1
|
Stahlhut M, Ha TC, Takmakova E, Morgan MA, Schwarzer A, Schaudien D, Eder M, Schambach A, Kustikova OS. Conditionally immortalised leukaemia initiating cells co-expressing Hoxa9/Meis1 demonstrate microenvironmental adaptation properties ex vivo while maintaining myelomonocytic memory. Sci Rep 2021; 11:5294. [PMID: 33674652 PMCID: PMC7935976 DOI: 10.1038/s41598-021-84468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
Regulation of haematopoietic stem cell fate through conditional gene expression could improve understanding of healthy haematopoietic and leukaemia initiating cell (LIC) biology. We established conditionally immortalised myeloid progenitor cell lines co-expressing constitutive Hoxa9.EGFP and inducible Meis1.dTomato (H9M-ciMP) to study growth behaviour, immunophenotype and morphology under different cytokine/microenvironmental conditions ex vivo upon doxycycline (DOX) induction or removal. The vector design and drug-dependent selection approach identified new retroviral insertion (RVI) sites that potentially collaborate with Meis1/Hoxa9 and define H9M-ciMP fate. For most cell lines, myelomonocytic conditions supported reversible H9M-ciMP differentiation into neutrophils and macrophages with DOX-dependent modulation of Hoxa9/Meis1 and CD11b/Gr-1 expression. Here, up-regulation of Meis1/Hoxa9 promoted reconstitution of exponential expansion of immature H9M-ciMPs after DOX reapplication. Stem cell maintaining conditions supported selective H9M-ciMP exponential growth. H9M-ciMPs that had Ninj2 RVI and were cultured under myelomonocytic or stem cell maintaining conditions revealed the development of DOX-dependent acute myeloid leukaemia in a murine transplantation model. Transcriptional dysregulation of Ninj2 and distal genes surrounding RVI (Rad52, Kdm5a) was detected. All studied H9M-ciMPs demonstrated adaptation to T-lymphoid microenvironmental conditions while maintaining immature myelomonocytic features. Thus, the established system is relevant to leukaemia and stem cell biology.
Collapse
Affiliation(s)
- Maike Stahlhut
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Teng Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Ekaterina Takmakova
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Michael A Morgan
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Matthias Eder
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Olga S Kustikova
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Ha TC, Stahlhut M, Rothe M, Paul G, Dziadek V, Morgan M, Brugman M, Fehse B, Kustikova O, Schambach A, Baum C. Multiple Genes Surrounding Bcl-xL, a Common Retroviral Insertion Site, Can Influence Hematopoiesis Individually or in Concert. Hum Gene Ther 2020; 32:458-472. [PMID: 33012194 DOI: 10.1089/hum.2019.344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retroviral insertional mutagenesis (RIM) is both a relevant risk in gene therapy and a powerful tool for identifying genes that enhance the competitiveness of repopulating hematopoietic stem and progenitor cells (HSPCs). However, focusing only on the gene closest to the retroviral vector insertion site (RVIS) may underestimate the effects of RIM, as dysregulation of distal and/or multiple genes by a single insertion event was reported in several studies. As a proof of concept, we examined the common insertion site (CIS) Bcl-xL, which revealed seven genes located within ±150 kb from the RVIS for our study. We confirmed that Bcl-xL enhanced the competitiveness of HSPCs, whereas the Bcl-xL neighbor Id1 hindered HSPC long-term repopulation. This negative influence of Id1 could be counteracted by co-expressing Bcl-xL. Interestingly, >90% of early reconstituted myeloid cells were found to originate from transduced HSPCs upon simultaneous overexpression of Bcl-xL and Id1, which implies that Bcl-xL and Id1 can collaborate to rapidly replenish the myeloid compartment under stress conditions. To directly compare the competitiveness of HSPCs conveyed by multiple transgenes, we developed a multiple competitor competitive repopulation (MCCR) assay to simultaneously screen effects on HSPC repopulating capacity in a single mouse. The MCCR assay revealed that multiple genes within a CIS can have positive or negative impact on hematopoiesis. Furthermore, these data highlight the importance of studying multiple genes located within the proximity of an insertion site to understand complex biological effects, especially as the number of gene therapy patients increases.
Collapse
Affiliation(s)
- Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany.,Hannover Biomedical Research School, Hannover, Germany
| | - Maike Stahlhut
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Gabi Paul
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Violetta Dziadek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Martijn Brugman
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UKE) Hamburg-Eppendorf, Hamburg, Germany
| | - Olga Kustikova
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Thomaschewski M, Riecken K, Unrau L, Volz T, Cornils K, Ittrich H, Heim D, Wege H, Akgün E, Lütgehetmann M, Dieckhoff J, Köpke M, Dandri M, Benten D, Fehse B. Multi-color RGB marking enables clonality assessment of liver tumors in a murine xenograft model. Oncotarget 2017; 8:115582-115595. [PMID: 29383183 PMCID: PMC5777795 DOI: 10.18632/oncotarget.23312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
We recently introduced red-green-blue (RGB) marking for clonal cell tracking based on individual color-coding. Here, we applied RGB marking to study clonal development of liver tumors. Immortalized, non-tumorigenic human fetal hepatocytes expressing the human telomerase reverse transcriptase (FH-hTERT) were RGB-marked by simultaneous transduction with lentiviral vectors encoding mCherry, Venus, and Cerulean. Multi-color fluorescence microscopy was used to analyze growth characteristics of RGB-marked FH-hTERT in vitro and in vivo after transplantation into livers of immunodeficient mice with endogenous liver damage (uPA/SCID). After initially polyclonal engraftment we observed oligoclonal regenerative nodules derived from transplanted RGB-marked FH-hTERT. Some mice developed monochromatic invasive liver tumors; their clonal origin was confirmed both on the molecular level, based on specific lentiviral-vector insertion sites, and by serial transplantation of one tumor. Vector insertions in proximity to the proto-oncogene MCF2 and the transcription factor MITF resulted in strong upregulation of mRNA expression in the respective tumors. Notably, upregulated MCF2 and MITF expression was also observed in 21% and 33% of 24 human hepatocellular carcinomas analyzed. In conclusion, liver repopulation with RGB-marked FH-hTERT is a useful tool to study clonal progression of liver tumors caused by insertional mutagenesis in vivo and will help identifying genes involved in liver cancer.
Collapse
Affiliation(s)
- Michael Thomaschewski
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Ludmilla Unrau
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Cornils
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Harald Ittrich
- Diagnostic and Interventional Radiology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Heim
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Wege
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Ercan Akgün
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Dieckhoff
- Diagnostic and Interventional Radiology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Köpke
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Benten
- Department of Medicine, Gastroenterology and Hepatology, UMC Hamburg-Eppendorf, Hamburg, Germany
- Department of Gastroenterology, Helios Klinikum Duisburg, Duisburg, Germany
| | - Boris Fehse
- Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center (UMC) Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Casellas R, Yamane A, Kovalchuk AL, Potter M. Restricting activation-induced cytidine deaminase tumorigenic activity in B lymphocytes. Immunology 2009; 126:316-28. [PMID: 19302140 DOI: 10.1111/j.1365-2567.2008.03050.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA breaks play an essential role in germinal centre B cells as intermediates to immunoglobulin class switching, a recombination process initiated by activation-induced cytidine deaminase (AID). Immunoglobulin gene hypermutation is likewise catalysed by AID but is believed to occur via single-strand DNA breaks. When improperly repaired, AID-mediated lesions can promote chromosomal translocations (CTs) that juxtapose the immunoglobulin loci to heterologous genomic sites, including oncogenes. Two of the most studied translocations are the t(8;14) and T(12;15), which deregulate cMyc in human Burkitt's lymphomas and mouse plasmacytomas, respectively. While a complete understanding of the aetiology of such translocations is lacking, recent studies using diverse mouse models have shed light on two important issues: (1) the extent to which non-specific or AID-mediated DNA lesions promote CTs, and (2) the safeguard mechanisms that B cells employ to prevent AID tumorigenic activity. Here we review these advances and discuss the usage of pristane-induced mouse plasmacytomas as a tool to investigate the origin of Igh-cMyc translocations and B-cell tumorigenesis.
Collapse
Affiliation(s)
- Rafael Casellas
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
5
|
Sheng L, Cai F, Zhu Y, Pal A, Athanasiou M, Orrison B, Blair DG, Hughes SH, Coffin JM, Lewis AM, Peden K. Oncogenicity of DNA in vivo: tumor induction with expression plasmids for activated H-ras and c-myc. Biologicals 2008; 36:184-97. [PMID: 18218323 DOI: 10.1016/j.biologicals.2007.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 11/07/2007] [Accepted: 11/13/2007] [Indexed: 01/04/2023] Open
Abstract
All vaccines and other biological products contain contaminating residual DNA derived from the production cell substrate. Whether this residual cell-substrate DNA can induce tumors in vaccine recipients and thus represent a risk factor has been debated for over 50 years without resolution. As a first step in resolving this issue, we have generated expression plasmids for the activated human H-ras oncogene and for the murine c-myc proto-oncogene. Their oncogenic activity was confirmed in vitro using the focus-formation transformation assay. Two strains of adult and newborn immune-competent mice were inoculated with different amounts of either plasmid alone or with a combination of the H-ras and c-myc plasmids. Tumors developed only in mice inoculated with both plasmids and only at the highest amount of DNA (12.5 microg of each plasmid). The NIH Swiss mouse was more sensitive than the C57BL/6 mouse, and newborn animals were more sensitive than adults. Cell lines were established from the tumors. PCR and Southern hybridization analyses demonstrated that both inoculated oncogenes were present in all of the tumor-derived cell lines and that the cells in the tumors were clonal. Western analysis demonstrated that both oncoproteins were expressed in these cell lines. These results demonstrate that cellular oncogenes can induce tumors following subcutaneous inoculation. Such information provides a possible way of evaluating and estimating the theoretical oncogenic risk posed by residual cell-substrate DNA in vaccines.
Collapse
Affiliation(s)
- Li Sheng
- Division of Viral Products, OVRR, CBER, FDA, Building 29A, Room 3D08, 29 Lincoln Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bhattacharya N, Sabbir MG, Roy A, Dam A, Roychoudhury S, Panda CK. Approximately 580 Kb surrounding the MYC gene is amplified in head and neck squamous cell carcinoma of Indian patients. Pathol Res Pract 2005; 201:691-7. [PMID: 16325511 DOI: 10.1016/j.prp.2005.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 08/16/2005] [Indexed: 11/28/2022]
Abstract
Amplification of the MYC gene is reported to be associated with the development of head and neck squamous cell carcinoma (HNSCC). However, there are no data concerning whether the amplification is confined to the MYC gene itself or spans distant 5' and/or 3' regions of this gene in HNSCC as seen in different lymphomas, colon carcinoma, and uterine cervical carcinoma (CaCx). In this study, we analyzed the alterations (amplification/rearrangement) in the 580 Kb surrounding of the MYC gene to understand the status of this locus in primary HNSCC of Indian patients. The MYC alterations were analyzed by Southern blot using the pal-1/MYC/MLVI4 probes. The alterations in the MYC locus (adjacent region of the c-myc gene) were then correlated with the various clinicopathological parameters. The overall amplification involving the MYC locus was seen in 46% of the samples. The MYC gene, pal-1 region, and MLVI4 region were amplified in about 38%, 24%, and 20% of the samples, respectively. Some samples showed co-amplification encompassing pal-1-MYC-MLVI4 or pal-1-MYC or MYC-MLVI4 regions. No significant association was observed between the amplification in the MYC locus and the different clinicopathological parameters except for tumor differentiation. Thus, it seems that, similar to other tumors, the MYC gene may be activated by amplification in its surrounding 5' and/or 3' region in HNSCC.
Collapse
Affiliation(s)
- Nilanjana Bhattacharya
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026, India
| | | | | | | | | | | |
Collapse
|
7
|
Bhattacharya N, Singh RK, Mondal S, Roy A, Mondal R, Roychowdhury S, Panda CK. Analysis of molecular alterations in chromosome 8 associated with the development of uterine cervical carcinoma of Indian patients. Gynecol Oncol 2004; 95:352-62. [PMID: 15491757 DOI: 10.1016/j.ygyno.2004.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We have been done the detailed deletion mapping of chromosome (chr.) 8p21.3-23 to localize the candidate tumor suppressor gene(s) (TSGs) loci as well as studied the mechanism of activation of c-myc gene, located at chr.8q24.1, by analyzing the amplification/rearrangement/HPV integration within approximately 580 kb of c-myc locus in uterine cervical carcinoma (CaCx) of Indian patients. The association between the deletions in chr.8p21.3-23 and alterations in the c-myc locus has also been analyzed. METHODS The deletion mapping of chr.8p21.3-23 was done by 15 microsatellite markers and the alterations in the c-myc locus were analyzed by Southern hybridization using the pal-1/c-myc/mlvi-4/HPV 16/18 probes in seven cervical intraepithelial neoplasia (CIN) and 55 primary uterine cervical carcinoma. The alterations in chr.8p/q have been correlated with the different clinicopathological parameters. RESULTS Three discrete minimal deleted regions with high frequencies of loss of heterozygosity (LOH) (37-43%) were identified in the chr.8p23.1-23.2 (D1), 8p23.1 (D2), and 8p 21.3-22 (D3) regions within 0.41-4.62 Mb. The deletion in the D1 region was significantly associated with the deletion in the D2 region (P = 0.03), whereas the deletion in D2 was marginally associated with the deletion in the D3 region (P = 0.07). The alterations in the c-myc locus were seen in 43% of the samples. About 35% of the samples showed coalterations in both arms of chr.8. No significant association was observed with the alterations in chr.8p/q as well as with the different clinicopathological parameters. CONCLUSIONS The deletions in chr.8p21.3-23 and the alterations in the c-myc locus are independently associated with the development of CaCx. The D1-D3 regions in chr.8p21.3-23 could harbor candidate TSGs associated with the development of this tumor. The c-myc gene was activated by amplification/rearrangement at the pal-1/c-myc/mlvi-4 loci as well as HPV integration in the pal-1 locus in this tumor.
Collapse
Affiliation(s)
- N Bhattacharya
- Chittaranjan National Cancer Institute, Kolkata-700 026, India
| | | | | | | | | | | | | |
Collapse
|
8
|
Mack KD, Jin X, Yu S, Wei R, Kapp L, Green C, Herndier B, Abbey NW, Elbaggari A, Liu Y, McGrath MS. HIV insertions within and proximal to host cell genes are a common finding in tissues containing high levels of HIV DNA and macrophage-associated p24 antigen expression. J Acquir Immune Defic Syndr 2003; 33:308-20. [PMID: 12843741 DOI: 10.1097/00126334-200307010-00004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIV integration within host cell genomic DNA is a requisite step of the viral infection cycle. Yet, characteristics of the sites of provirus integration within the host genome remain obscure. The authors present evidence that in diseased tissues showing a high level of HIV DNA and macrophage-associated HIV p24 antigen expression from end stage forms of HIV disease, HIV-1 integration sites were favored within genes and transcriptionally active host cell genomic loci. Using an inverse PCR (IPCR) technique that identified dominant integrated forms of HIV, clonal IPCR products were isolated from AIDS dementia, AIDS lymphoma, and angioimmunoblastic lymphadenopathy tissues. Thirty of 34 disease-associated HIV-1 insertions were identified within annotated and hypothetical genes, an unexpected but highly nonrandom genetic coding region association (p <.026). The 1% sensitivity thresholds used for HIV IPCR suggested some form of selective expansion of cells containing these HIV proviruses. Consistent with this interpretation were the HIV-1 insertion sites identified within introns of genes that encoded for factors associated with signal transduction, apoptosis, and transcription regulation. In addition, HIV-1 proviruses were frequently found proximal to genes that encoded for receptor-associated, signal transduction-associated, transcription-associated, and translation-associated proteins. HIV-1 integration within host cell genomic DNA potentially represents a significant insertional mutagenic event. In certain cases, provirus insertions may mediate the dysregulation of specific gene expression events, providing mechanisms contributing to the pathogenesis associated with certain AIDS-related diseases.
Collapse
Affiliation(s)
- K D Mack
- SLIL Biomedical Corporation, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fan H, Palmarini M, DeMartini JC. Transformation and oncogenesis by jaagsiekte sheep retrovirus. Curr Top Microbiol Immunol 2003; 275:139-77. [PMID: 12596898 DOI: 10.1007/978-3-642-55638-8_6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Jaagsiekte sheep retrovirus (JSRV) is an exogenous retrovirus of sheep that induces a contagious lung cancer, ovine pulmonary adenocarcinoma (OPA). JSRV is a potent carcinogen in the experimental setting, inducing end-stage tumors at around 6 weeks of age when newborn lambs are inoculated intratracheally. Despite this rapid oncogenesis, inspection of the JSRV genome sequence does not reveal any obvious viral oncogenes. In this review, recent advances in studies of JSRV oncogenic transformation are described. Molecular cloning of an infectious and oncogenic JSRV provirus was instrumental in the studies. DNA transfection of JSRV proviral DNA into mouse NIH3T3 cells results in morphological transformation, indicating that the JSRV genome carries an oncogene. Further experiments identified the JSRV envelope protein as the transforming gene, and a PI3 kinase docking site in the cytoplasmic tail of the transmembrane (TM) protein was shown to be necessary for transformation. Avian DF-1 cells infected with an avian retroviral vector (RCAS) expressing the JSRV envelope protein also undergo tumorigenic transformation. Possible mechanisms of transformation are discussed, and a cooperating role for insertional activation of proto-oncogenes in tumorigenesis is also considered. The transforming potential of the JSRV envelope protein may be necessary for JSRV infection and replication in vivo.
Collapse
Affiliation(s)
- H Fan
- Department of Molecular Biology and Biochemistry, Cancer Research Institute, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
10
|
Dudley JP, Mertz JA, Rajan L, Lozano M, Broussard DR. What retroviruses teach us about the involvement of c-Myc in leukemias and lymphomas. Leukemia 2002; 16:1086-98. [PMID: 12040439 DOI: 10.1038/sj.leu.2402451] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2001] [Accepted: 01/03/2002] [Indexed: 12/14/2022]
Abstract
Overexpression of the cellular oncogene c-Myc frequently occurs during induction of leukemias and lymphomas in many species. Retroviruses have enhanced our understanding of the role of c-Myc in such tumors. Leukemias and lymphomas induced by retroviruses activate c-Myc by: (1) use of virally specified proteins that increase c-Myc transcription, (2) transduction and modification of c-Myc to generate a virally encoded form of the gene, v-Myc, and (3) proviral integration in or near c-Myc. Proviral integrations elevate transcription by insertion of retroviral enhancers found in the long terminal repeat (LTR). Studies of the LTR enhancer elements from these retroviruses have revealed the importance of these elements for c-Mycactivation in several cell types. Retroviruses also have been used to identify genes that collaborate with c-Myc during development and progression of leukemias and lymphomas. In these experiments, animals that are transgenic for c-Mycoverexpression (often in combination with the overexpression or deletion of known proto-oncogenes) have been infected with retroviruses that then insertionally activate novel co-operating cellular genes. The retrovirus then acts as a molecular 'tag' for cloning of these genes. This review covers several aspects of c-Myc involvement in retrovirally induced leukemias and lymphomas.
Collapse
Affiliation(s)
- J P Dudley
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78705, USA.
| | | | | | | | | |
Collapse
|
11
|
Rätsch A, Joos S, Kioschis P, Lichter P. Topological organization of the MYC/IGK locus in Burkitt's lymphoma cells assessed by nuclear halo preparations. Exp Cell Res 2002; 273:12-20. [PMID: 11795942 DOI: 10.1006/excr.2001.5429] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Burkitt's lymphoma (BL) cells characteristic chromosomal translocations juxtapose the MYC oncogene to one of the three immunoglobulin (IG) gene loci. This results in deregulation of MYC expression through IG gene enhancer elements. As enhancers and MYC promoters can be as much as several hundred kilobases apart, long-distance effects are to be postulated, which affect chromatin organization. Since transcriptionally active and inactive sequences can be distinguished based on their localization in nuclear halo preparations, we used this technique to assess the topology of wild-type and translocated MYC and IGK genes. Following visualization of these genes by fluorescence in situ hybridization, the signal distribution was determined in nuclear halo structures of human monocytes and the BL-derived cell line LY66. MYC signals derived from the non-translocated chromosome 8 were found equally distributed between the residual nucleus and the surrounding DNA halo. In contrast, the activated MYC and IGK genes on the translocated chromosome in LY66 cells were associated with the residual nucleus in 78 and 88% of cases, respectively. In LY66 cells, attachment to the residual nucleus was restricted to a DNA segment 30 to 50 kb downstream of MYC, while in monocytes it was dispersed over 80 kb around the MYC gene. These findings indicate a specific chromatin organization for the activated MYC locus. Distance measurements between MYC and IGK signals revealed shorter values than expected from their linear distance (325 kb), indicating a back folding of the DNA backbone. Thus, there is strong evidence for a specific topological organization, which is functionally related to the MYC activation status with the specific folding of the DNA strand likely reflecting maintenance of a spatial interaction between IGK enhancer and MYC promoter elements.
Collapse
MESH Headings
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/pathology
- Cell Nucleus/genetics
- Centromere/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 2/ultrastructure
- Chromosomes, Human, Pair 8/ultrastructure
- Enhancer Elements, Genetic
- Genes, Immunoglobulin/genetics
- Genes, myc/genetics
- Humans
- Immunoglobulin lambda-Chains/genetics
- In Situ Hybridization, Fluorescence
- Monocytes/pathology
- Telomere/genetics
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Rätsch
- Abteilung Molekulare Genetik, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany
| | | | | | | |
Collapse
|
12
|
Rajan L, Broussard D, Lozano M, Lee CG, Kozak CA, Dudley JP. The c-myc locus is a common integration site in type B retrovirus-induced T-cell lymphomas. J Virol 2000; 74:2466-71. [PMID: 10666282 PMCID: PMC111733 DOI: 10.1128/jvi.74.5.2466-2471.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type B leukemogenic virus (TBLV) induces rapidly appearing T-cell leukemias. TBLV insertions near the c-myc gene were detectable in 2 of 30 tumors tested, whereas 80% of the tumors showed c-myc overexpression. TBLV insertions on chromosome 15 (including a newly identified locus, Pad7) may cause c-myc overexpression by cis-acting effects at a distance.
Collapse
Affiliation(s)
- L Rajan
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78705, USA
| | | | | | | | | | | |
Collapse
|
13
|
Hansen GM, Justice MJ. Activation of Hex and mEg5 by retroviral insertion may contribute to mouse B-cell leukemia. Oncogene 1999; 18:6531-9. [PMID: 10597256 DOI: 10.1038/sj.onc.1203023] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AKXD recombinant inbred mice develop a variety of leukemias and lymphomas due to retrovirally mediated insertional activation of cellular proto-oncogenes. We describe a new retroviral insertion site that is the most frequent genetic alteration in AKXD B-cell leukemias. Multiple genes flank the site of viral insertion, but the expression of just two, Hex and mEg5, is significantly upregulated. Hex is a divergent homeobox gene that is transiently expressed in many hematopoietic lineages, suggesting an involvement in cellular differentiation. mEg5 is a member of the bim-C subfamily of kinesin related proteins that are necessary for spindle formation and stabilization during mitosis. Our data provide the first genetic evidence for the activation of these genes in leukemia, and suggest that unscheduled expression of Hex and mEg5 contributes to the development of B-cell leukemia. In addition, this work highlights the use of genomic approaches for the study of position effect mutations.
Collapse
Affiliation(s)
- G M Hansen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
14
|
Rynditch AV, Zoubak S, Tsyba L, Tryapitsina-Guley N, Bernardi G. The regional integration of retroviral sequences into the mosaic genomes of mammals. Gene 1998; 222:1-16. [PMID: 9813219 DOI: 10.1016/s0378-1119(98)00451-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have reviewed here three sets of data concerning the integration of retroviral sequences in the mammalian genome: (i) our experimental localization of a number of proviruses integrated in isochores characterized by different GC levels; (ii) results from other laboratories on the localization of retroviral sequences in open chromatin regions and/or next to CpG islands; and (iii) our compositional analysis of genes located in the neighborhood of integrated retroviral sequences. The three sets of data have provided a very consistent picture in that a compartmentalized, isopycnic integration of expressed proviruses appears to be the rule ('isopycnic' refers to the compositional match between viral and host sequences around the integration site). The results reviewed here suggest that: (i) integration of proviral sequences is targeted initially towards 'open chromatin regions'; while these exist in both GC-rich and GC-poor isochores, the 'open chromatin regions' of GC-rich isochores are the main targets for integration of retroviral sequences because of their much greater abundance; (ii) isopycnicity is associated with stability of integration; indeed, even non-expressed integrated retroviral sequences tend to show an isopycnic localization in the genome; (iii) transcription of integrated viral sequences (like transcription of host genes) appears to be associated, as a rule, with an isopycnic localization, as indicated by transcribed sequences that show an isopycnic integration and act in trans; (iv) selection plays a role in the choice of specific sites within an isopycnic region; in exceptional cases [such as mouse mammary tumor virus (MMTV) activating GC-rich oncogenes], selection may override isopycnicity.
Collapse
Affiliation(s)
- A V Rynditch
- Laboratoire de Génétique Moléculaire, Institut Jacques Monod, 2 Place Jussieu, 75005, Paris, France
| | | | | | | | | |
Collapse
|
15
|
Siwarski D, Müller U, Andersson J, Notario V, Melchers F, Rolink A, Huppi K. Structure and expression of the c-Myc/Pvt 1 megagene locus. Curr Top Microbiol Immunol 1997; 224:67-72. [PMID: 9308229 DOI: 10.1007/978-3-642-60801-8_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A chromosomal translocation (Tx) that interrupts the transcription of either c-Myc or Pvt 1 is the principal lesion in many B cell malignancies including Burkitt's Lymphoma (BL), AIDs-NHL, mouse plasmacytoma (Pct) and possibly multiple myeloma (MM). There is a restriction associated with this Tx such that only the immunoglobulin (Ig) heavy chain gene is found juxtaposed to c-Myc and only the Ig light chain gene is found juxtaposed to Pvt 1. Over the past several years, our laboratory has been instrumental in the elucidation of the structure of the mouse Pvt 1 locus as a means of understanding the relationship between these two divergent Txs which, nevertheless, produce indistinguishable disease phenotypes. In the mouse, we have identified a uniform Pvt1/Ig Ck fusion product which is consistently found in all tumors harboring Pvt 1 associated Txs. We have recently constructed transgenic mice harboring a translocated Pvt 1/Ck segment in order to determine whether 1). these mice produce the Pvt 1/Ck fusion product 2). these mice are immunocompromised and 3). these mice develop tumors of a B cell origin.
Collapse
|
16
|
Holloway AJ, Della NG, Fletcher CF, Largespada DA, Copeland NG, Jenkins NA, Bowtell DD. Chromosomal mapping of five highly conserved murine homologues of the Drosophila RING finger gene seven-in-absentia. Genomics 1997; 41:160-8. [PMID: 9143490 DOI: 10.1006/geno.1997.4642] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Seven-in-absentia (sina) is epistatic to all other known genes in the sevenless-ras signaling pathway, which mediates R7 photoreceptor formation in the Drosophila eye. The murine genome contains several closely related sina homologues (Siah1A-D, Siah2) that are also likely to participate in ras signaling. As part of a genetic and biochemical analysis of the mammalian Siah genes, we have used gene-specific probes to map the chromosomal positions of each family member. Here we report their chromosomal positions in relation to a number of known mouse mutations and also describe an analysis of the human Siah genes. By comparing the complexity of the Siah genes in these two mammalian species we have gained further insight into which members of this murine multigene family are likely to be functional.
Collapse
Affiliation(s)
- A J Holloway
- Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Kunieda T, Kobayashi E, Tachibana M, Ikadai H. Localization of a Moloney murine leukemia virus integration site gene, Mlvi2, on rat chromosome 2. Mamm Genome 1996; 7:924-5. [PMID: 8995772 DOI: 10.1007/s003359900276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- T Kunieda
- Imamichi Institute for Animal Reproduction, Fukaya, Japan
| | | | | | | |
Collapse
|
18
|
Jonkers J, Berns A. Retroviral insertional mutagenesis as a strategy to identify cancer genes. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1287:29-57. [PMID: 8639705 DOI: 10.1016/0304-419x(95)00020-g] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J Jonkers
- The Netherlands Cancer Institute, Division of Molecular Genetics, Amsterdam, Netherlands
| | | |
Collapse
|
19
|
Affiliation(s)
- M A Bedell
- Mammalian Genetics Laboratory, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
20
|
Mautner J, Joos S, Werner T, Eick D, Bornkamm GW, Polack A. Identification of two enhancer elements downstream of the human c-myc gene. Nucleic Acids Res 1995; 23:72-80. [PMID: 7870592 PMCID: PMC306632 DOI: 10.1093/nar/23.1.72] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Expression of the proto-oncogene c-myc is tightly regulated in vivo. Transcription of c-myc is assumed to be controlled by a number of positive and negative cis-acting control elements located upstream or within exon 1 and intron 1. However, these regulatory elements are not sufficient for c-myc expression after stable transfection or in transgenic mice. Transcription of c-myc in vivo thus requires additional control elements located outside the tested HindIII-EcoRI gene fragment. In order to identify these putative additional control elements, we mapped DNase I hypersensitive sites around the human c-myc gene in nine different tumor cell lines and in primary lymphocytes. Within the coding and 5' region of the gene, an almost identical pattern of DNase I hypersensitive sites was detected in the various cells. In contrast, chromatin analysis of the c-myc 3' region revealed a complex pattern of constitutive and tissue-specific DNase I hypersensitive sites. In enhancer trap experiments we identified two cis-acting control elements, both co-localizing with DNase I hypersensitive sites, that stimulated c-myc transcription after transient transfection in Raji or HeLa cells. Both regulatory elements exerted their enhancer activity in either orientation and regardless of their location within the plasmids. Both elements also conferred activation on a heterologous promoter. The association of these enhancers with DNase I hypersensitive sites, indicating their functional activity in vivo, make them potential candidates for the postulated regulatory control element(s) required for c-myc expression in vivo.
Collapse
Affiliation(s)
- J Mautner
- GSF-Institut für Klinische Molekularbiologie und Tumorgenetik, München, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Morrison HL, Soni B, Lenz J. Long terminal repeat enhancer core sequences in proviruses adjacent to c-myc in T-cell lymphomas induced by a murine retrovirus. J Virol 1995; 69:446-55. [PMID: 7983741 PMCID: PMC188593 DOI: 10.1128/jvi.69.1.446-455.1995] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The transcriptional enhancer in the long terminal repeat (LTR) of the T-lymphomagenic retrovirus SL3-3 differs from that of the nonleukemogenic virus Akv at several sites, including a single base pair difference in an element termed the enhancer core. Mutation of this T-A base pair to the C-G C-G sequence found in Akv significantly attenuated the leukemogenicity of SL3-3. Thus, this difference is important for viral leukemogenicity. Since Akv is an endogenous virus, this suggests that the C-G in its core is an adaptation to being minimally pathogenic. Most tumors that occurred in mice inoculated with the mutant virus, called SAA, contained proviruses with reversion or potential suppressor mutations in the enhancer core. We also found that the 72-bp tandem repeats constituting the viral enhancer could vary in number. Most tumors contained mixtures of proviruses with various numbers of 72-bp units, usually between one and four. Variation in repeat number was most likely due to recombination events involving template misalignment during viral replication. Thus, two processes during viral replication, misincorporation and recombination, combined to alter LTR enhancer structure and generate more pathogenic variants from the mutant virus. In SAA-induced tumors, enhancers of proviruses adjacent to c-myc had the largest number of core reversion or suppressor mutations of all of the viral enhancers in those tumors. This observation was consistent with the hypothesis that one function of the LTR enhancers in leukemogenesis is to activate proto-oncogenes such as c-myc.
Collapse
Affiliation(s)
- H L Morrison
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
22
|
Patriotis C, Tsichlis PN. The activated Mlvi-4 locus in Moloney murine leukemia virus-induced rat T-cell lymphomas encodes an env/Mlvi-4 fusion protein. J Virol 1994; 68:7927-32. [PMID: 7966583 PMCID: PMC237255 DOI: 10.1128/jvi.68.12.7927-7932.1994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A genomic DNA probe derived from the region immediately 3' of the clusters of integrated proviruses in the Mlvi-4 locus detects a 5.5-kb mRNA transcript which is specifically expressed in normal rat thymus and spleen. The same probe detects two tumor-specific mRNA transcripts 2.5 and 10 kb long, both of which are expressed only in tumors carrying a provirus in the Mlvi-4 locus. Sequence analysis of two cDNA clones (LE3a and B1.1) of the 2.5-kb tumor-specific mRNA, obtained from two independent tumors (6889 and B1), revealed that they are both derived from hybrid env/Mlvi-4 mRNA transcripts. The splicing of env to Mlvi-4 sequences linked a cryptic splice donor site at nucleotide position 6397 of the viral genome with a splice acceptor site in the region immediately 3' of the integrated provirus. The mRNA that gives rise to cDNA clone B1.1 terminates 1,005 bases 3' of the splice acceptor site without additional splicing. The mRNA that gives rise to cDNA clone LE3a terminates in the same site but undergoes differential splicing of an 81-base-long intron. The resulting mRNAs contain 247-amino-acid (clone B1.1) or 226-amino-acid (clone LE3a) open reading frames sharing 221 N-terminal amino acids, of which 207 are derived from the viral env gene and 14 are derived from Mlvi-4. RNase protection assays using 6889 tumor cell RNA and a probe derived from the cDNA clone LE3a detected both mRNA transcripts. More abundant of the two, however, was the one encoding the putative 247-amino-acid protein. Transient transfections of a construct expressing the RNA transcript defined by clone B1.1 into D17 cells led to the expression of an Env/Mlvi-4 fusion protein with an apparent molecular mass of 33 kDa. Given that cells with provirus insertions in the Mlvi-4 locus are selected and that retroviral env gene products may have profound effects in the biology of hematopoietic cells, we suggest that the detected fusion proteins may contribute to the growth of T-cell lymphomas.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- Cloning, Molecular
- DNA Probes
- Electrophoresis, Polyacrylamide Gel
- Gene Expression
- Gene Products, env/biosynthesis
- Gene Products, env/isolation & purification
- Genes, Viral
- Genes, env
- Lymphoma, T-Cell/virology
- Molecular Sequence Data
- Moloney murine leukemia virus/genetics
- Moloney murine leukemia virus/pathogenicity
- Moloney murine leukemia virus/physiology
- Open Reading Frames
- RNA, Messenger/biosynthesis
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/isolation & purification
- RNA, Viral/metabolism
- Rats
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/isolation & purification
- Transcription, Genetic
- Transfection
- Viral Proteins
- Virus Activation
Collapse
Affiliation(s)
- C Patriotis
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | |
Collapse
|
23
|
Feduchi E, Gallego MI, Lazo PA. The human zinc-finger protein-7 gene is located 90 kb 3' of MYC and is not expressed in Burkitt lymphoma cell lines. Int J Cancer 1994; 58:855-9. [PMID: 7927878 DOI: 10.1002/ijc.2910580618] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The zinc-finger gene-7 (ZNF7) was located 90 kb 3' of MYC on human chromosome 8 band q24 by pulsed-field gel electrophoresis (PFGE). This position lies between the MLV14 and BVR1 loci, 2 variant translocation breakpoints in Burkitt lymphomas. The structure of the ZNF7 gene was not altered by translocations in Burkitt-lymphoma cell lines as shown by its germline-restriction map configuration. The chromosomal region surrounding the ZNF7 gene was extensively methylated. The ZNF7 gene was not expressed in 19 BL cell lines. Expression was detected only in the BL41 and BL47 cell lines and in the SW756 cervical-carcinoma cell line. The RNA in each was of a different size. We postulate that the lack of ZNF7 expression in Burkitt lymphomas might contribute to the tumor phenotype.
Collapse
Affiliation(s)
- E Feduchi
- Unidad de Genética Molecular (C.S.I.C.), Centro Nacional de Biología Celular y Retrovirus, Instituto de Salud Carlos III, Majadahonda (Madrid), Spain
| | | | | |
Collapse
|
24
|
Jiang X, Villeneuve L, Turmel C, Kozak CA, Jolicoeur P. The Myb and Ahi-1 genes are physically very closely linked on mouse chromosome 10. Mamm Genome 1994; 5:142-8. [PMID: 7911043 DOI: 10.1007/bf00352344] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ahi-1 has previously been identified as a common helper provirus integration site on mouse Chromosome (Chr) 10 in 16% of Abelson pre-B-cell lymphomas and shown to be closely linked to the Myb protooncogene. By using long-range restriction mapping, we have mapped the Myb and Ahi-1 regions within a 120-kbp DNA fragment. The Ahi-1 region is located approximately 35 kbp downstream of the Myb gene. A further confirmation of this finding was obtained by screening a mouse YAC library. The three positive clones obtained contained both the Myb and Ahi-1 gene sequences. To test whether provirus integration in the Ahi-1 region enhances the expression of Myb by a cis-acting mechanism, we have also examined Myb gene expression in A-MuLV-induced pre-B-lymphomas. Our data have revealed that there is no clear evidence for such activation in the tumors we have tested, indicating that provirus insertion in the Ahi-1 region is activating a novel gene, apparently involved in tumor formation.
Collapse
Affiliation(s)
- X Jiang
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
25
|
Yamada J, Kuramoto T, Serikawa T. A rat genetic linkage map and comparative maps for mouse or human homologous rat genes. Mamm Genome 1994; 5:63-83. [PMID: 8180477 PMCID: PMC7087631 DOI: 10.1007/bf00292332] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/1993] [Accepted: 10/13/1993] [Indexed: 01/29/2023]
Affiliation(s)
- J Yamada
- Institute of Laboratory Animals, Faculty of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
26
|
Lazo PA. Leukaemogenesis and Lymphomagenesis by Nontransforming Murine Retroviruses. Rev Med Virol 1993. [DOI: 10.1002/rmv.1980030105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Mueller RE, Baggio L, Kozak CA, Ball JK. A common integration locus in type B retrovirus-induced thymic lymphomas. Virology 1992; 191:628-37. [PMID: 1333116 DOI: 10.1016/0042-6822(92)90238-k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type-B leukemogenic retrovirus (TBLV) is a replication-competent type-B thymotropic retrovirus which lacks a transforming gene and whose genome is > 98% homologous to that of type-B mouse mammary tumor virus (MMTV). In contrast to MMTV, which induces mammary adenocarcinomas, TBLV induces a high incidence of T-cell thymic lymphomas in mice after a very short latent period. To investigate the molecular mechanisms by which TBLV induces T-cell lymphomas, we screened TBLV-induced tumor DNA for the frequent disruption of a particular cellular locus by TBLV proviral copies. In approximately 20% of the 55 primary tumors screened, the presence of proviruses in a common integration site was detected. This locus spans at least 53 kb of genomic DNA and maps to the mouse X chromosome. The presence of a functional gene at this locus is suggested by the conservation of nucleotide sequences from this locus among diverse animal species and by the expression of these sequences as mRNA in normal mouse tissues and tumors. The majority (17/18) of TBLV-induced primary tumors examined have elevated levels of this expressed mRNA.
Collapse
Affiliation(s)
- R E Mueller
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|
28
|
Abstract
The retroposon sequences, their mechanisms of transposition and the occurrence of insertional mutation in the mammalian genome are reviewed. Insertional mutations fall into two broad categories: those due to the disruption of a gene following the physical integration of a foreign DNA sequence result in loss of gene product and would be expected to be associated with a recessive mutation. A second class of insertional mutation is well documented in which upon integration the promoter/enhancer activities inherent in the retroposon genome exert their influence on neighboring genes. This promoter/enhancer activity of integrated retroposons may have effects over relatively long distances and thus limit the possibilities of establishing an association between retroposon integration and mutation. It is emphasized that a systematic search for insertional mutations in the mammalian genome involves an extensive two-dimensional array of possible retroposon sequences and mutant alleles. Present results represent only a small portion of the total array. Future studies promise to be fruitful in efforts to isolate genes through insertional tagging, to characterize the mechanisms of retroposon transposition, as well as to study the stability of the mammalian genome.
Collapse
Affiliation(s)
- J Favor
- GSF-Institut für Säugetiergenetik, Neuherberg, Germany
| | | |
Collapse
|
29
|
Gallego MI, Lazo PA. Variant translocations in two Burkitt's lymphoma cell lines are located in the MLV14 locus. Genes Chromosomes Cancer 1992; 5:267-9. [PMID: 1384683 DOI: 10.1002/gcc.2870050317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The human MLV14 locus, located 20 kilobases 3' of MYC, is rearranged in two Burkitt's lymphoma cell lines with either a t(2;8)(p12;q24) or t(8;22)(q24;q11). Alterations of MLV14 may have prognostic significance in some types of B-cell malignancies.
Collapse
MESH Headings
- Blotting, Southern
- Burkitt Lymphoma/genetics
- Chromosomes, Human, Pair 2
- Chromosomes, Human, Pair 22
- Chromosomes, Human, Pair 8
- Genes, myc/genetics
- Genetic Markers/genetics
- Humans
- Prognosis
- Translocation, Genetic/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M I Gallego
- Unidad de Genética Molecular, Instituto de Salud Carlos III, Majadahonda, Spain
| | | |
Collapse
|
30
|
Nadeau JH, Davisson MT, Doolittle DP, Grant P, Hillyard AL, Kosowsky MR, Roderick TH. Comparative map for mice and humans. Mamm Genome 1992; 3:480-536. [PMID: 1392257 DOI: 10.1007/bf00778825] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J H Nadeau
- Jackson Laboratory, Bar Harbor, Maine 04609
| | | | | | | | | | | | | |
Collapse
|
31
|
Kubota K, Imreh S, Katoh H, Babonits M, Wiener F. Correlation of myc expression with the growth-arrested and transformed phenotypes in hybrids between a T lymphoma and an antigen-responsive T-cell line. Int J Cancer 1992; 51:927-34. [PMID: 1639541 DOI: 10.1002/ijc.2910510616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fusion of the YACUT lymphoma cell line with the Mls-1a-antigen-specific non-tumorigenic T-cell line G4 produced growth-arrested hybrids that could be induced to proliferate in the presence of Mls-1a antigen. Prolonged growth of such hybrids by repeated antigenic stimulation resulted in the appearance of autonomously growing hybrid lines. Of the 4 antigen-independent hybrid clones, I was weakly tumorigenic (25% incidence) while the other 3 were highly tumorigenic (100% incidence). In the growth-arrested hybrids the de-regulated c-myc expression characteristic of the YACUT cells was suppressed. In the autonomously growing clones, however, c-myc expression had reverted to the levels of the lymphoma parent and 1 to 2 extra copies of chromosome 15 were consistently present. These results indicate that repeated antigenic stimulation somehow abrogated the down-regulation of c-myc in the growth-arrested hybrid lines. The increase in the number of copies of chromosome 15, however, suggests that genes located on this chromosome may abolish the effect of the negative regulatory functions of the non-malignant parent in a gene-dosage-dependent manner.
Collapse
Affiliation(s)
- K Kubota
- Department of Microbiology, Kitasato University School of Medicine, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
32
|
Lazo PA, Gallego MI, Ballester S, Feduchi E. Genetic alterations by human papillomaviruses in oncogenesis. FEBS Lett 1992; 300:109-13. [PMID: 1314194 DOI: 10.1016/0014-5793(92)80175-g] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The integration sites in the cellular genome of human papillomavirus are located in chromosomal regions always associated with oncogenes or other known tumor phenotypes. Two regions, 8q24 and 12q13, are common to several cases of cervical carcinoma and can have integrated more than one type of papillomavirus DNA. These two chromosomal regions contain several genes implicated in oncogenesis. These observations strongly imply that viral integration sites of DNA tumor viruses can be used as the access point to chromosomal regions where genes implicated in the tumor phenotype are located, a situation similar to that of non-transforming retroviruses.
Collapse
Affiliation(s)
- P A Lazo
- Unidad de Genética Molecular, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | |
Collapse
|
33
|
Affiliation(s)
- B A Mock
- Laboratory of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
34
|
Abstract
One objective of this review is to sort through and collate the recent data that suggest that human cellular oncogenes, which have been implicated as the etiologic agents in both animal and human malignancies, have also the potential to be employed as clinical tools in the struggle against cancer. For nearly 10 years, reports have been suggesting that advantage can be taken of cellular oncogenes as to their use as diagnostic and prognostic indicators of cancer and eventually as therapeutic cancer agents. It is also the purpose of this review to give an objective evaluation of these predictions. Moreover, this review will try to highlight some of the significant advances in this most rapidly evolving field of biology. Although the enormity of what has been learned about cellular oncogenes is nothing less than impressive, it is the view here that the routine implementation of oncogenes into the clinical setting will not become evident as early as the many predictions had purported.
Collapse
Affiliation(s)
- S Demczuk
- Karolinska Institute, NOVUM, Huddinge, Sweden
| |
Collapse
|
35
|
Levan G, Szpirer J, Szpirer C, Klinga K, Hanson C, Islam MQ. The gene map of the Norway rat (Rattus norvegicus) and comparative mapping with mouse and man. Genomics 1991; 10:699-718. [PMID: 1889815 DOI: 10.1016/0888-7543(91)90455-n] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The current status of the rat gene map is presented. Mapping information is now available for a total of 214 loci and the number of mapped genes is increasing steadily. The corresponding number of loci quoted at HGM10 was 128. Genes have been assigned to 20 of the 22 chromosomes in the rat. Some aspects of comparative mapping with mouse and man are also discussed. It was found that there is a good correlation between the morphological homologies detectable in rat and mouse chromosomes, on the one hand, and homology at the gene level on the other. For 10 rat synteny groups all the genes so far mapped are syntenic also in the mouse. For the remaining rat synteny groups it appears that the majority of the genes will be syntenic on specific (homologous) mouse chromosomes, with only a few genes dispersed to other members of the mouse karyotype. Furthermore, the data indicate that mouse chromosome 1 genetically corresponds to two rat chromosomes, viz., 9 and 13, equalizing the difference in chromosome number between the two species. Further mappings will show whether the genetic homology will prove to be as extensive as these preliminary results indicate. As might be expected from evolutionary considerations, rat synteny groups are much more dispersed in the human genome. It is clear, however, that many groups of genes have remained syntenic during the period since man and rat shared a common ancestor. One further point was noted. In two cases groups of genes were syntenic in the mouse but dispersed to two chromosomes in rat and man, whereas in a third case a group of genes was syntenic in the rat but dispersed to two chromosomes in mouse and man. This finding argues in favor of the notion that the original gene groups were on separate ancestral chromosomes, which have fused in one rodent species but remained separate in the other and in man.
Collapse
Affiliation(s)
- G Levan
- Department of Genetics, University of Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Huebner K, Druck T, Croce CM, Thiesen HJ. Twenty-seven nonoverlapping zinc finger cDNAs from human T cells map to nine different chromosomes with apparent clustering. Am J Hum Genet 1991; 48:726-40. [PMID: 2014798 PMCID: PMC1682948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
cDNA clones encoding zinc finger structures were isolated by screening Molt4 and Jurkat cDNA libraries with zinc finger consensus sequences. Candidate clones were partially sequenced to verify the presence of zinc finger-encoding regions; nonoverlapping cDNA clones were chosen on the basis of sequences and genomic hybridization pattern. Zinc finger structure-encoding clones, which were designated by the term "Kox" and a number from 1 to 32 and which were apparently unique (i.e., distinct from each other and distinct from those isolated by other laboratories), were chosen for mapping in the human genome. DNAs from rodent-human somatic cell hybrids retaining defined complements of human chromosomes were analyzed for the presence of each of the Kox genes. Correlation between the presence of specific human chromosome regions and specific Kox genes established the chromosomal locations. Multiple Kox loci were mapped to 7q (Kox 18 and 25 and a locus detected by both Kox 8 cDNA and Kox 27 cDNA), 8q24 5' to the myc locus (Kox 9 and 32), 10cen----q24 (Kox 2, 15, 19, 21, 30, and 31), 12q13-qter (Kox 1 and 20), 17p13 (Kox 11 and 26), and 19q (Kox 5, 6, 10, 22, 24, and 28). Single Kox loci were mapped to 7p22 (Kox 3), 18q12 (Kox 17), 19p (Kox 13), 22q11 between IG lambda and BCR-1 (locus detected by both Kox 8 cDNA and Kox 27 cDNA), and Xp (Kox 14). Several of the Kox loci map to regions in which other zinc finger structure-encoding loci have already been localized, indicating possible zinc finger gene clusters. In addition, Kox genes at 8q24, 17p13, and 22q11--and perhaps other Kox genes--are located near recurrent chromosomal translocation breakpoints. Others, such as those on 7p and 7q, may be near regions specifically active in T cells.
Collapse
Affiliation(s)
- K Huebner
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140
| | | | | | | |
Collapse
|
37
|
Nadeau JH, Davisson MT, Doolittle DP, Grant P, Hillyard AL, Kosowsky M, Roderick TH. Comparative map for mice and humans. Mamm Genome 1991; 1 Spec No:S461-515. [PMID: 1799811 DOI: 10.1007/bf00656504] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J H Nadeau
- Jackson Laboratory, Bar Harbor, ME 04609
| | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- B Mock
- Laboratory of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
39
|
Tsichlis PN, Lazo PA. Virus-host interactions and the pathogenesis of murine and human oncogenic retroviruses. Curr Top Microbiol Immunol 1991; 171:95-171. [PMID: 1667631 DOI: 10.1007/978-3-642-76524-7_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
MESH Headings
- Animals
- Base Sequence
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Genes, Viral
- Genetic Markers
- Genetic Predisposition to Disease
- Growth Substances/genetics
- Growth Substances/physiology
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia Virus, Murine/physiology
- Mice/genetics
- Mice/microbiology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Neoplasms/genetics
- Neoplasms/microbiology
- Neoplasms/veterinary
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/microbiology
- Oncogenes
- Proto-Oncogenes
- Proviruses/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Repetitive Sequences, Nucleic Acid
- Retroviridae/genetics
- Retroviridae/pathogenicity
- Retroviridae/physiology
- Rodent Diseases/genetics
- Rodent Diseases/microbiology
- Signal Transduction
- Virus Integration
- Virus Replication
Collapse
Affiliation(s)
- P N Tsichlis
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
40
|
Affiliation(s)
- J H Nadeau
- Jackson Laboratory, Bar Harbor, ME 04609
| | | |
Collapse
|
41
|
Kung HJ, Boerkoel C, Carter TH. Retroviral mutagenesis of cellular oncogenes: a review with insights into the mechanisms of insertional activation. Curr Top Microbiol Immunol 1991; 171:1-25. [PMID: 1814689 DOI: 10.1007/978-3-642-76524-7_1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H J Kung
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | | | | |
Collapse
|