1
|
Yan S, Wu G. Potential 3-chymotrypsin-like cysteine protease cleavage sites in the coronavirus polyproteins pp1a and pp1ab and their possible relevance to COVID-19 vaccine and drug development. FASEB J 2021; 35:e21573. [PMID: 33913206 PMCID: PMC8206714 DOI: 10.1096/fj.202100280rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus (CoV) 3-chymotrypsin (C)-like cysteine protease (3CLpro ) is a target for anti-CoV drug development and drug repurposing because along with papain-like protease, it cleaves CoV-encoded polyproteins (pp1a and pp1ab) into nonstructural proteins (nsps) for viral replication. However, the cleavage sites of 3CLpro and their relevant nsps remain unclear, which is the subject of this perspective. Here, we address the subject from three standpoints. First, we explore the inconsistency in the cleavage sites and relevant nsps across CoVs, and investigate the function of nsp11. Second, we consider the nsp16 mRNA overlapping of the spike protein mRNA, and analyze the effect of this overlapping on mRNA vaccines. Finally, we study nsp12, whose existence depends on ribosomal frameshifting, and investigate whether 3CLpro requires a large number of inhibitors to achieve full inhibition. This perspective helps us to clarify viral replication and is useful for developing anti-CoV drugs with 3CLpro as a target in the current coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Shaomin Yan
- National Engineering Research Center for Non‐Food Biorefinery, State Key Laboratory of Non‐Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of BiorefineryGuangxi Academy of SciencesNanningChina
| | - Guang Wu
- National Engineering Research Center for Non‐Food Biorefinery, State Key Laboratory of Non‐Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of BiorefineryGuangxi Academy of SciencesNanningChina
| |
Collapse
|
2
|
Brown CG, Nixon KS, Senanayake SD, Brian DA. An RNA stem-loop within the bovine coronavirus nsp1 coding region is a cis-acting element in defective interfering RNA replication. J Virol 2007; 81:7716-24. [PMID: 17475638 PMCID: PMC1933353 DOI: 10.1128/jvi.00549-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 04/26/2007] [Indexed: 01/12/2023] Open
Abstract
Higher-order cis-acting RNA replication structures have been identified in the 3'- and 5'-terminal untranslated regions (UTRs) of a bovine coronavirus (BCoV) defective interfering (DI) RNA. The UTRs are identical to those in the viral genome, since the 2.2-kb DI RNA is composed of only the two ends of the genome fused between an internal site within the 738-nucleotide (nt) 5'-most coding region (the nsp1, or p28, coding region) and a site just 4 nt upstream of the 3'-most open reading frame (ORF) (the N gene). The joined ends of the viral genome in the DI RNA create a single continuous 1,635-nt ORF, 288 nt of which come from the 738-nt nsp1 coding region. Here, we have analyzed features of the 5'-terminal 288-nt portion of the nsp1 coding region within the continuous ORF that are required for DI RNA replication. We observed that (i) the 5'-terminal 186 nt of the nsp1 coding region are necessary and sufficient for DI RNA replication, (ii) two Mfold-predicted stem-loops within the 186-nt sequence, named SLV (nt 239 to 310) and SLVI (nt 311 to 340), are supported by RNase structure probing and by nucleotide covariation among closely related group 2 coronaviruses, and (iii) SLVI is a required higher-order structure for DI RNA replication based on mutation analyses. The function of SLV has not been evaluated. We conclude that SLVI within the BCoV nsp1 coding region is a higher-order cis-replication element for DI RNA and postulate that it functions similarly in the viral genome.
Collapse
Affiliation(s)
- Cary G Brown
- Department of Microbiology, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-0845, USA
| | | | | | | |
Collapse
|
3
|
Yin J, Niu C, Cherney MM, Zhang J, Huitema C, Eltis LD, Vederas JC, James MN. A mechanistic view of enzyme inhibition and peptide hydrolysis in the active site of the SARS-CoV 3C-like peptidase. J Mol Biol 2007; 371:1060-74. [PMID: 17599357 PMCID: PMC7094781 DOI: 10.1016/j.jmb.2007.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 05/30/2007] [Indexed: 11/22/2022]
Abstract
The 3C-like main peptidase 3CLpro is a viral polyprotein processing enzyme essential for the viability of the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV). While it is generalized that 3CLpro and the structurally related 3Cpro viral peptidases cleave their substrates via a mechanism similar to that underlying the peptide hydrolysis by chymotrypsin-like serine proteinases (CLSPs), some of the hypothesized key intermediates have not been structurally characterized. Here, we present three crystal structures of SARS 3CLpro in complex with each of two members of a new class of peptide-based phthalhydrazide inhibitors. Both inhibitors form an unusual thiiranium ring with the nucleophilic sulfur atom of Cys145, trapping the enzyme's catalytic residues in configurations similar to the intermediate states proposed to exist during the hydrolysis of native substrates. Most significantly, our crystallographic data are consistent with a scenario in which a water molecule, possibly via indirect coordination from the carbonyl oxygen of Thr26, has initiated nucleophilic attack on the enzyme-bound inhibitor. Our data suggest that this structure resembles that of the proposed tetrahedral intermediate during the deacylation step of normal peptidyl cleavage.
Collapse
Affiliation(s)
- Jiang Yin
- Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Chunying Niu
- Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Maia M. Cherney
- Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Jianmin Zhang
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Carly Huitema
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Michael N.G. James
- Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
- Alberta Synchrotron Institute, University of Alberta, Edmonton, AB, Canada T6G 2E1
- Corresponding author. Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, AB, Canada T6G 2H7.
| |
Collapse
|
4
|
Graham RL, Sparks JS, Eckerle LD, Sims AC, Denison MR. SARS coronavirus replicase proteins in pathogenesis. Virus Res 2007; 133:88-100. [PMID: 17397959 PMCID: PMC2637536 DOI: 10.1016/j.virusres.2007.02.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 02/18/2007] [Accepted: 02/20/2007] [Indexed: 11/02/2022]
Abstract
Much progress has been made in understanding the role of structural and accessory proteins in the pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) infections. The SARS epidemic also brought new attention to the proteins translated from ORF1a and ORF1b of the input genome RNA, also known as the replicase/transcriptase gene. Evidence for change within the ORF1ab coding sequence during the SARS epidemic, as well as evidence from studies with other coronaviruses, indicates that it is likely that the ORF1ab proteins play roles in virus pathogenesis distinct from or in addition to functions directly involved in viral replication. Recent reverse genetic studies have confirmed that proteins of ORF1ab may be involved in cellular signaling and modification of cellular gene expression, as well as virulence by mechanisms yet to be determined. Thus, the evolution of the ORF1ab proteins may be determined as much by issues of host range and virulence as they are by specific requirements for intracellular replication.
Collapse
Affiliation(s)
- Rachel L. Graham
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
- The Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer S. Sparks
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- The Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lance D. Eckerle
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- The Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Amy C. Sims
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, United States
| | - Mark R. Denison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- The Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, United States
- Corresponding author at: 1161 21st Ave S, D6217 MCN, Nashville, TN 37232, United States. Tel.: +1 615 343 9881; fax: +1 615 343 9723.
| |
Collapse
|
5
|
Kiemer L, Lund O, Brunak S, Blom N. Coronavirus 3CLpro proteinase cleavage sites: possible relevance to SARS virus pathology. BMC Bioinformatics 2004; 5:72. [PMID: 15180906 PMCID: PMC442122 DOI: 10.1186/1471-2105-5-72] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 06/06/2004] [Indexed: 11/30/2022] Open
Abstract
Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS), efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR), transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: .
Collapse
Affiliation(s)
- Lars Kiemer
- Center for Biological Sequence Analysis BioCentrum-DTU, Building 208 Technical University of Denmark DK-2800 Lyngby, Denmark
| | - Ole Lund
- Center for Biological Sequence Analysis BioCentrum-DTU, Building 208 Technical University of Denmark DK-2800 Lyngby, Denmark
| | - Søren Brunak
- Center for Biological Sequence Analysis BioCentrum-DTU, Building 208 Technical University of Denmark DK-2800 Lyngby, Denmark
| | - Nikolaj Blom
- Center for Biological Sequence Analysis BioCentrum-DTU, Building 208 Technical University of Denmark DK-2800 Lyngby, Denmark
| |
Collapse
|
6
|
Brockway SM, Clay CT, Lu XT, Denison MR. Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase. J Virol 2003; 77:10515-27. [PMID: 12970436 PMCID: PMC228489 DOI: 10.1128/jvi.77.19.10515-10527.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse hepatitis virus (MHV) RNA synthesis is mediated by a viral RNA-dependent RNA polymerase (RdRp) on membrane-bound replication complexes in the host cell cytoplasm. However, it is not known how the putative MHV RdRp (Pol) is targeted to and retained on cellular membranes. In this report, we show that a 100-kDa protein was stably detected by an anti-Pol antiserum as a mature product throughout the virus life cycle. Gradient fractionation and biochemical extraction experiments demonstrated that Pol was not an integral membrane protein but was tightly associated with membranes and coimmunoprecipitated with the replicase proteins 3CLpro, p22, and p12. By immunofluorescence confocal microscopy, Pol colocalized with viral proteins at replication complexes, distinct from sites of virion assembly, over the entire course of infection. To determine if Pol associated with cellular membranes in the absence of other viral factors, the pol domain of gene 1 was cloned and expressed in cells as a fusion with green fluorescent protein, termed Gpol. In Gpol-expressing cells that were infected with MHV, but not in mock-infected cells, Gpol relocalized from a diffuse distribution in the cytoplasm to punctate foci that colocalized with markers for replication complexes. Expression of Gpol deletion mutants established that the conserved enzymatic domains of Pol were dispensable for replication complex association, but a 38-amino-acid domain in the RdRp unique region of Pol was required. This study demonstrates that viral or virus-induced factors are necessary for Pol to associate with membranes of replication complexes, and it identifies a defined region of Pol that may mediate its interactions with those factors.
Collapse
Affiliation(s)
- Sarah M Brockway
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
7
|
Zeng FY, Chan CWM, Chan MN, Chen JD, Chow KYC, Hon CC, Hui KH, Li J, Li VYY, Wang CY, Wang PY, Guan Y, Zheng B, Poon LLM, Chan KH, Yuen KY, Peiris JSM, Leung FC. The complete genome sequence of severe acute respiratory syndrome coronavirus strain HKU-39849 (HK-39). Exp Biol Med (Maywood) 2003; 228:866-73. [PMID: 12876307 DOI: 10.1177/15353702-0322807-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The complete genomic nucleotide sequence (29.7kb) of a Hong Kong severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) strain HK-39 is determined. Phylogenetic analysis of the genomic sequence reveals it to be a distinct member of the Coronaviridae family. 5' RACE assay confirms the presence of at least six subgenomic transcripts all containing the predicted intergenic sequences. Five open reading frames (ORFs), namely ORF1a, 1b, S, M, and N, are found to be homologues to other CoV members, and three more unknown ORFs (X1, X2, and X3) are unparalleled in all other known CoV species. Optimal alignment and computer analysis of the homologous ORFs has predicted the characteristic structural and functional domains on the putative genes. The overall nucleotides conservation of the homologous ORFs is low (<5%) compared with other known CoVs, implying that HK-39 is a newly emergent SARS-CoV phylogenetically distant from other known members. SimPlot analysis supports this finding, and also suggests that this novel virus is not a product of a recent recombinant from any of the known characterized CoVs. Together, these results confirm that HK-39 is a novel and distinct member of the Coronaviridae family, with unknown origin. The completion of the genomic sequence of the virus will assist in tracing its origin.
Collapse
Affiliation(s)
- F Y Zeng
- Department of Zoology, University of Hong Kong, Hong Kong, SAR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Choi J, Xu Z, Ou JH. Triple decoding of hepatitis C virus RNA by programmed translational frameshifting. Mol Cell Biol 2003; 23:1489-97. [PMID: 12588970 PMCID: PMC151691 DOI: 10.1128/mcb.23.5.1489-1497.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2002] [Revised: 08/21/2002] [Accepted: 11/27/2002] [Indexed: 11/20/2022] Open
Abstract
Ribosomes can be programmed to shift from one reading frame to another during translation. Hepatitis C virus (HCV) uses such a mechanism to produce F protein from the -2/+1 reading frame. We now report that the HCV frameshift signal can mediate the synthesis of the core protein of the zero frame, the F protein of the -2/+1 frame, and a 1.5-kDa protein of the -1/+2 frame. This triple decoding function does not require sequences flanking the frameshift signal and is apparently independent of membranes and the synthesis of the HCV polyprotein. Two consensus -1 frameshift sequences in the HCV type 1 frameshift signal facilitate ribosomal frameshifts into both overlapping reading frames. A sequence which is located immediately downstream of the frameshift signal and has the potential to form a double stem-loop structure can significantly enhance translational frameshifting in the presence of the peptidyl-transferase inhibitor puromycin. Based on these results, a model is proposed to explain the triple decoding activities of the HCV ribosomal frameshift signal.
Collapse
Affiliation(s)
- Jinah Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
9
|
Piñón JD, Teng H, Weiss SR. Further requirements for cleavage by the murine coronavirus 3C-like proteinase: identification of a cleavage site within ORF1b. Virology 1999; 263:471-84. [PMID: 10544119 PMCID: PMC7131300 DOI: 10.1006/viro.1999.9954] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The coronavirus mouse hepatitis virus strain A59 (MHV-A59) encodes a 3C-like proteinase (3CLpro) that is proposed to be responsible for the majority of the processing events that take place within the replicase polyproteins pp1a and pp1ab. In this study we demonstrate that the Q939/S940 peptide bond, located between the polymerase and Zn-finger regions of pp1ab (the POL/Zn site), is processed by the 3CLpro, albeit inefficiently. Mutagenesis of the POL/Zn site, as well as the previously identified HD1/3C site in the 1a region of pp1a and pp1ab, demonstrated that the amino acid residues at the P2 and P1 positions of the cleavage site, occupied by L and Q, respectively, were important determinants of 3CLpro substrate specificity. Finally, a direct comparison of the 3CLpro-mediated cleavages at the HD1/3C and POL/Zn sites was made by determining the rate constants using synthetic peptides. The results show that while a larger polypeptide substrate carrying the HD1/3C site was processed more efficiently than a polypeptide substrate carrying the POL/Zn site, cleavage of the synthetic peptide substrates containing these two cleavage sites occurred at similar efficiencies. This indicates that the overall conformation of a large polyprotein substrate is important in the accessibility of the cleavage site to the proteinase.
Collapse
Affiliation(s)
- J D Piñón
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | | | |
Collapse
|
10
|
Shi ST, Schiller JJ, Kanjanahaluethai A, Baker SC, Oh JW, Lai MM. Colocalization and membrane association of murine hepatitis virus gene 1 products and De novo-synthesized viral RNA in infected cells. J Virol 1999; 73:5957-69. [PMID: 10364348 PMCID: PMC112657 DOI: 10.1128/jvi.73.7.5957-5969.1999] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1998] [Accepted: 03/29/1999] [Indexed: 11/20/2022] Open
Abstract
Murine hepatitis virus (MHV) gene 1, the 22-kb polymerase (pol) gene, is first translated into a polyprotein and subsequently processed into multiple proteins by viral autoproteases. Genetic complementation analyses suggest that the majority of the gene 1 products are required for viral RNA synthesis. However, there is no physical evidence supporting the association of any of these products with viral RNA synthesis. We have now performed immunofluorescent-staining studies with four polyclonal antisera to localize various MHV-A59 gene 1 products in virus-infected cells. Immunoprecipitation experiments showed that these antisera detected proteins representing the two papain-like proteases and the 3C-like protease encoded by open reading frame (ORF) 1a, the putative polymerase (p100) and a p35 encoded by ORF 1b, and their precursors. De novo-synthesized viral RNA was labeled with bromouridine triphosphate in lysolecithin-permeabilized MHV-infected cells. Confocal microscopy revealed that all of the viral proteins detected by these antisera colocalized with newly synthesized viral RNA in the cytoplasm, particularly in the perinuclear region of infected cells. Several cysteine and serine protease inhibitors, i.e., E64d, leupeptin, and zinc chloride, inhibited viral RNA synthesis without affecting the localization of viral proteins, suggesting that the processing of the MHV gene 1 polyprotein is tightly associated with viral RNA synthesis. Dual labeling with antibodies specific for cytoplasmic membrane structures showed that MHV gene 1 products and RNA colocalized with the Golgi apparatus in HeLa cells. However, in murine 17CL-1 cells, the viral proteins and viral RNA did not colocalize with the Golgi apparatus but, instead, partially colocalized with the endoplasmic reticulum. Our results provide clear physical evidence that several MHV gene 1 products, including the proteases and the polymerase, are associated with the viral RNA replication-transcription machinery, which may localize to different membrane structures in different cell lines.
Collapse
Affiliation(s)
- S T Shi
- Howard Hughes Medical Institute and Department of Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, California 90033-1054, USA
| | | | | | | | | | | |
Collapse
|
11
|
Piñón JD, Mayreddy RR, Turner JD, Khan FS, Bonilla PJ, Weiss SR. Efficient autoproteolytic processing of the MHV-A59 3C-like proteinase from the flanking hydrophobic domains requires membranes. Virology 1997; 230:309-22. [PMID: 9143287 PMCID: PMC7130731 DOI: 10.1006/viro.1997.8503] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1996] [Revised: 12/10/1996] [Accepted: 02/17/1997] [Indexed: 02/04/2023]
Abstract
The replicase gene of the coronavirus MHV-A59 encodes a serine-like proteinase similar to the 3C proteinases of picornaviruses. This proteinase domain is flanked on both sides by hydrophobic, potentially membrane-spanning, regions. Cell-free expression of a plasmid encoding only the 3C-like proteinase (3CLpro) resulted in the synthesis of a 29-kDa protein that was specifically recognized by an antibody directed against the carboxy-terminal region of the proteinase. A protein of identical mobility was detected in MHV-A59-infected cell lysates. In vitro expression of a plasmid encoding the 3CLpro and portions of the two flanking hydrophobic regions resulted in inefficient processing of the 29-kDa protein. However, the efficiency of this processing event was enhanced by the addition of canine pancreatic microsomes to the translation reaction, or removal of one of the flanking hydrophobic domains. Proteolysis was inhibited in the presence of N-ethylmaleimide (NEM) or by mutagenesis of the catalytic cysteine residue of the proteinase, indicating that the 3CLpro is responsible for its autoproteolytic cleavage from the flanking domains. Microsomal membranes were unable to enhance the trans processing of a precursor containing the inactive proteinase domain and both hydrophobic regions by a recombinant 3CLpro expressed from Escherichia coli. Membrane association assays demonstrated that the 29-kDa 3CLpro was present in the soluble fraction of the reticulocyte lysates, while polypeptides containing the hydrophobic domains associated with the membrane pelletes. With the help of a viral epitope tag, we identified a 22-kDa membrane-associated polypeptide as the proteolytic product containing the amino-terminal hydrophobic domain.
Collapse
Affiliation(s)
- J D Piñón
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6076, USA
| | | | | | | | | | | |
Collapse
|
12
|
Bonilla PJ, Hughes SA, Weiss SR. Characterization of a second cleavage site and demonstration of activity in trans by the papain-like proteinase of the murine coronavirus mouse hepatitis virus strain A59. J Virol 1997; 71:900-9. [PMID: 8995606 PMCID: PMC191137 DOI: 10.1128/jvi.71.2.900-909.1997] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The 21.7-kb replicase locus of mouse hepatitis virus strain A59 (MHV-A59) encodes several putative functional domains, including three proteinase domains. Encoded closest to the 5' terminus of this locus is the first papain-like proteinase (PLP-1) (S. C. Baker et al., J. Virol. 67:6056-6063, 1993; H.-J. Lee et al., Virology 180:567-582, 1991). This cysteine proteinase is responsible for the in vitro cleavage of p28, a polypeptide that is also present in MHV-A59-infected cells. Cleavage at a second site was recently reported for this proteinase (P. J. Bonilla et al., Virology 209:489-497, 1995). This new cleavage site maps to the same region as the predicted site of the C terminus of p65, a viral polypeptide detected in infected cells. In this study, microsequencing analysis of the radiolabeled downstream cleavage product and deletion mutagenesis analysis were used to identify the scissile bond of the second cleavage site to between Ala832 and Gly833. The effects of mutations between the P5 and P2' positions on the processing at the second cleavage site were analyzed. Most substitutions at the P4, P3, P2, and P2' positions were permissive for cleavage. With the exceptions of a conservative P1 mutation, Ala832Gly, and a conservative P5 mutation, Arg828Lys, substitutions at the P5, P1, and P1' positions severely diminished second-site proteolysis. Mutants in which the p28 cleavage site (Gly247 / Val248) was replaced by the Ala832 / Gly833 cleavage site and vice versa were found to retain processing activity. Contrary to previous reports, we determined that the PLP-1 has the ability to process in trans at either the p28 site or both cleavage sites, depending on the choice of substrate. The results from this study suggest a greater role by the PLP-1 in the processing of the replicase locus in vivo.
Collapse
Affiliation(s)
- P J Bonilla
- Department of Microbiology, University of Pennsylvania, Philadelphia 19104-6076, USA
| | | | | |
Collapse
|
13
|
Abstract
Errors that alter the reading frame occur extremely rarely during translation, yet some genes have evolved sequences that efficiently induce frameshifting. These sequences, termed programmed frameshift sites, manipulate the translational apparatus to promote non-canonical decoding. Frameshifts are mechanistically diverse. Most cause a -1 shift of frames; the first such site was discovered in a metazoan retrovirus, but they are now known to be dispersed quite widely among evolutionarily diverse species. +1 frameshift sites are much less common, but again dispersed widely. The rarest form are the translational hop sites which program the ribosome to bypass a region of several dozen nucleotides. Each of these types of events are stimulated by distinct mechanisms. All of the events share a common phenomenology in which the programmed frameshift site causes the ribosome to pause during elongation so that the kinetically unfavorable alternative decoding event can occur. During this pause most frameshifts occur because one or more ribosome-bound tRNAs slip between cognate or near-cognate codons. However, even this generalization is not entirely consistent, since some frameshifts occur without slippage. Because of their similarity to rarer translational errors, programmed frameshift sites provide a tool with which to probe the mechanism of frame maintenance.
Collapse
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland, Baltimore 21228, USA
| |
Collapse
|
14
|
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland, Baltimore 21228, USA.
| |
Collapse
|
15
|
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland, Baltimore 21228, USA.
| |
Collapse
|
16
|
Even C, Plagemann PG. Pseudotype virions formed between mouse hepatitis virus and lactate dehydrogenase-elevating virus (LDV) mediate LDV replication in cells resistant to infection by LDV virions. J Virol 1995; 69:4237-44. [PMID: 7769683 PMCID: PMC189161 DOI: 10.1128/jvi.69.7.4237-4244.1995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Infection of cultures of peritoneal macrophages with both lactate dehydrogenase-elevating virus (LDV) and mouse hepatitis virus (MHV) resulted in the formation of pseudotype virions containing LDV RNA which productively infected cells that are resistant to infection by intact LDV virions but not to infection by MHV. These cells were mouse L-2 and 3T3-17Cl-1 cells as well as residual peritoneal macrophages from persistently LDV-infected mice. Productive LDV infection of these cells via pseudotype virions was inhibited by antibodies to the MHV spike protein or to the MHV receptor, indicating that LDV RNA entered the cells via particles containing the MHV envelope. Simultaneous exposure of L-2 cells to both LDV and MHV resulted in infection by MHV but not by LDV. The results indicate that an internal block to LDV replication is not the cause of the LDV nonpermissiveness of many cell types, including the majority of the macrophages in an adult mouse. Instead, LDV permissiveness is restricted to a subpopulation of mouse macrophages because only these cells possess a surface component that acts as an LDV receptor.
Collapse
Affiliation(s)
- C Even
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
17
|
Bonilla PJ, Piñón JL, Hughes S, Weiss SR. Characterization of the leader papain-like protease of MHV-A59. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 380:423-30. [PMID: 8830518 DOI: 10.1007/978-1-4615-1899-0_68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sequence analysis of the mouse hepatitis virus, strain A59 (MHV-A59) genome predicts the presence of two papain-like proteases encoded within the first open reading frame of the replicase gene. The more 5' of these domains, the leader papain-like protease, is responsible for the cleavage of the amino terminal protein, p28. We have defined the core of this protease to between amino acids 1075 and 1344 from the beginning of ORF 1a. Deletion analysis coupled with in vitro expression, was used to study p28 cleavage by this leader protease. Expression of a series of deletion mutants showed processing of p28, albeit at lower levels in some of them. Reduced p28 production resulting from a 0.4 kb deletion positioned between p28 and the protease domain suggests an involvement of this region in catalytic processing. Some mutants display cleavage patterns indicative of a second cleavage site. Interestingly, this newly identified cleavage site maps to a position similar to the expected cleavage site of a p65 polypeptide detected in MHV-A59 infected cells. Mutagenesis of the catalytic H1272 residue demonstrates that both cleavages observed are mediated by the leader papain-like protease encoded in ORF 1a.
Collapse
Affiliation(s)
- P J Bonilla
- Department of Microbiology, University of Pennsylvania, Philadelphia 19104-6076, USA
| | | | | | | |
Collapse
|
18
|
Snijder E, Wassenaar AL, Den Boon JA, Spaan WJ. Proteolytic processing of the arterivirus replicase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 380:443-51. [PMID: 8830522 DOI: 10.1007/978-1-4615-1899-0_71] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- E Snijder
- Department of Virology, Faculty of Medicine, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
19
|
Snijder EJ, Wassenaar AL, Spaan WJ. Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. J Virol 1994; 68:5755-64. [PMID: 8057457 PMCID: PMC236979 DOI: 10.1128/jvi.68.9.5755-5764.1994] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To study the proteolytic processing of the equine arteritis virus (EAV) replicase open reading frame 1a (ORF1a) protein, specific antisera were raised in rabbits, with six synthetic peptides and a bacterial fusion protein as antigens. The processing of the EAV ORF1a product in infected cells was analyzed with Western blot (immunoblot) and immunoprecipitation techniques. Additional information was obtained from transient expression of ORF1a cDNA constructs. The 187-kDa ORF1a protein was found to be subject to at least five proteolytic cleavages. The processing scheme, which covers the entire ORF1a protein, results in cleavage products of approximately 29, 61, 22, 31, 41, and 3 kDa, which were named nonstructural proteins (nsps) 1 through 6, respectively. Pulse-chase experiments revealed that the cleavages at the nsp1/2 and nsp2/3 junctions are the most rapid processing steps. The remaining nsp3456 precursor is first cleaved at the nsp4/5 site. Final processing of the nsp34 and nsp56 intermediates is extremely slow. As predicted from previous in vitro translation experiments (E. J. Snijder, A. L. M. Wassenaar, and W. J. M. Spaan, J. Virol. 66:7040-7048, 1992), a cysteine protease domain in nsp1 was shown to be responsible for the nsp1/2 cleavage. The other processing steps are carried out by the putative EAV serine protease in nsp4 and by a third protease, which remains to be identified.
Collapse
Affiliation(s)
- E J Snijder
- Department of Virology, Faculty of Medicine, Leiden University, The Netherlands
| | | | | |
Collapse
|
20
|
Liu DX, Brierley I, Tibbles KW, Brown TD. A 100-kilodalton polypeptide encoded by open reading frame (ORF) 1b of the coronavirus infectious bronchitis virus is processed by ORF 1a products. J Virol 1994; 68:5772-80. [PMID: 8057459 PMCID: PMC236981 DOI: 10.1128/jvi.68.9.5772-5780.1994] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The genome-length mRNA (mRNA 1) of the coronavirus infectious bronchitis virus (IBV) contains two large open reading frames (ORFs), 1a and 1b, with the potential to encode polypeptides of 441 and 300 kDa, respectively. The downstream ORF, ORF 1b, is expressed by a ribosomal frameshifting mechanism. In an effort to detect viral polypeptides encoded by ORF 1b in virus-infected cells, immunoprecipitations were carried out with a panel of region-specific antisera. A polypeptide of approximately 100 kDa was precipitated from IBV-infected, but not mock-infected, Vero cells by one of these antisera (V58). Antiserum V58 was raised against a bacterially expressed fusion protein containing polypeptide sequences encoded by ORF 1b nucleotides 14492 to 15520; it recognizes specifically the corresponding in vitro-synthesized target protein. A polypeptide comigrating with the 100,000-molecular-weight protein (100K protein) identified in infected cells was also detected when the IBV sequence from nucleotides 8693 to 16980 was expressed in Vero cells by using a vaccinia virus-T7 expression system. Deletion analysis revealed that the sequence encoding the C terminus of the 100K polypeptide lies close to nucleotide 15120; it may therefore be generated by proteolysis at a potential QS cleavage site encoded by nucleotides 15129 to 15135. In contrast, expression of IBV sequences from nucleotides 10752 to 16980 generated two polypeptides of approximately 62 and 235 kDa, which represent the ORF 1a stop product and the 1a-1b fused product generated by a frameshifting mechanism, respectively, but no processed products were observed. Since the putative picornavirus 3C-like proteinase domain is located in ORF 1a between nucleotides 8937 and 9357, this observation suggests that deletion of the picornavirus 3C-like proteinase domain and surrounding regions abolishes processing of the 1b polyprotein. In addition, the in vitro translation and in vivo transfection studies also indicate that the ORF 1a region between nucleotides 8763 and 10720 contains elements that down-regulate the expression of ORF 1b.
Collapse
Affiliation(s)
- D X Liu
- Department of Pathology, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
21
|
Liao CL, Lai MM. Requirement of the 5'-end genomic sequence as an upstream cis-acting element for coronavirus subgenomic mRNA transcription. J Virol 1994; 68:4727-37. [PMID: 8035475 PMCID: PMC236412 DOI: 10.1128/jvi.68.8.4727-4737.1994] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have developed a defective interfering (DI) RNA containing a chloramphenicol acetyltransferase reporter gene, placed behind an intergenic sequence, for studying subgenomic mRNA transcription of mouse hepatitis virus (MHV), a prototype coronavirus. Using this system, we have identified the sequence requirement for MHV subgenomic mRNA transcription. We show that this sequence requirement differs from that for RNA replication. In addition to the previously identified requirement for an intergenic (promoter) sequence, additional sequences from the 5' end of genomic RNA are required for subgenomic mRNA transcription. These upstream sequences include the leader RNA and a spacer sequence between the leader and intergenic sequence, which is derived from the 5' untranslated region and part of gene 1. The spacer sequence requirement is specific, since only the sequence derived from the 5' end of RNA genome, but not from other MHV genomic regions or heterologous sequences, could initiate subgenomic transcription from the intergenic sequence. These results strongly suggest that the wild-type viral subgenomic mRNAs (mRNA2 to mRNA7) and probably their counterpart subgenomic negative-sense RNAs cannot be utilized for mRNA amplification. Furthermore, we have demonstrated that a partial leader sequence present at the 5' end of genome, which lacks the leader-mRNA fusion sequence, could still support subgenomic mRNA transcription. In this case, the leader sequences of the subgenomic transcripts were derived exclusively from the wild-type helper virus, indicating that the MHV leader RNA initiates in trans subgenomic mRNA transcription. Thus, the leader sequence can enhance subgenomic transcription even when it cannot serve as a primer for mRNA synthesis. These results taken together suggest that the 5'-end leader sequence of MHV not only provides a trans-acting primer for mRNA initiation but also serves as a cis-acting element required for the transcription of subgenomic mRNAs. The identification of an upstream cis-acting element for MHV subgenomic mRNA synthesis defines a novel sequence requirement for regulating mRNA synthesis in RNA viruses.
Collapse
Affiliation(s)
- C L Liao
- Howard Hughes Medical Institute, University of Southern California, Los Angeles 90033-1054
| | | |
Collapse
|
22
|
Snijder EJ, Wassenaar AL, Spaan WJ. Proteolytic processing of the N-terminal region of the equine arteritis virus replicase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 342:227-32. [PMID: 8209735 DOI: 10.1007/978-1-4615-2996-5_36] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A papainlike cysteine protease (PCP) domain in the N-terminal region of the equine arteritis virus (EAV) replicase was identified by in vitro translation and mutagenesis studies. The EAV protease was found to direct an autoproteolytic cleavage at its C-terminus which leads to the production of an approximately 30K N-terminal replicase product (nsp1) containing the PCP domain. Amino acid residues Cys164 and His230 of the EAV replicase polyprotein were identified as the most likely candidates for the role of PCP catalytic residues. It was shown that cleavage occurs in cis between Gly260 and Gly261.
Collapse
Affiliation(s)
- E J Snijder
- Department of Virology, Faculty of Medicine, Leiden University, The Netherlands
| | | | | |
Collapse
|
23
|
Weiss SR, Hughes SA, Bonilla PJ, Turner JD, Leibowitz JL, Denison MR. Coronavirus polyprotein processing. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1994; 9:349-58. [PMID: 8032266 DOI: 10.1007/978-3-7091-9326-6_35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
MHV gene 1 contains two ORFs in different reading frames. Translation proceeds through ORF 1a into ORF 1b via a translational frame-shift. ORF 1a potentially encodes three protease activities, two papain-like activities and one poliovirus 3C-like activity. Of the three predicted activities, only the more amino terminal papain-like domain has been demonstrated to have protease activity. ORF 1a polypeptides have been detected in infected cells by the use of antibodies. The order of polypeptides encoded from the 5' end of the ORF is p28, p65, p290. p290 is processed into p240 and p50. Processing of ORF1a polypeptides differs during cell free translation of genome RNA and in infected cells, suggesting that different proteases may be active under different conditions. Two RNA negative mutants of MHV-A59 express greatly reduced amounts of p28 and p65 at the non-permissive temperature. These mutants may have defects in one or more viral protease activities. ORF 1b, highly conserved between MHV and IBV, potentially contains polymerase, helicase and zinc finger domains. None of these activities have yet been demonstrated. ORF 1b polypeptides have yet been detected in infected cells.
Collapse
Affiliation(s)
- S R Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia
| | | | | | | | | | | |
Collapse
|
24
|
Hughes SA, Denison MR, Bonilla P, Leibowitz JL, Baric RS, Weiss SR. A newly identified MHV-A59 ORF1a polypeptide p65 is temperature sensitive in two RNA negative mutants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 342:221-6. [PMID: 8209734 DOI: 10.1007/978-1-4615-2996-5_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Polypeptide products of MHV-A59 gene 1 have been identified in infected DBT cells and in the products of in vitro translations of genome RNA. In this paper we report the identification in infected cell lysates of a 65-kDa polypeptide (p65) encoded in ORF 1a. Studies on the kinetics of appearance and processing of p65 show that p65 is detectable after p28 but before the appearance of p290, p240 and p50. No homologue of the p65 polypeptide identified in infected cell lysates was immunoprecipitated from in vitro translations of genomic RNA, providing further evidence that in vitro processing of polypeptides encoded in ORF 1a of gene 1 differs from that which occurs late in infection of DBT cells. Although the function of p65 is unknown, two MHV-A59 ts mutants isolated and characterized by Baric et al. (3,4) do not produce detectable levels of p65 at the non-permissive temperature indicating that p65 may play an important role in the virus life cycle.
Collapse
Affiliation(s)
- S A Hughes
- University of Pennsylvania School of Medicine, Phila
| | | | | | | | | | | |
Collapse
|
25
|
Snijder EJ, Horzinek MC, Spaan WJ. The coronaviruslike superfamily. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 342:235-44. [PMID: 8209737 DOI: 10.1007/978-1-4615-2996-5_37] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E J Snijder
- Department of Virology, Faculty of Medicine, Leiden University, The Netherlands
| | | | | |
Collapse
|
26
|
Baker SC, Yokomori K, Dong S, Carlisle R, Gorbalenya AE, Koonin EV, Lai MM. Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. J Virol 1993; 67:6056-63. [PMID: 8396668 PMCID: PMC238026 DOI: 10.1128/jvi.67.10.6056-6063.1993] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The murine coronavirus mouse hepatitis virus gene 1 is expressed as a polyprotein, which is cleaved into multiple proteins posttranslationally. One of the proteins is p28, which represents the amino-terminal portion of the polyprotein and is presumably generated by the activity of an autoproteinase domain of the polyprotein (S. C. Baker, C. K. Shieh, L. H. Soe, M.-F. Chang, D. M. Vannier, and M. M. C. Lai, J. Virol. 63:3693-3699, 1989). In this study, the boundaries and the critical amino acid residues of this putative proteinase domain were characterized by deletion analysis and site-directed mutagenesis. Proteinase activity was monitored by examining the generation of p28 during in vitro translation in rabbit reticulocyte lysates. Deletion analysis defined the proteinase domain to be within the sequences encoded from the 3.6- to 4.4-kb region from the 5' end of the genome. A 0.7-kb region between the substrate (p28) and proteinase domain could be deleted without affecting the proteolytic cleavage. However, a larger deletion (1.6 kb) resulted in the loss of proteinase activity, suggesting the importance of spacing sequences between proteinase and substrate. Computer-assisted analysis of the amino acid sequence of the proteinase domain identified potential catalytic cysteine and histidine residues in a stretch of sequence distantly related to papain-like cysteine proteinases. The role of these putative catalytic residues in the proteinase activity was studied by site-specific mutagenesis. Mutations of Cys-1137 or His-1288 led to a complete loss of proteinase activity, implicating these residues as essential for the catalytic activity. In contrast, most mutations of His-1317 or Cys-1172 had no or only minor effects on proteinase activity. This study establishes that mouse hepatitis virus gene 1 encodes a proteinase domain, in the region from 3.6 to 4.4 kb from the 5' end of the genome, which resembles members of the papain family of cysteine proteinases and that this proteinase domain is responsible for the cleavage of the N-terminal peptide.
Collapse
Affiliation(s)
- S C Baker
- Department of Microbiology and Immunology, Loyola University of Chicago, Stritch School of Medicine, Maywood 60153
| | | | | | | | | | | | | |
Collapse
|
27
|
Olsen CW. A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination. Vet Microbiol 1993; 36:1-37. [PMID: 8236772 PMCID: PMC7117146 DOI: 10.1016/0378-1135(93)90126-r] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Feline infectious peritonitis (FIP) has been an elusive and frustrating problem for veterinary practitioners and cat breeders for many years. Over the last several years, reports have begun to elucidate aspects of the molecular biology of the causal virus (FIPV). These papers complement a rapidly growing base of knowledge concerning the molecular organization and replication of coronaviruses in general. The fascinating immunopathogenesis of FIPV infection and the virus' interaction with macrophages has also been the subject of several recent papers. It is now clear that FIPV may be of interest to scientists other than veterinary virologists since its pathogenesis may provide a useful model system for other viruses whose infectivity is enhanced in the presence of virus-specific antibody. With these advances and the recent release of the first commercially-available FIPV vaccine, it is appropriate to review what is known about the organization and replication of coronaviruses and the pathogenesis of FIPV infection.
Collapse
Affiliation(s)
- C W Olsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison
| |
Collapse
|
28
|
Herold J, Raabe T, Siddell S. Molecular analysis of the human coronavirus (strain 229E) genome. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1993; 7:63-74. [PMID: 8219814 DOI: 10.1007/978-3-7091-9300-6_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nucleotide sequence of the human coronavirus strain 229E (HCV 229E) has been determined. This article describes the organization of the virus genome, the predicted viral gene products and the mechanisms which regulate viral gene expression. This information provides a basis to investigate the biology and pathogenesis of HCV.
Collapse
Affiliation(s)
- J Herold
- Institute of Virology, University of Würzburg, Federal Republic of Germany
| | | | | |
Collapse
|
29
|
Snijder EJ, Wassenaar AL, Spaan WJ. The 5' end of the equine arteritis virus replicase gene encodes a papainlike cysteine protease. J Virol 1992; 66:7040-8. [PMID: 1331507 PMCID: PMC240365 DOI: 10.1128/jvi.66.12.7040-7048.1992] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The presence of a papainlike cysteine protease (PCP) domain in the N-terminal region of the equine arteritis virus (EAV) replicase, which had been postulated on the basis of limited sequence similarities with cellular and viral thiol proteases, was confirmed by in vitro translation and mutagenesis studies. The EAV protease was found to direct an autoproteolytic cleavage at its C terminus which leads to the production of an approximately 30-kDa N-terminal replicase product (nsp1) containing the PCP domain. Amino acid residues Cys-164 and His-230 of the EAV replicase polyprotein were identified as the most likely candidates for the role of PCP catalytic residues. By means of N-terminal sequence analysis of a PCP cleavage product, derived from a bacterial expression system, it was shown that cleavage occurs between Gly-260 and Gly-261. No evidence for PCP-directed cleavages at other positions in the EAV replicase was obtained. In cotranslational and posttranslational trans-cleavage assays, neither EAV nsp1 nor its precursor was able to process the PCP cleavage site in trans.
Collapse
Affiliation(s)
- E J Snijder
- Department of Virology, Faculty of Medicine, Leiden University, The Netherlands
| | | | | |
Collapse
|
30
|
Denison MR, Zoltick PW, Hughes SA, Giangreco B, Olson AL, Perlman S, Leibowitz JL, Weiss SR. Intracellular processing of the N-terminal ORF 1a proteins of the coronavirus MHV-A59 requires multiple proteolytic events. Virology 1992; 189:274-84. [PMID: 1318604 PMCID: PMC7130892 DOI: 10.1016/0042-6822(92)90703-r] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several polypeptide products of MHV-A59 ORF 1a were characterized in MHV-A59 infected DBT cells, using antisera directed against fusion proteins encoded in the first 6.5 kb of ORF1a. These included the previously identified N-terminal ORF 1a product, p28, as well as 290-, 240-, and 50-kDa polypeptides. P28 was always detected as a discrete band without larger precursors, suggesting rapid cleavage of p28 immediately after its synthesis. Once p28 was cleaved there was little degradation of the protein over a 2-hr period. The intracellular cleavage of p28 was not inhibited by the protease inhibitor leupeptin, in contrast to results obtained during in vitro translation of genome RNA (Denison and Perlman, 1986). These data suggest that different protease activities may be responsible for the cleavage of p28 in vitro and in vivo. The 290-kDa protein was an intermediate cleavage product derived from a precursor of greater than 400 kDa. The 290-kDa product was subsequently cleaved into secondary products of 50 and 240 kDa. The intracellular cleavage of the 290-kDa polypeptide was inhibited by leupeptin at concentrations which did not inhibit the early cleavage of p28 or the cleavage of the 290-kDa product from its larger polyprotein precursor. In the presence of zinc chloride, a product of greater than 320 kDa was detected, which appears to incorporate p28 at its amino terminus. This suggests that at least two protease activities may be necessary for processing of ORF1a proteins, one of which cleaves p28 and is sensitive to zinc chloride but resistant to leupeptin, and the other which cleaves the 290-kDa precursor and is sensitive to both inhibitors. Both the 290- and 240-kDa proteins should contain sequences predicted to encode two papain-like protease activities.
Collapse
Affiliation(s)
- M R Denison
- Department of Pediatrics, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Previously, a mouse hepatitis virus (MHV) genomic sequence necessary for defective interfering (DI) RNA packaging into MHV particles (packaging signal) was mapped to within a region of 1,480 nucleotides in the MHV polymerase gene by comparison of two DI RNAs. One of these, DIssF, is 3.6 kb in size and exhibits efficient packaging, whereas the other, DIssE, which is 2.3 kb, does not. For more precise mapping, a series of mutant DIssF RNAs with deletions within this 1,480-nucleotide region were constructed. After transfection of in vitro-synthesized mutant DI RNA in MHV-infected cells, the virus product was passaged several times. The efficiency of DI RNA packaging into MHV virions was then estimated by viral homologous interference activity and by analysis of intracellular virus-specific RNAs and virion RNA. The results indicated that an area of 190 nucleotides was necessary for packaging. A computer-generated secondary structural analysis of the A59 and JHM strains of MHV demonstrated that within this 190-nucleotide region a stable stem-loop of 69 nucleotides was common between the two viruses. A DIssE-derived DI DNA which had these 69 nucleotides inserted into the DIssE sequence demonstrated efficient DI RNA packaging. Site-directed mutagenic analysis showed that of these 69 nucleotides, the minimum sequence of the packaging signal was 61 nucleotides and that destruction of the secondary structure abolished packaging ability. These studies demonstrated that an MHV packaging signal was present within the 61 nucleotides, which are located on MHV genomic RNA 1,381 to 1,441 nucleotides upstream of the 3' end of gene 1.
Collapse
Affiliation(s)
- J A Fosmire
- Department of Microbiology, University of Texas, Austin 78712-1095
| | | | | |
Collapse
|