoPs; Lin(-)Sca-1(-)c-kit(+)CD34(+)IL-5Rα(+)) was similar in all three mouse strains. Transcripts encoding GM-CSFRα and the IL-3/IL-5/GM-CSF common β chain were detected at equivalent levels in IRW and BALB/c BM, whereas expression of transcripts encoding IL-5Rα, IL-3Rα, and GATA-2 was diminished in IRW BM compared with BALB/c. Expression of membrane-bound IL-5Rα and intracellular STAT5 proteins was also diminished in IRW BM cells. Diminished expression of transcripts encoding IL-5Rα and GATA-2 and immunoreactive STAT5 in IRW BM persisted after 4 days in culture, along with diminished expression of GATA-1. Western blot revealed that cells from IRW BM overexpress nonsignaling soluble IL-5Rα protein. Interestingly, OVA sensitization and challenge resulted in BM and airway eosinophilia in IRW mice; however, the responses were significantly blunted. These results suggest that IRW mice have diminished capacity to generate eosinophils in culture and in vivo, likely as a result of diminished signaling via IL-5Rα.
Collapse
Affiliation(s)
- Kimberly D Dyer
- Eosinophil Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy andInfectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Retrovirus-induced spongiform neurodegeneration is mediated by unique central nervous system viral targeting and expression of env alone. J Virol 2010; 85:2060-78. [PMID: 21191010 DOI: 10.1128/jvi.02210-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain murine leukemia viruses (MLVs) can induce progressive noninflammatory spongiform neurodegeneration similar to that caused by prions. The primary MLV determinants responsible have been mapped to within the env gene; however, it has remained unclear how env mediates disease, whether non-Env viral components are required, and what central nervous system (CNS) cells constitute the critical CNS targets. To address these questions, we examined the effect of transplanting engraftable C17.2 neural stem cells engineered to pseudotype, disseminate, and trans-complement neurovirulent (CasBrE, CasE, and CasES) or non-neurovirulent (Friend and SFF-FE) env sequences (SU or SU/TM) within the CNS using either the "non-neurovirulent" amphotropic helper virus, 4070A, or pgag-polgpt (a nonpackaged vector encoding Gag-Pol). These studies revealed that acute MLV-induced spongiosis results from two separable activities of Env. First, Env causes neuropathology through unique viral targeting within the CNS, which was efficiently mediated by ecotropic Envs (CasBrE and Friend), but not 4070A amphotropic Env. Second, Env induces spongiosis through a toxin activity that is MLV-receptor independent and does not require the coexpression of other viral structural proteins. CasBrE and 4070A Envs possess the toxin activity, whereas Friend Env does not. Although the identity of the critical viral target cell(s) remains unresolved, our results appear to exclude microglia and oligodendrocyte lineage cells, while implicating viral entry into susceptible neurons. Thus, MLV-induced disease parallels prionopathies in that a single protein, Env, mediates both the CNS targeting and the toxicity of the infectious agent that manifests itself as progressive vacuolar neurodegeneration.
Collapse
|
13
|
Li Y, Lynch WP. Misfolding of CasBrE SU is reversed by interactions with 4070A Env: implications for gammaretroviral neuropathogenesis. Retrovirology 2010; 7:93. [PMID: 21054857 PMCID: PMC2998453 DOI: 10.1186/1742-4690-7-93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/05/2010] [Indexed: 02/07/2023] Open
Abstract
Background CasBrE is a neurovirulent murine leukemia virus (MLV) capable of inducing paralytic disease with associated spongiform neurodegeneration. The neurovirulence of this virus has been genetically mapped to the surface expressed subunit (SU) of the env gene. However, CasBrE SU synthesized in the absence of the transmembrane subunit (TM) does not retain ecotropic receptor binding activity, indicating that folding of the receptor binding domain (RBD) requires this domain. Using a neural stem cell (NSC) based viral trans complementation approach to examine whether misfolded CasBrE SU retained neurovirulence, we observed CasBrE SU interaction with the "non-neurovirulent" amphotropic helper virus, 4070A which restored functional activity of CasBrE SU. Results Herein, we show that infection of NSCs expressing CasBrE SU with 4070A (CasES+4070A-NSCs) resulted in the redistribution of CasBrE SU from a strictly secreted product to include retention on the plasma membrane. Cell surface cross-linking analysis suggested that CasBrE SU membrane localization was due to interactions with 4070A Env. Viral particles produced from CasES+4070A-NSCS contained both CasBrE and 4070A gp70 Env proteins. These particles displayed ecotropic receptor-mediated infection, but were still 100-fold less efficient than CasE+4070A-NSC virus. Infectious center analysis showed CasBrE SU ecotropic transduction efficiencies approaching those of NSCs expressing full length CasBrE Env (CasE; SU+TM). In addition, CasBrE SU-4070A Env interactions resulted in robust ecotropic superinfection interference indicating near native intracellular SU interaction with its receptor, mCAT-1. Conclusions In this report we provided evidence that 4070A Env and CasBrE SU physically interact within NSCs leading to CasBrE SU retention on the plasma membrane, incorporation into viral particles, restoration of mCAT-1 binding, and capacity for initiation of TM-mediated fusion events. Thus, heterotropic Env-SU interactions facilitates CasBrE SU folding events that restore Env activity. These findings are consistent with the idea that one protein conformation acts as a folding scaffold or nucleus for a second protein of similar primary structure, a process reminiscent of prion formation. The implication is that template-based protein folding may represent an inherent feature of neuropathogenic proteins that extends to retroviral Envs.
Collapse
Affiliation(s)
- Ying Li
- Department of Integrative Medical Sciences, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | | |
Collapse
|
14
|
Neuropeptide Y has a protective role during murine retrovirus-induced neurological disease. J Virol 2010; 84:11076-88. [PMID: 20702619 DOI: 10.1128/jvi.01022-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Viral infections in the central nervous system (CNS) can lead to neurological disease either directly by infection of neurons or indirectly through activation of glial cells and production of neurotoxic molecules. Understanding the effects of virus-mediated insults on neuronal responses and neurotrophic support is important in elucidating the underlying mechanisms of viral diseases of the CNS. In the current study, we examined the expression of neurotrophin- and neurotransmitter-related genes during infection of mice with neurovirulent polytropic retrovirus. In this model, virus-induced neuropathogenesis is indirect, as the virus predominantly infects macrophages and microglia and does not productively infect neurons or astrocytes. Virus infection is associated with glial cell activation and the production of proinflammatory cytokines in the CNS. In the current study, we identified increased expression of neuropeptide Y (NPY), a pleiotropic growth factor which can regulate both immune cells and neuronal cells, as a correlate with neurovirulent virus infection. Increased levels of Npy mRNA were consistently associated with neurological disease in multiple strains of mice and were induced only by neurovirulent, not avirulent, virus infection. NPY protein expression was primarily detected in neurons near areas of virus-infected cells. Interestingly, mice deficient in NPY developed neurological disease at a faster rate than wild-type mice, indicating a protective role for NPY. Analysis of NPY-deficient mice indicated that NPY may have multiple mechanisms by which it influences virus-induced neurological disease, including regulating the entry of virus-infected cells into the CNS.
Collapse
|
15
|
Long-lasting protective antiviral immunity induced by passive immunotherapies requires both neutralizing and effector functions of the administered monoclonal antibody. J Virol 2010; 84:10169-81. [PMID: 20610721 DOI: 10.1128/jvi.00568-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Using FrCas(E) retrovirus-infected newborn mice as a model system, we have shown recently that a long-lasting antiviral immune response essential for healthy survival emerges after a short treatment with a neutralizing (667) IgG2a isotype monoclonal antibody (MAb). This suggested that the mobilization of adaptive immunity by administered MAbs is key for the success in the long term for the MAb-based passive immunotherapy of chronic viral infections. We have addressed here whether the anti-FrCas(E) protective endogenous immunity is the mere consequence of viral propagation blunting, which would simply give time to the immune system to react, and/or to actual immunomodulation by the MAb during the treatment. To this aim, we have compared viral replication, disease progression, and antiviral immune responses between different groups of infected mice: (i) mice treated with either the 667 MAb, its F(ab')(2) fragment, or an IgM (672) with epitopic specificity similar to that of 667 but displaying different effector functions, and (ii) mice receiving no treatment but infected with a low viral inoculum reproducing the initial viral expansion observed in their infected/667 MAb-treated counterparts. Our data show that the reduction of FrCas(E) propagation is insufficient on its own to induce protective immunity and support a direct immunomodulatory action of the 667 MAb. Interestingly, they also point to sequential actions of the administered MAb. In a first step, viral propagation is exclusively controlled by 667 neutralizing activity, and in a second one, this action is complemented by FcgammaR-binding-dependent mechanisms, which most likely combine infected cell cytolysis and the modulation of the antiviral endogenous immune response. Such complementary effects of administered MAbs must be taken into consideration for the improvement of future antiviral MAb-based immunotherapies.
Collapse
|
16
|
A crucial role for infected-cell/antibody immune complexes in the enhancement of endogenous antiviral immunity by short passive immunotherapy. PLoS Pathog 2010; 6:e1000948. [PMID: 20548955 PMCID: PMC2883599 DOI: 10.1371/journal.ppat.1000948] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 05/10/2010] [Indexed: 01/06/2023] Open
Abstract
Antiviral monoclonal antibodies (mAbs) represent promising therapeutics. However, most mAbs-based immunotherapies conducted so far have only considered the blunting of viral propagation and not other possible therapeutic effects independent of virus neutralization, namely the modulation of the endogenous immune response. As induction of long-term antiviral immunity still remains a paramount challenge for treating chronic infections, we have asked here whether neutralizing mAbs can, in addition to blunting viral propagation, exert immunomodulatory effects with protective outcomes. Supporting this idea, we report here that mice infected with the FrCasE murine retrovirus on day 8 after birth die of leukemia within 4–5 months and mount a non-protective immune response, whereas those rapidly subjected to short immunotherapy with a neutralizing mAb survive healthy and mount a long-lasting protective antiviral immunity with strong humoral and cellular immune responses. Interestingly, the administered mAb mediates lysis of infected cells through an antibody-dependent cell cytotoxicity (ADCC) mechanism. In addition, it forms immune complexes (ICs) with infected cells that enhance antiviral CTL responses through FcγR-mediated binding to dendritic cells (DCs). Importantly, the endogenous antiviral antibodies generated in mAb-treated mice also display the same properties, allowing containment of viral propagation and enhancement of memory cellular responses after disappearance of the administered mAb. Thus, our data demonstrate that neutralizing antiviral mAbs can act as immunomodulatory agents capable of stimulating a protective immunity lasting long after the end of the treatment. They also show an important role of infected-cells/antibody complexes in the induction and the maintenance of protective immunity through enhancement of both primary and memory antiviral T-cell responses. They also indicate that targeting infected cells, and not just viruses, by antibodies can be crucial for elicitation of efficient, long-lasting antiviral T-cell responses. This must be considered when designing antiviral mAb-based immunotherapies. Monoclonal antibodies (mAbs) constitute the largest class of bio-therapeutic proteins and are increasingly being considered as drugs to fight both acute and chronic severe human viral diseases. Most antiviral mAb-based treatments conducted so far, whether in humans or in animal models, have only considered the blunting of viral propagation through direct virus neutralization. However, mAbs might also operate via complementary mechanisms owing to their ability to interact with various components of the immune system. Using a lethal mouse model of retrovirally-induced leukemia, we report here that a neutralizing mAb administered to infected mice for a short period of time can, in addition to its direct effect on viral spread, induce a strong, long-lasting antiviral immune response protecting mice from disease development long after the end of the treatment. Although the initiation and maintenance of this long-term immunity is multi-factorial, we demonstrate a crucial role for the immune complexes formed between antiviral antibodies and infected cells in this process. Our work reveals a thus far underappreciated vaccine-like effect of antiviral neutralizing mAbs, which will have to be considered for future treatment of life-threatening viral infections.
Collapse
|
17
|
Peterson KE, Du M. Innate immunity in the pathogenesis of polytropic retrovirus infection in the central nervous system. Immunol Res 2009; 43:149-59. [PMID: 18818884 DOI: 10.1007/s12026-008-8060-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neuroinflammation, including astrogliosis, microgliosis, and the production of proinflammatory cytokines and chemokines is a common response in the central nervous system (CNS) to virus infection, including retrovirus infection. However, the contribution of this innate immune response in disease pathogenesis remains unresolved. Analysis of the neuroinflammatory response to polytropic retrovirus infection in the mouse has provided insight into the potential contribution of the innate immune response to retrovirus-induced neurologic disease. In this model, retroviral pathogenesis correlates with the induction of neuroinflammatory responses including the activation of astrocytes and microglia, as well as the production of proinflammatory cytokines and chemokines. Studies of the neurovirulent determinants of the polytropic envelope protein as well as studies with knockout mice suggest that retroviral pathogenesis in the brain is multifaceted and that cytokine and chemokine production may be only one mechanism of disease pathogenesis. Analysis of the activation of the innate immune response to retrovirus infection in the CNS indicates that toll-like receptor 7 (TLR7) is a contributing factor to retrovirus-induced neuroinflammation, but that other factors can compensate for the lack of TLR7 in inducing both neuroinflammation and neurologic disease.
Collapse
Affiliation(s)
- Karin E Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, 903 South 4th Street, Hamilton, MT 59840, USA.
| | | |
Collapse
|
18
|
The degree of folding instability of the envelope protein of a neurovirulent murine retrovirus correlates with the severity of the neurological disease. J Virol 2009; 83:6079-86. [PMID: 19339354 DOI: 10.1128/jvi.02647-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A small group of ecotropic murine retroviruses cause a spongiform neurodegenerative disease manifested by tremor, paralysis, and wasting. The neurovirulence of these viruses has long been known to be determined by the sequence of the viral envelope protein, although the nature of the neurotoxicity remains to be clarified. Studies on the neurovirulent viruses FrCas(NC) and Moloney murine leukemia virus ts1 indicate that the nascent envelope protein misfolds, is retained in the endoplasmic reticulum (ER), and induces an unfolded protein response. In the present study we constructed a series of viruses with chimeric envelope genes containing segments from virulent and avirulent retroviruses. Each of the viruses studied was highly neuroinvasive but differed in the severity of the neurological disease they induced. Only viruses that contained the receptor-binding domain (RBD) of the neurovirulent virus induced neurological disease. Likewise, only viruses containing the RBD of the neurovirulent virus exhibited increased binding of the ER chaperone BiP to the envelope precursor protein and induced the unfolded protein response. Thus, the RBD determined both neurovirulence and folding instability. Among viruses carrying the neurovirulent RBD, the severity of the disease was increased when envelope sequences from the neurovirulent virus outside the RBD were also present. Interestingly, these sequences appeared to further increase the degree of folding instability (BiP binding) of the viral envelope protein. These results provide strong support for the hypothesis that this spongiform neurodegenerative disease represents a virus-induced protein folding disorder.
Collapse
|
19
|
Endogenous cytotoxic T-cell response contributes to the long-term antiretroviral protection induced by a short period of antibody-based immunotherapy of neonatally infected mice. J Virol 2007; 82:1339-49. [PMID: 18032505 DOI: 10.1128/jvi.01970-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neutralizing monoclonal antibodies (MAbs) are increasingly being considered for blunting human viral infections. However, whether they can also exert indirect effects on endogenous antiviral immune responses has been essentially overlooked. We have recently shown that a short (several-day) period of immunotherapy with the neutralizing 667 MAb of mouse neonates shortly after infection with the lethal FrCas(E) retrovirus not only has an immediate effect on the viral load but also permits an endogenous antiviral immunity to emerge. Even though passive immunotherapy was administered during the particular period of immunocompetence acquisition, the endogenous response eventually arising was protective and persisted long (>1 year) after the MAb has disappeared. As very high levels of anti-FrCas(E) antibodies, predominantly of the immunoglobulin G2a (IgG2a) isotype and showing strong neutralization activity, were found in the sera of MAb-treated mice, it was necessary to address whether this humoral immunity was sufficient on its own to confer full protection against FrCas(E) or whether a cytotoxic T-lymphocyte (CTL) response was also necessary. Using a variety of in vivo assays in young and adult animals previously infected by FrCas(E) and treated by 667, we show here that transient 667 immunotherapy is associated with the emergence of a CTL response against virus-infected cells. This cytotoxic activity is indispensable for long-term antiviral protective immunity, as high neutralizing antibody titers, even enhanced in in vivo CD8(+) cell depletion experiments, cannot prevent the FrCas(E)-induced death of infected/treated mice. Our work may have important therapeutic consequences, as it indicates that a short period of MAb-based immunotherapy conducted at a stage where the immune system is still developing can be associated with the mounting of a functional Th1-type immune response characterized by both CTL and IgG2a-type humoral contributions, the cooperation of which is known to be essential for the containment of chronic infections by a variety of viruses.
Collapse
|
20
|
Gros L, Pelegrin M, Plays M, Piechaczyk M. Efficient mother-to-child transfer of antiretroviral immunity in the context of preclinical monoclonal antibody-based immunotherapy. J Virol 2006; 80:10191-200. [PMID: 17005696 PMCID: PMC1617287 DOI: 10.1128/jvi.01095-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When mice under the age of 5 to 6 days are infected, the FrCas(E) retrovirus induces a neurodegenerative disease leading to death within 1 to 2 months. We have recently reported that transient treatment with a neutralizing monoclonal antibody (MAb) shortly after infection, in addition to an expected immediate decrease in the viral load, also favors the development of a strong protective immune response that persists long after the MAb has been cleared. This observation may have important therapeutic consequences, as it suggests that MAbs might be used, not only as direct neutralizing agents, but also as immunomodulatory agents enabling patients to mount their own antiviral immune responses. We have investigated whether immunoglobulins from mothers who displayed a strong anti-FrCas(E) humoral response induced upon MAb treatment could affect both viremia and the immune systems of FrCas(E)-infected pups till adult age upon placental and/or breastfeeding transfer. The strongest effects, i.e., reduction in the viral load and induction of protective humoral antiviral responses, were observed upon breastfeeding alone and breastfeeding plus placental immunity transfer. However, placental transfer of anti-FrCas(E) antibodies was sufficient to both protect neonatally infected animals and help them initiate a neutralizing anti-FrCas(E) response. Also, administration of a neutralizing MAb to naive mothers during late gestation and breastfeeding could generate similar effects. Taken together, our data support the concept that passive immunotherapies during late gestation and/or breastfeeding might help retrovirally infected neonates prime their own protective immune responses, in addition to exerting an immediate antiviral effect.
Collapse
Affiliation(s)
- Laurent Gros
- Institut de Génétique Moléculaire de Montpellier, UMR 5535-IFR 122, CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
21
|
Clase AC, Dimcheff DE, Favara C, Dorward D, McAtee FJ, Parrie LE, Ron D, Portis JL. Oligodendrocytes are a major target of the toxicity of spongiogenic murine retroviruses. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1026-38. [PMID: 16936275 PMCID: PMC1698807 DOI: 10.2353/ajpath.2006.051357] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neurovirulent retroviruses FrCasE and Moloney MLV-ts1 cause noninflammatory spongiform neurodegeneration in mice, manifested clinically by progressive spasticity and paralysis. Neurons have been thought to be the primary target of toxicity of these viruses. However the neurons themselves appear not to be infected, and the possible indirect mechanisms driving the neuronal toxicity have remained enigmatic. Here we have re-examined the cells that are damaged by these viruses, using lineage-specific markers. Surprisingly, these cells expressed the basic helix-loop-helix transcription factor Olig2, placing them in the oligodendrocyte lineage. Olig2+ cells were found to be infected, and many of these cells exhibited focal cytoplasmic vacuolation, suggesting that infection by spongiogenic retroviruses is directly toxic to these cells. As cytoplasmic vacuolation progressed, however, signs of viral protein expression appeared to wane, although residual viral RNA was detectable by in situ hybridization. Cells with the most advanced cytoplasmic effacement expressed the C/EBP-homologous protein (CHOP). This protein is up-regulated as a late event in a cellular response termed the integrated stress response. This observation may link the cellular pathology observed in the brain with cellular stress responses known to be induced by these viruses. The relevance of these observations to oligodendropathy in humans is discussed.
Collapse
Affiliation(s)
- Amanda C Clase
- Laboratory of Persistent Viral Diseases, The Microscopy Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Watanabe R, Takase-Yoden S. Neuropathology induced by infection with Friend murine leukemia viral clone A8-V depends upon the level of viral antigen expression. Neuropathology 2006; 26:188-95. [PMID: 16771173 DOI: 10.1111/j.1440-1789.2006.00680.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A8-V is a neuropathogenic clone isolated from the Friend murine leukemia virus which causes spongiosis in the rat brain after infection at birth. Serial studies using chimeric viruses derived from the A8-V and the 57 virus (57-V), which is a non-neuropathogenic strain of Friend murine leukemia virus, proved that the long terminal repeat (LTR) and 5' leader (LTR-leader/A8) derived from A8-V, in addition to the env gene (env/A8) of A8-V, are necessary for the neuropathogenesis of A8-V. The enhancer element within the LTR of A8-V (LTR/A8) has been supposed to contribute to the severe manifestation of spongiosis by inducing high levels of viral production in the brain after A8-V infection. However, the recombinant viruses R7c and R7f, which lack the enhancer element of A8-V, induced spongiosis with high incidence rates, although the isolated viral titers of the infected brain display very low levels, which are even comparable to the 57-V infection. Immunohistochemical studies demonstrated that infection with neuropathogenic chimerae, R7c and R7f, induced increased expression of viral antigens than that produced by infection with non-neuropathogenic chimeric virus, Rec5, despite the fact that R7c, R7f and Rec5 all exhibited similar levels of viral proliferation in the brain postinfection. Thus, neuropathology induced by A8 infection is not dependent upon the viral proliferation rate but rather the level of viral antigen expression.
Collapse
Affiliation(s)
- Rihito Watanabe
- Department of Bioinformatics, Faculty of Engineering, Soka University, Tangi-cho 1-236, Hachioji, Tokyo 192-8577, Japan.
| | | |
Collapse
|
23
|
Dimcheff DE, Volkert LG, Li Y, DeLucia AL, Lynch WP. Gene expression profiling of microglia infected by a highly neurovirulent murine leukemia virus: implications for neuropathogenesis. Retrovirology 2006; 3:26. [PMID: 16696860 PMCID: PMC1475625 DOI: 10.1186/1742-4690-3-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 05/12/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Certain murine leukemia viruses (MLVs) are capable of inducing progressive spongiform motor neuron disease in susceptible mice upon infection of the central nervous system (CNS). The major CNS parenchymal target of these neurovirulent retroviruses (NVs) are the microglia, whose infection is largely coincident with neuropathological changes. Despite this close association, the role of microglial infection in disease induction is still unknown. In this paper, we investigate the interaction of the highly virulent MLV, FrCasE, with microglia ex vivo to evaluate whether infection induces specific changes that could account for neurodegeneration. Specifically, we compared microglia infected with FrCasE, a related non-neurovirulent virus (NN) F43/Fr57E, or mock-infected, both at a basic virological level, and at the level of cellular gene expression using quantitative real time RT-PCR (qRT-PCR) and Afffymetrix 430A mouse gene chips. RESULTS Basic virological comparison of NN, NV, and mock-infected microglia in culture did not reveal differences in virus expression that provided insight into neuropathogenesis. Therefore, microglial analysis was extended to ER stress gene induction based on previous experiments demonstrating ER stress induction in NV-infected mouse brains and cultured fibroblasts. Analysis of message levels for the ER stress genes BiP (grp78), CHOP (Gadd153), calreticulin, and grp58 in cultured microglia, and BiP and CHOP in microglia enriched fractions from infected mouse brains, indicated that FrCasE infection did not induce these ER stress genes either in vitro or in vivo. To broadly identify physiological changes resulting from NV infection of microglia in vitro, we undertook a gene array screen of more than 14,000 well-characterized murine genes and expressed sequence tags (ESTs). This analysis revealed only a small set of gene expression changes between infected and uninfected cells (<18). Remarkably, gene array comparison of NN- and NV-infected microglia revealed only 3 apparent gene expression differences. Validation experiments for these genes by Taqman real-time RT-PCR indicated that only single Ig IL-1 receptor related protein (SIGIRR) transcript was consistently altered in culture; however, SIGIRR changes were not observed in enriched microglial fractions from infected brains. CONCLUSION The results from this study indicate that infection of microglia by the highly neurovirulent virus, FrCasE, does not induce overt physiological changes in this cell type when assessed ex vivo. In particular, NV does not induce microglial ER stress and thus, FrCasE-associated CNS ER stress likely results from NV interactions with another cell type or from neurodegeneration directly. The lack of NV-induced microglial gene expression changes suggests that FrCasE either affects properties unique to microglia in situ, alters the expression of microglial genes not represented in this survey, or affects microglial cellular processes at a post-transcriptional level. Alternatively, NV-infected microglia may simply serve as an unaffected conduit for persistent dissemination of virus to other neural cells where they produce acute neuropathogenic effects.
Collapse
Affiliation(s)
- Derek E Dimcheff
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - L Gwenn Volkert
- Department of Computer Science, Kent State University, Kent, Ohio, USA
| | - Ying Li
- Department of Microbiology, Immunology, and Biochemistry, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio, USA
| | - Angelo L DeLucia
- Department of Microbiology, Immunology, and Biochemistry, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio, USA
| | - William P Lynch
- Department of Microbiology, Immunology, and Biochemistry, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio, USA
| |
Collapse
|
24
|
Nakai R, Takase-Yoden S, Watanabe R. Analysis of the distribution of neuropathogenic retroviral antigens following PVC211 or A8-V infection. Microbiol Immunol 2005; 49:1075-81. [PMID: 16365533 DOI: 10.1111/j.1348-0421.2005.tb03705.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A8-V and PVC211 are neuropathogenic strains of the Friend murine leukemia virus (Fr-MLV) that cause spongiosis in the rat brain after infection at birth. PVC211 exhibited stronger neuropathogenicity than A8-V, and induced more severe neurological symptoms such as hind-leg paralysis. These symptoms correlated with the neuropathological spread and intensity, which were more severe in the spinal cord of rats infected with PVC211 than in those infected with A8-V, without exhibiting neuropathological differences in other areas of the CNS. Interestingly, virus titers recovered from infected spinal cords were similar in PVC211 and A8-V infected animals. However, in the spinal cord infected with PVC211, glial cells attained higher immunohistochemical expression scores for the viral surface antigen, gp70 (Env) than in the A8-V infected spinal cord, although expression levels of viral antigens in blood vessel walls were similar in A8-V and PVC211 infections. Furthermore, many of those glial cells which carried viral antigens were found, by double immunostaining, to be microglia. The results suggested that the spread of viral antigen positive microglia plays an important role in forming the different neuro-pathogenicity observed in A8-V and PVC211 infections.
Collapse
Affiliation(s)
- Ryuhei Nakai
- Department of Geriatric Medicine, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611 Japan
| | | | | |
Collapse
|
25
|
Gros L, Dreja H, Fiser AL, Plays M, Pelegrin M, Piechaczyk M. Induction of long-term protective antiviral endogenous immune response by short neutralizing monoclonal antibody treatment. J Virol 2005; 79:6272-80. [PMID: 15858011 PMCID: PMC1091728 DOI: 10.1128/jvi.79.10.6272-6280.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-term immune control of viral replication still remains a major challenge in retroviral diseases. Several monoclonal antibodies (MAbs) have already shown antiviral activities in vivo, including in the clinic but their effects on the immune system of treated individuals are essentially unknown. Using the lethal neurodegeneration induced in mice upon infection of neonates by the FrCas(E) retrovirus as a model, we report here that transient treatment by a neutralizing MAb shortly after infection can, after an immediate antiviral effect, favor the development of a strong protective host immune response containing viral propagation long after the MAb has disappeared. In vitro virus neutralization- and complement-mediated cell lysis assays, as well as in vivo viral challenges and serum transfer experiments, indicate a clear and essential contribution of the humoral response to antiviral protection. Our observation may have important therapeutic consequences as it suggests that short antibody-based therapies early after infection should be considered, at least in the case of maternally infected infants, as adjunctive treatment strategies against human immunodeficiency virus, not only for a direct effect on the viral load but also for favoring the emergence of an endogenous antiviral immune response.
Collapse
Affiliation(s)
- Laurent Gros
- Mireia Pelegrin: Institut de Génétique Moléculaire de Montpellier, UMR 5535-IFR 122, CNRS 1919, Route de Mende 34293, Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Murine leukemia viruses may produce encephalopathies that have the same characteristics as those induced by infectious proteins or prions: neuronal loss, astrocytosis, and absence of inflammatory response. The pathogenic mechanism is still poorly understood but it seems that it involves the envelope proteins (Env), which may be misprocessed in the cell, giving rise to pathogenic isoforms that trigger oxidative damage. Env may also affect the cytokine pattern in the central nervous system and thus, induce encephalopathy.
Collapse
Affiliation(s)
- Esperanza Gomez-Lucia
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
27
|
Peterson KE, Hughes S, Dimcheff DE, Wehrly K, Chesebro B. Separate sequences in a murine retroviral envelope protein mediate neuropathogenesis by complementary mechanisms with differing requirements for tumor necrosis factor alpha. J Virol 2004; 78:13104-12. [PMID: 15542662 PMCID: PMC525006 DOI: 10.1128/jvi.78.23.13104-13112.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The innate immune response, through the induction of proinflammatory cytokines and antiviral factors, plays an important role in protecting the host from pathogens. Several components of the innate response, including tumor necrosis factor alpha (TNF-alpha), monocyte chemoattractant protein 1, interferon-inducible protein 10, and RANTES, are upregulated in the brain following neurovirulent retrovirus infection in humans and in animal models. However, it remains unclear whether this immune response is protective, pathogenic, or both. In the present study, by using TNF-alpha(-/-) mice we analyzed the contribution of TNF-alpha to neurological disease induced by four neurovirulent murine retroviruses, with three of these viruses encoding portions of the same neurovirulent envelope protein. Surprisingly, only one retrovirus (EC) required TNF-alpha for disease induction, and this virus induced less TNF-alpha expression in the brain than did the other retroviruses. Analysis of glial fibrillary acidic protein and F4/80 in EC-infected TNF-alpha(-/-) mice showed normal activation of astrocytes but not of microglia. Thus, TNF-alpha-mediated microglial activation may be important in the pathogenic process initiated by EC infection. In contrast, TNF-alpha was not required for pathogenesis of the closely related BE virus and the BE virus induced disease in TNF-alpha(-/-) mice by a different mechanism that did not require microglial activation. These results provide new insights into the multifactorial mechanisms involved in retrovirus-induced neurodegeneration and may also have analogies to other types of neurodegeneration.
Collapse
Affiliation(s)
- Karin E Peterson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Skip Bertman Dr., Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | |
Collapse
|
28
|
Dimcheff DE, Faasse MA, McAtee FJ, Portis JL. Endoplasmic reticulum (ER) stress induced by a neurovirulent mouse retrovirus is associated with prolonged BiP binding and retention of a viral protein in the ER. J Biol Chem 2004; 279:33782-90. [PMID: 15178688 DOI: 10.1074/jbc.m403304200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Some murine retroviruses cause a spongiform neurodegenerative disease exhibiting pathology resembling that observed in transmissible spongiform encephalopathies. The neurovirulence of these "spongiogenic retroviruses" is determined by the sequence of their respective envelope proteins, although the mechanisms of neurotoxicity are not understood. We have studied a highly neurovirulent virus called FrCasE that causes a rapidly progressive form of this disease. Recently, transcriptional markers of endoplasmic reticulum (ER) stress were detected during the early preclinical period in the brains of FrCasE-infected mice. In contrast, ER stress was not observed in mice infected with an avirulent virus, F43, which carries a different envelope gene, suggesting a role for ER stress in disease pathogenesis. Here we have examined in NIH 3T3 cells the cause of this cellular stress response. The envelope protein of F43 bound BiP, a major ER chaperone, transiently and was processed normally through the secretory pathway. In contrast, the envelope protein of FrCasE bound to BiP for a prolonged period, was retained in the ER, and was degraded by the proteasome. Furthermore, engagement of the FrCasE envelope protein by ER quality control pathways resulted in decreased steady-state levels of this protein, relative to that of F43, both in NIH 3T3 cells and in the brains of infected mice. Thus, the ER stress induced by FrCasE appears to be initiated by inefficient folding of its viral envelope protein, suggesting that the neurodegenerative disease caused by this virus represents a protein misfolding disorder.
Collapse
Affiliation(s)
- Derek E Dimcheff
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | |
Collapse
|
29
|
Dimcheff DE, Askovic S, Baker AH, Johnson-Fowler C, Portis JL. Endoplasmic reticulum stress is a determinant of retrovirus-induced spongiform neurodegeneration. J Virol 2004; 77:12617-29. [PMID: 14610184 PMCID: PMC262586 DOI: 10.1128/jvi.77.23.12617-12629.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FrCas(E) is a mouse retrovirus that causes a fatal noninflammatory spongiform neurodegenerative disease with pathological features strikingly similar to those induced by transmissible spongiform encephalopathy (TSE) agents. Neurovirulence is determined by the sequence of the viral envelope protein, though the specific role of this protein in disease pathogenesis is not known. In the present study, we compared host gene expression in the brain stems of mice infected with either FrCas(E) or the avirulent virus F43, differing from FrCas(E) in the sequence of the envelope gene. Four of the 12 disease-specific transcripts up-regulated during the preclinical period represent responses linked to the accumulation of unfolded proteins in the endoplasmic reticulum (ER). Among these genes was CHOP/GADD153, which is induced in response to conditions that perturb endoplasmic reticulum function. In vitro studies with NIH 3T3 cells revealed up-regulation of CHOP as well as BiP, calreticulin, and Grp58/ERp57 in cells infected with FrCas(E) but not with F43. Immunoblot analysis of infected NIH 3T3 cells demonstrated the accumulation of uncleaved envelope precursor protein in FrCas(E)- but not F43-infected cells, consistent with ER retention. These results suggest that retrovirus-induced spongiform neurodegeneration represents a protein-folding disease and thus may provide a useful tool for exploring the causal link between protein misfolding and the cytopathology that it causes.
Collapse
Affiliation(s)
- Derek E Dimcheff
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | | | | | |
Collapse
|
30
|
Jolicoeur P, Hu C, Mak TW, Martinou JC, Kay DG. Protection against murine leukemia virus-induced spongiform myeloencephalopathy in mice overexpressing Bcl-2 but not in mice deficient for interleukin-6, inducible nitric oxide synthetase, ICE, Fas, Fas ligand, or TNF-R1 genes. J Virol 2003; 77:13161-70. [PMID: 14645573 PMCID: PMC296073 DOI: 10.1128/jvi.77.24.13161-13170.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Accepted: 08/18/2003] [Indexed: 01/20/2023] Open
Abstract
Some murine leukemia viruses (MuLVs), among them Cas-Br-E and ts-1 MuLVs, are neurovirulent, inducing spongiform myeloencephalopathy and hind limb paralysis in susceptible mice. It has been shown that the env gene of these viruses harbors the determinant of neurovirulence. It appears that neuronal loss occurs by an indirect mechanism, since the target motor neurons have not been found to be infected. However, the pathogenesis of the disease remains unclear. Several lymphokines, cytokines, and other cellular effectors have been found to be aberrantly expressed in the brains of infected mice, but whether these are required for the development of the neurodegenerative lesions is not known. In an effort to identify the specific effectors which are indeed required for the initiation and/or development of spongiform myeloencephalopathy, we inoculated gene-deficient (knockout [KO]) mice with ts-1 MuLV. We show here that interleukin-6 (IL-6), inducible nitric oxide synthetase (iNOS), ICE, Fas, Fas ligand (FasL), and TNF-R1 KO mice still develop signs of disease. However, transgenic mice overexpressing Bcl-2 in neurons (NSE/Bcl-2) were largely protected from hind limb paralysis and had less-severe spongiform lesions. These results indicate that motor neuron death occurs in this disease at least in part by a Bcl-2-inhibitable pathway not requiring the ICE, iNOS, Fas/FasL, TNF-R1, and IL-6 gene products.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Caspase 1/genetics
- Caspase 1/metabolism
- Central Nervous System Viral Diseases/metabolism
- Central Nervous System Viral Diseases/prevention & control
- Central Nervous System Viral Diseases/virology
- Fas Ligand Protein
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Leukemia Virus, Murine/pathogenicity
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C3H/metabolism
- Mice, Knockout
- Mice, Transgenic
- Nerve Degeneration/prevention & control
- Nerve Degeneration/virology
- Neurons/metabolism
- Neurons/pathology
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type II
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Retroviridae Infections/metabolism
- Retroviridae Infections/prevention & control
- Retroviridae Infections/virology
- fas Receptor/genetics
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Paul Jolicoeur
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada.
| | | | | | | | | |
Collapse
|
31
|
Dreja H, Gros L, Villard S, Bachrach E, Oates A, Granier C, Chardes T, Mani JC, Piechaczyk M, Pelegrin M. Monoclonal antibody 667 recognizes the variable region A motif of the ecotropic retrovirus CasBrE envelope glycoprotein and inhibits Env binding to the viral receptor. J Virol 2003; 77:10984-93. [PMID: 14512547 PMCID: PMC224958 DOI: 10.1128/jvi.77.20.10984-10993.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monoclonal antibody (MAb) 667 is a neutralizing mouse monoclonal antibody recognizing the envelope glycoprotein (Env) of the ecotropic neurotropic murine retrovirus CasBrE but not that of other murine retroviruses. Since 667 can be used for preclinical studies of antiviral gene therapy as well as for studying the early events of retroviral infection, we have cloned its cDNAs and molecularly characterized it in detail. Spot technique-based experiments showed that 667 recognizes a linear epitope of 12 amino acids located in the variable region A of the receptor binding domain. Alanine scanning experiments showed that six amino acids within the epitope are critical for MAb binding. One of them, D(57), is not present in any other murine retroviral Env, which suggests a critical role for this residue in the selectivity of 667. MAb 667 heavy- and light-chain cDNAs were functionally characterized by transient transfection into Cos-7 cells. Enzyme-linked immunosorbent assays and Biacore studies showed that the specificities as well as the antigen-binding thermodynamic and kinetic properties of the recombinant 667 MAb (r667) produced by Cos-7 cells and those of the parental hybridoma-produced MAb (h667) were similar. However, h667 was shown to contain contaminating retroviral and/or retrovirus-like particles which interfere with both viral binding and neutralization experiments. These contaminants could successfully be removed by a stringent purification protocol. Importantly, this purified 667 could completely prevent retrovirus binding to target cells and was as efficient as the r667 MAb produced by transfected Cos-7 cells in neutralization assays. In conclusion, this study shows that the primary mechanism of virus neutralization by MAb 667 is the blocking of the retroviral receptor binding domain of CasBrE Env. In addition, the findings of this study constitute a warning against the direct use of hybridoma cell culture supernatants for studying the initial events of retroviral cell infection as well as for carrying out in vivo neutralization experiments and suggest that either recombinant antibodies or highly purified antibodies are preferable for these purposes.
Collapse
Affiliation(s)
- Hanna Dreja
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, IFR 122, 34293 Montpellier Cédex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fukumitsu H, Takase-Yoden S, Watanabe R. Neuropathology of experimental autoimmune encephalomyelitis modified by retroviral infection. Neuropathology 2002; 22:280-9. [PMID: 12564768 DOI: 10.1046/j.1440-1789.2002.00453.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The A8 virus is a molecular clone of the neuropathogenic FrC6 virus derived from the Friend murine leukemia virus (F-MuLV). To elucidate the effects of A8 virus-infection on immune-mediated diseases in the central nervous system, we investigated the development of acute and monophasic experimental autoimmune encephalomyelitis (EAE) in A8 virus-infected Lewis rats. In EAE rats after A8 virus infection (A8-EAE), many inflammatory cells were found in the gray matter including the frontal lobe, where almost no inflammatory cells were found in rats with EAE alone. The modified distribution of inflammatory cells was not dependent on the ages of A8 virus-infected rats, although the frequency of the modified distribution was reduced in older rats. The chimeric virus Rec2, which contains the pol and env genes of 57 virus on the background of A8 and does not induce spongiform degeneration in the CNS, caused the same distributional modification of inflammatory cells in the rats with EAE as in A8-EAE rats. Furthermore, the incidence and intensity of spongiform degeneration, thymoma and splenomegaly caused by A8 virus were reduced by the induction of EAE.
Collapse
|
33
|
Affiliation(s)
- J L Portis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, Hamilton, Montana 59840, USA
| |
Collapse
|
34
|
Affiliation(s)
- J K Fazakerley
- Laboratory for Clinical and Molecular Virology, University of Edinburgh, United Kingdom
| |
Collapse
|
35
|
Traister RS, Lynch WP. Reexamination of amphotropic murine leukemia virus neurovirulence: neural stem cell-mediated microglial infection fails to induce acute neurodegeneration. Virology 2002; 293:262-72. [PMID: 11886246 DOI: 10.1006/viro.2001.1299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 4070A amphotropic murine leukemia virus (A-MuLV) has been variably reported to harbor neurovirulence determinants within its env gene. In this report we reexamined this issue by applying two approaches previously demonstrated to amplify murine leukemia virus neurovirulence. The first approach involved introducing the 4070A env gene into the background of Friend virus clone FB29 to enhance peripheral virus replication kinetics and central nervous system entry. The resulting chimeric virus, FrAmE, exhibited widespread vascular infection throughout the central nervous system (CNS); however, parenchymal infection was quite limited. Neither clinical neurological signs nor spongiform neurological changes accompanied FrAmE CNS infection. To overcome this CNS entry limitation, 4070A and FrAmE were delivered directly into the CNS via transplantation of infected C17.2 neural stem cells (NSCs). Significantly, NSC dissemination of either 4070A or FrAmE resulted in widespread, high-level amphotropic virus expression within the CNS parenchyma, including the infection of microglia, the critical target required for inducing neurodegeneration. Despite the extensive CNS infection, no associated clinical neurological signs or acute neuropathological changes were observed. Interestingly, we observed the frequent appearance of circulating polytropic (MCF) virus in the serum of amphotropic virus-infected animals. However, neither peripheral inoculation of an amphotropic/MCF virus mixture nor transplantation of NSCs expressing both amphotropic and MCF viruses induced acute clinical neurological signs or spongiform neuropathology. Thus, the results generated in this study suggest that the 4070A env gene is not inherently neurovirulent. However, the frequent appearance of endogenous MCF viruses suggests the possibility that the interactions of amphotropic viruses with endogenous retroviral elements could contribute to the development of retrovirus-induced neurodegenerative disease.
Collapse
Affiliation(s)
- Russell S Traister
- Department of Microbiology/Immunology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | | |
Collapse
|
36
|
Hansen R, Sauder C, Czub S, Bachmann E, Schimmer S, Hegyi A, Czub M. Activation of microglia cells is dispensable for the induction of rat retroviral spongiform encephalopathy. J Neurovirol 2001; 7:501-10. [PMID: 11704882 DOI: 10.1080/135502801753248088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the course of retroviral CNS infections, microglia activation has been observed frequently, and it has been hypothesized that activated microglia produce and secrete neurotoxic products like proinflammatory cytokines, by this promoting brain damage. We challenged this hypothesis in a rat model for neurodegeneration. In a kinetic study, we found that microglia cells of rats neonatally inoculated with neurovirulent murine leukemia virus (MuLV) NT40 became infected in vivo to maximal levels within 9-13 days postinoculation (d.p.i.). Beginning from 13 d.p.i., degenerative alterations, i.e., vacuolization of neurons and neuropil were found in cerebellar and other brain-stem nuclei. Elevated numbers of activated microglia cells--as revealed by immunohistochemical staining with monoclonal antibody ED1--were first detected at 19 d.p.i. and were always locally associated with degenerated areas but not with nonaltered, yet infected, brain regions. Both neuropathological changes and activated microglia cells increased in intensity and numbers, respectively, with ongoing infection but did not spread to other than initially affected brain regions. By ribonuclease protection assays, we were unable to detect differences in the expression levels of tumor-necrosis-factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and interleukin-6 (IL-6) in microglia cells nor in total brains from infected versus uninfected rats. Our results suggest that the activation of microglia in the course of MuLV neurodegeneration is rather a reaction to, and not the cause of, neuronal damage. Furthermore, overt expression of the proinflammatory cytokines TNF-alpha, IL-1beta, and IL-6 within the CNS is not required for the induction of retroviral associated neurodegeneration in rats.
Collapse
Affiliation(s)
- R Hansen
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Askovic S, Favara C, McAtee FJ, Portis JL. Increased expression of MIP-1 alpha and MIP-1 beta mRNAs in the brain correlates spatially and temporally with the spongiform neurodegeneration induced by a murine oncornavirus. J Virol 2001; 75:2665-74. [PMID: 11222690 PMCID: PMC115891 DOI: 10.1128/jvi.75.6.2665-2674.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The chimeric murine oncornavirus FrCas(E) causes a rapidly progressive paralytic disease associated with spongiform neurodegeneration throughout the neuroaxis. Neurovirulence is determined by the sequence of the viral envelope gene and by the capacity of the virus to infect microglia. The neurocytopathic effect of this virus appears to be indirect, since the cells which degenerate are not infected. In the present study we have examined the possible role of inflammatory responses in this disease and have used as a control the virus F43. F43 is an highly neuroinvasive but avirulent virus which differs from FrCas(E) only in 3' pol and env sequences. Like FrCas(E), F43 infects large numbers of microglial cells, but it does not induce spongiform neurodegeneration. RNAase protection assays were used to detect differential expression of genes encoding a variety of cytokines, chemokines, and inflammatory cell-specific markers. Tumor necrosis factor alpha (TNF-alpha) and TNF-beta mRNAs were upregulated in advanced stages of disease but not early, even in regions with prominent spongiosis. Surprisingly there was no evidence for upregulation of the cytokines interleukin-1 alpha (IL-1 alpha), IL-1 beta, and IL-6 or of the microglial marker F4/80 at any stage of this disease. In contrast, increased levels of the beta-chemokines MIP-1 alpha and -beta were seen early in the disease and were concentrated in regions of the brain rich in spongiosis, and the magnitude of responses was similar to that observed in the brains of mice injected with the glutamatergic neurotoxin ibotenic acid. MIP-1alpha and MIP-1beta mRNAs were also upregulated in F43-inoculated mice, but the responses were three- to fivefold lower and occurred later in the course of infection than was observed in FrCas(E)-inoculated mice. These results suggest that the robust increase in expression of MIP-1 alpha and MIP-1 beta in the brain represents a correlate of neurovirulence in this disease, whereas the TNF responses are likely secondary events.
Collapse
Affiliation(s)
- S Askovic
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | | | |
Collapse
|
38
|
Tanaka A, Saida K, Andoh M, Maeda K, Kai K. At least four non-env factors that reside in the LTR, in the 5'-non-coding region, in gag and in part of pol affect neuropathogenicity of PVC-441 murine leukemia virus (MuLV). Virus Res 2000; 69:17-30. [PMID: 10989182 DOI: 10.1016/s0168-1702(00)00166-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PVC-441 murine leukemia virus (MuLV) is neuropathogenic in F344 rats. Recently, an infectious DNA clone was isolated and its nucleotide sequence was determined (J. Virol. 72: 3423-3426. 1998). To identify the viral determinants of neuropathogenicity of the molecularly cloned PVC-441 MuLV, chimeras were constructed between PVC-441 MuLV and F-MuLV clones at appropriate restriction enzyme sites that divide the viral genome approximately in LTR-non-coding, gag-, pol-, and env-gene regions. Results indicated that the LTR-non-coding and the gag-gene regions of PVC-441 MuLV affected independently the neuropathogenicity in combination with the env gene region as evidenced clinically and pathologically. Studies on the distribution of vacuolar degeneration suggested that the pons and cervical spinal cord areas were the primary targets and the large brain was the latest target of PVC-441 MuLV. Further studies with chimeric viruses that were formed in the LTR-non-coding and the gag gene regions revealed that at least four factors affected the neuropathogenicity of PVC-441 MuLV. Two factors were found in the U3, and R-U5-5'-non-coding regions, and at least two factors in the gag gene region that contained the N-terminal part of the pol gene. Among these factors, at least two factors seemed to be 'cis-acting' from each other
Collapse
MESH Headings
- 5' Untranslated Regions
- Amino Acid Sequence
- Animals
- Base Sequence
- Chimera/genetics
- DNA, Viral/genetics
- Female
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/pathogenicity
- Genes, Viral
- Genes, env
- Genes, gag
- Genes, pol
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Experimental/etiology
- Male
- Mice
- Molecular Sequence Data
- Nervous System Diseases/etiology
- Rats
- Rats, Inbred F344
- Retroviridae Infections/etiology
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Terminal Repeat Sequences
- Tumor Virus Infections/etiology
- Virulence/genetics
Collapse
Affiliation(s)
- A Tanaka
- Department of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | | | |
Collapse
|
39
|
Pelegrin M, Marin M, Oates A, Noël D, Saller R, Salmons B, Piechaczyk M. Immunotherapy of a viral disease by in vivo production of therapeutic monoclonal antibodies. Hum Gene Ther 2000; 11:1407-15. [PMID: 10910138 DOI: 10.1089/10430340050057486] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Continuous and sustained in vivo production of monoclonal antibodies by engineered cells might render long-term antibody-based treatments cost-effective, avoid side effects associated with infusion of massive doses of antibody, and circumvent possible antiidiotypic responses against the therapeutic agent. The FrCasE retrovirus induces a lethal neurodegeneration on infection of newborn mice. We report here that implantation of cellulose sulfate capsules containing cells secreting an ectopic monoclonal antibody neutralizing FrCasE can prevent animals from developing the disease. All treated mice showed reduced or undetectable viremia in addition to a lack of the histopathological lesions characteristic of FrCasE infection. This work paves the way for a novel gene/cell antibody-based immunotherapy of a variety of severe viral and nonviral diseases.
Collapse
Affiliation(s)
- M Pelegrin
- Institute of Molecular Genetics, CNRS, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Lynch WP, Sharpe AH. Differential glycosylation of the Cas-Br-E env protein is associated with retrovirus-induced spongiform neurodegeneration. J Virol 2000; 74:1558-65. [PMID: 10627570 PMCID: PMC111494 DOI: 10.1128/jvi.74.3.1558-1565.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The wild mouse ecotropic retrovirus, Cas-Br-E, induces progressive, noninflammatory spongiform neurodegenerative disease in susceptible mice. Functional genetic analysis of the Cas-Br-E genome indicates that neurovirulence maps to the env gene, which encodes the surface glycoprotein responsible for binding and fusion of virus to host cells. To understand how the envelope protein might be involved in the induction of disease, we examined the regional and temporal expression of Cas-Br-E Env protein in the central nervous systems (CNS) of mice infected with the highly neurovirulent chimeric virus FrCas(E). We observed that multiple isoforms of Cas-Br-E Env were expressed in the CNS, with different brain regions exhibiting unique patterns of processed Env glycoprotein. Specifically, the expression of gp70 correlated with regions showing microglial infection and spongiform neurodegeneration. In contrast, regions high in neuronal infection and without neurodegenerative changes (the cerebellum and olfactory bulb) were characterized by a gp65 Env protein isoform. Sedimentation analysis of brain region extracts indicated that gp65 rather than gp70 was incorporated into virions. Biochemical analysis of the Cas-Br-E Env isoforms indicated that they result from differential processing of N-linked sugars. Taken together, these results indicate that differential posttranslational modification of the Cas-Br-E Env is associated with a failure to incorporate certain Env isoforms into virions in vivo, suggesting that defective viral assembly may be associated with the induction of spongiform neurodegeneration.
Collapse
Affiliation(s)
- W P Lynch
- Department of Microbiology/Immunology, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272, USA.
| | | |
Collapse
|
41
|
Asković S, McAtee FJ, Favara C, Portis JL. Brain infection by neuroinvasive but avirulent murine oncornaviruses. J Virol 2000; 74:465-73. [PMID: 10590136 PMCID: PMC111558 DOI: 10.1128/jvi.74.1.465-473.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chimeric murine oncornavirus FrCas(E) causes a rapidly progressive noninflammatory spongiform encephalomyelopathy after neonatal inoculation. The virus was constructed by the introduction of pol-env sequences from the wild mouse virus CasBrE into the genome of a neuroinvasive but nonneurovirulent strain of Friend murine leukemia virus (FMuLV), FB29. Although the brain infection by FrCas(E) as well as that by other neurovirulent murine retroviruses has been described in detail, little attention has been paid to the neuroinvasive but nonneurovirulent viruses. The purpose of the present study was to compare brain infection by FrCas(E) with that by FB29 and another nonneurovirulent virus, F43, which contains pol-env sequences from FMuLV 57. Both FB29 and F43 infected the same spectrum of cell types in the brain as that infected by FrCas(E), including endothelial cells, microglia, and populations of neurons which divide postnatally. Viral burdens achieved by the two nonneurovirulent viruses in the brain were actually higher than that of FrCas(E). The widespread infection of microglia by the two nonneurovirulent viruses is notable because it is infection of these cells by FrCas(E) which is thought to be a critical determinant of its neuropathogenicity. These results indicate that although the sequence of the envelope gene determines neurovirulence, this effect appears to operate through a mechanism which does not influence either viral tropism or viral burden in the brain. Although all three viruses exhibited similar tropism for granule neurons in the cerebellar cortex, there was a striking difference in the distribution of envelope proteins in those cells in vivo. The FrCas(E) envelope protein accumulated in terminal axons, whereas those of FB29 and F43 remained predominantly in the cell bodies. These observations suggest that differences in the intracellular sorting of these proteins may exist and that these differences appear to correlate with neurovirulence.
Collapse
Affiliation(s)
- S Asković
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | | | | | |
Collapse
|
42
|
Lynch WP, Sharpe AH, Snyder EY. Neural stem cells as engraftable packaging lines can mediate gene delivery to microglia: evidence from studying retroviral env-related neurodegeneration. J Virol 1999; 73:6841-51. [PMID: 10400782 PMCID: PMC112769 DOI: 10.1128/jvi.73.8.6841-6851.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The induction of spongiform myeloencephalopathy by murine leukemia viruses is mediated primarily by infection of central nervous system (CNS) microglia. In this regard, we have previously shown that CasBrE-induced disease requires late, rather than early, virus replication events in microglial cells (W. P. Lynch et al., J. Virol. 70:8896-8907, 1996). Furthermore, neurodegeneration requires the presence of unique sequences within the viral env gene. Thus, the neurodegeneration-inducing events could result from microglial expression of retroviral envelope protein alone or from the interaction of envelope protein with other viral structural proteins in the virus assembly and maturation process. To distinguish between these possible mechanisms of disease induction, we engineered the engraftable neural stem cell line C17-2 into packaging/producer cells in order to deliver the neurovirulent CasBrE env gene to endogenous CNS cells. This strategy resulted in significant CasBrE env expression within CNS microglia without the appearance of replication competent virus. CasBrE envelope expression within microglia was accompanied by increased expression of activation markers F4/80 and Mac-1 (CD11b) but failed to induce spongiform neurodegenerative changes. These results suggest that envelope expression alone within microglia is not sufficient to induce neurodegeneration. Rather, microglia-mediated disease appears to require neurovirulent Env protein interaction with other viral proteins during assembly or maturation. More broadly, the results presented here prove the efficacy of a novel method by which neural stem cell biology may be harnessed for genetically manipulating the CNS, not only for studying neurodegeneration but also as a paradigm for the disseminated distribution of retroviral vector-transduced genes.
Collapse
Affiliation(s)
- W P Lynch
- Department of Microbiology/Immunology, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272, USA
| | | | | |
Collapse
|
43
|
Labat ML. Possible retroviral origin of prion disease: could prion disease be reconsidered as a preleukemia syndrome? Biomed Pharmacother 1999; 53:47-53. [PMID: 10221168 DOI: 10.1016/s0753-3322(99)80060-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
A retroviral etiology might explain why amyloid plaque and/or spongiosis are or are not associated with neuronal death in prion diseases. While retroviral genes themselves may be responsible for neuronal death, a retrovirus may also cause mutations in cellular genes. Hence, the prion gene may be altered by a retrovirus in the same way as a cellular proto-oncogene is altered to produce an oncogene, either by transduction or by integration of the provirus in its vicinity. In both cases, the resulting abnormal prion protein, acting as a catalyst, may induce the formation of amyloid plaques. In addition, a wild type retrovirus may recombine to the vesicular stomatitis virus (VSV) to give rise to a pseudotyped retrovirus able to induce spongiosis. It is reported here that in scrapie, a blood monocytoid cell proliferates in vitro. If confirmed in other species, this raises the question of the potential link between prion disease and leukemia. Indeed neurovirulent strains of murine leukemia virus, a slow acting retrovirus, are known to induce spongiform encephalopathies. A preliminary attempt to purify reverse transcriptase by chromatography, using the classical protocol, failed because of the presence of a prion-like protein secreted by the blood mononuclear cells which stuck to the phosphocellulose column. Therefore, if a retrovirus is present in prion diseases, it would be evidenced only in animals developing the disease in the absence of prion protein. From this point of view, mice obtained in 1997 by the group of D. Dormont in France, offer a unique opportunity to test the retroviral hypothesis.
Collapse
Affiliation(s)
- M L Labat
- Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
44
|
Poulsen DJ, Robertson SJ, Favara CA, Portis JL, Chesebro BW. Mapping of a neurovirulence determinant within the envelope protein of a polytropic murine retrovirus: induction of central nervous system disease by low levels of virus. Virology 1998; 248:199-207. [PMID: 9721229 DOI: 10.1006/viro.1998.9258] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Murine leukemia virus (MuLV) clone Fr98 is a recombinant polytropic virus that causes neurological disease characterized by ataxia in susceptible mouse strains. The envelope gene of Fr98 has been previously shown to encode at least two separate neurovirulence determinants. In the present study, the determinant encoded within the EcoRI/AvrII fragment of the envelope gene was further defined. In these experiments, neurovirulence was associated with a change from a serine to an arginine at position 195 and a glycine to an alanine at position 198 within the envelope protein. Neurovirulent and nonvirulent virus clones, which differed only at these two amino acid residues, showed no difference in the type or location of cells infected. Furthermore, equivalent levels of viral p30 capsid protein were detected in the brains of mice infected with either the neurovirulent or nonvirulent virus clones. These results were consistent with the interpretation that the envelope protein of the neurovirulent virus differed from that of the nonvirulent virus by having a greater toxic effect on central nervous system function.
Collapse
Affiliation(s)
- D J Poulsen
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, Montana, 59840, USA
| | | | | | | | | |
Collapse
|
45
|
Portis JL, Lynch WP. Dissecting the determinants of neuropathogenesis of the murine oncornaviruses. Virology 1998; 247:127-36. [PMID: 9705905 DOI: 10.1006/viro.1998.9240] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J L Portis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | |
Collapse
|
46
|
Fujisawa R, McAtee FJ, Wehrly K, Portis JL. The neuroinvasiveness of a murine retrovirus is influenced by a dileucine-containing sequence in the cytoplasmic tail of glycosylated Gag. J Virol 1998; 72:5619-25. [PMID: 9621020 PMCID: PMC110223 DOI: 10.1128/jvi.72.7.5619-5625.1998] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The tempo and intensity of retroviral neuropathogenesis are dependent on the capacity of the virus to invade the central nervous system. For murine leukemia viruses, an important determinant of neuroinvasiveness is the virus-encoded protein glycosylated Gag, the function of which in the virus life cycle is not known. While this protein is dispensable for virus replication, mutations which prevent its expression slow the spread of virus in vivo and restrict virus dissemination to the brain. To further explore the function of this protein, we compared two viruses, CasFrKP (KP) and CasFrKP41 (KP41), which differ dramatically in neurovirulence. KP expresses high early viremia titers, is neuroinvasive, and induces clinical neurologic disease in 100% of neonatally inoculated mice, with an incubation period of 18 to 23 days. In contrast, KP41 expresses early viremia titers 100- fold lower than those of KP, exhibits attenuated neuroinvasiveness, and induces clinical neurologic disease infrequently, with a relatively long incubation period. The genomes of these two viruses differ by only 10 nucleotides, resulting in differences at five residues, all located within the N-terminal cytoplasmic tail of glycosylated Gag. In this study, using KP as the parental virus, we systematically mutated each of the five amino acid residues to those of KP41 and found that substitution mutation of two membrane-proximal residues, E53 and L56, to K and P, respectively produced the greatest effect on early viremia kinetics and neurovirulence. These mutations disrupted the KP sequence E53FLL56, the leucine dipeptide of which suggests the possibility that it may represent a sorting signal for glycosylated Gag. Supporting this idea was the finding that alteration of this sequence motif increased the level of cell surface expression of the protein, which suggests that analysis of the intracellular trafficking of glycosylated Gag may provide further clues to its function.
Collapse
Affiliation(s)
- R Fujisawa
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | | | |
Collapse
|
47
|
Yuen PH, Kwak YT. Studies on the pathology, especially brain lesions, induced by R7, a spontaneous mutant of Moloney murine sarcoma virus 124. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 152:1509-20. [PMID: 9626055 PMCID: PMC1858456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have recently isolated R7, a spontaneous Moloney murine sarcoma virus (MoMuSV) 124 variant. Molecular cloning and sequence analysis showed that, relative to MoMuSV 124, R7 has an extra repeat in each enhancer and a truncated mos gene in frame with the truncated gag coding sequence. This report presents a detailed study on the pathology induced by R7. R7 induced not only sarcomas with well developed angiomatous components but also brain lesions. Brain lesions were observed in all less-than-48-hour-old BALB/c mice inoculated with greater than 2 x 10(5) R7 focus-forming units (FFUs). R7 was detected in all brains examined by day 9 after inoculation, and brain lesions were observed in two of four mice examined by day 14 after inoculation. Light microscopy of brains revealed that approximately 15% of the lesions were unenclosed blood pools of varying sizes containing red blood cells and inflammatory cells spreading into surrounding brain tissues. The remainder of the brain lesions had tumor cells. These lesions ranged from a few enlarged vascular endothelial cells intermixed with blood cells to large circumscribed lesions consisting of well developed tangled masses of vessels surrounded by blood pools. Activated astrocytes surrounded and infiltrated the tumors. In addition, the thymus of R7-infected mice regressed significantly and precipitously due to apoptosis (especially of cortical thymocytes) at the end stage of the disease.
Collapse
Affiliation(s)
- P H Yuen
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville 78957, USA
| | | |
Collapse
|
48
|
Mazgareanu S, Müller JG, Czub S, Schimmer S, Bredt M, Czub M. Suppression of rat bone marrow cells by Friend murine leukemia virus envelope proteins. Virology 1998; 242:357-65. [PMID: 9514963 DOI: 10.1006/viro.1997.8998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a retroviral rat model, we have investigated the nontransforming effects of murine leukemia virus FB29 on the bone marrow. Upon intraperitoneal inoculation with murine leukemia virus FB29 of either neonatal or adult rats, bone marrow cells became massively infected within the first 12 days postinoculation. In neonatally inoculated rats, a persistent productive bone marrow infection was established, whereas in rats inoculated as adults, no infected bone marrow cells could be detected beyond 12 days postinoculation. Retroviral infection was most likely cleared by an antiviral immune response (Hein et al., 1995, Virology 211, 408-417). Exposure to virus irreversibly decreased numbers of bone marrow cells staining with monoclonal antibody OX7 by 10-30%. Reduction of OX7+ bone marrow cells by 20% was also observed in vitro, after bone marrow cells from uninfected adult rats had been co-incubated with virus. FB29-envelope proteins were sufficient alone to reduce numbers of OX7+ bone marrow cells, both in vivo and in vitro. According to results on incorporation of propidium iodide, decreased numbers of OX7+ cells were due to cell death. By flow cytometric analyses OX7+ bone marrow cells as well as monocytes/macrophages were identified to be major target cells for infection with FB29 within the bone marrow. Thus, the mechanism(s) responsible for death of OX7+ bone marrow cells might be due to direct toxicity of viral envelope proteins and/or to interactions of viral envelope proteins with cells of the monocytic lineage.
Collapse
Affiliation(s)
- S Mazgareanu
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Masuda M, Hanson CA, Dugger NV, Robbins DS, Wilt SG, Ruscetti SK, Hoffman PM. Capillary endothelial cell tropism of PVC-211 murine leukemia virus and its application for gene transduction. J Virol 1997; 71:6168-73. [PMID: 9223511 PMCID: PMC191877 DOI: 10.1128/jvi.71.8.6168-6173.1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PVC-211 murine leukemia virus (MuLV) causes neurodegenerative disease following inoculation of neonatal, but not adult, mice and rats. It was previously shown that tropism for brain capillary endothelial cells (CEC) was a determinant of the viral neuropathogenicity. In this study, we demonstrate that host age-dependent replication of PVC-211 MuLV in vivo occurs in CEC in the brain as well as in other organs, such as the liver, kidney, and heart. In contrast, primary explant cultures of CEC derived from brains and livers of adult and neonatal rats could be infected by PVC-211 MuLV, suggesting that the age-dependent susceptibility was abrogated in vitro. Although CEC were generally less susceptible to MuLV-mediated gene transduction than fibroblasts, treatment of CEC with 2-deoxyglucose followed by inoculation of a PVC-211 MuLV-pseudotyped vector in the absence of heparin improved the transduction efficiency. These observations support the possibility that PVC-211 MuLV may be useful for establishing models of CEC gene transduction.
Collapse
Affiliation(s)
- M Masuda
- Laboratory of Molecular Oncology, National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Fujisawa R, McAtee FJ, Zirbel JH, Portis JL. Characterization of glycosylated Gag expressed by a neurovirulent murine leukemia virus: identification of differences in processing in vitro and in vivo. J Virol 1997; 71:5355-60. [PMID: 9188605 PMCID: PMC191773 DOI: 10.1128/jvi.71.7.5355-5360.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The neuroinvasiveness of a chimeric murine retrovirus, CasFrKP (KP), is dependent on the expression of glycosylated Gag (gp85gag). This viral protein is the product of alternate translation initiation 88 codons upstream of and in frame with the initiation codon of pr65gag, the precursor of the viral core proteins. Although expression of glycosylated Gag affects virus spread in the spleen, it appears not to affect virus spread in vitro in fibroblast cell lines (J. L. Portis et al., J. Virol. 68:3879-3887, 1994). The differential effects of this protein in vitro and in vivo have not been explained, and its function is unknown. We have here compared the in vitro processing of this molecule with that expressed in spleens of infected mice. In vitro, gp85gag was cleaved near the middle of the molecule, releasing the C-terminal half (containing capsid and nucleocapsid domains of pr65gag) as a secreted glycoprotein. The N-terminal half of the protein was associated with the plasma membrane as a approximately 55-kDa glycoprotein bearing the matrix domain of pr65gag as well as the N-terminal 88 residue L domain. This processing scheme was also observed in vivo, although two differences were seen. There were differences in N-linked glycosylation of the secreted form of the protein expressed in the spleen. In addition, whereas the membrane-associated species assumed the orientation of a type II integral membrane protein (N(cyto) C(exo)) in fibroblasts in vitro, a subpopulation of spleen cells was detected in which the N terminus of the protein was exposed at the cell surface. These results suggest that the differential effects of glycosylated Gag expression in vivo and in vitro may be related to differences in posttranslational processing of the protein.
Collapse
Affiliation(s)
- R Fujisawa
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | | | |
Collapse
|