1
|
Duroy PO, Bosshard S, Schmid-Siegert E, Neuenschwander S, Arib G, Lemercier P, Masternak J, Roesch L, Buron F, Girod PA, Xenarios I, Mermod N. Characterization and mutagenesis of Chinese hamster ovary cells endogenous retroviruses to inactivate viral particle release. Biotechnol Bioeng 2019; 117:466-485. [PMID: 31631325 PMCID: PMC7003738 DOI: 10.1002/bit.27200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Abstract
The Chinese hamster ovary (CHO) cells used to produce biopharmaceutical proteins are known to contain type‐C endogenous retrovirus (ERV) sequences in their genome and to release retroviral‐like particles. Although evidence for their infectivity is missing, this has raised safety concerns. As the genomic origin of these particles remained unclear, we characterized type‐C ERV elements at the genome, transcriptome, and viral particle RNA levels. We identified 173 type‐C ERV sequences clustering into three functionally conserved groups. Transcripts from one type‐C ERV group were full‐length, with intact open reading frames, and cognate viral genome RNA was loaded into retroviral‐like particles, suggesting that this ERV group may produce functional viruses. CRISPR‐Cas9 genome editing was used to disrupt the gag gene of the expressed type‐C ERV group. Comparison of CRISPR‐derived mutations at the DNA and RNA level led to the identification of a single ERV as the main source of the release of RNA‐loaded viral particles. Clones bearing a Gag loss‐of‐function mutation in this ERV showed a reduction of RNA‐containing viral particle release down to detection limits, without compromising cell growth or therapeutic protein production. Overall, our study provides a strategy to mitigate potential viral particle contaminations resulting from ERVs during biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Pierre-Olivier Duroy
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Present address: Selexis SA, Plan-les-Ouates, Switzerland
| | - Sandra Bosshard
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Present address: Lonza AG, Visp, Switzerland
| | | | | | | | - Philippe Lemercier
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Jacqueline Masternak
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Lucien Roesch
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Flavien Buron
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Ioannis Xenarios
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Present address: Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Mermod
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Legiewicz M, Zolotukhin AS, Pilkington GR, Purzycka KJ, Mitchell M, Uranishi H, Bear J, Pavlakis GN, Le Grice SFJ, Felber BK. The RNA transport element of the murine musD retrotransposon requires long-range intramolecular interactions for function. J Biol Chem 2010; 285:42097-104. [PMID: 20978285 DOI: 10.1074/jbc.m110.182840] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retrovirus replication requires specialized transport mechanisms to export genomic mRNA from the nucleus to the cytoplasm of the infected cell. This regulation is mediated by a combination of viral and/or cellular factors that interact with cis-acting RNA export elements linking the viral RNA to the cellular CRM1 or NXF1 nuclear export pathways. Endogenous type D murine LTR retrotransposons (musD) were reported to contain an RNA export element located upstream of the 3'-LTR. Although functionally equivalent, the musD export element, termed the musD transport element, is distinct from the other retroviral RNA export elements, such as the constitutive transport element of simian/Mason-Pfizer monkey retroviruses and the RNA transport element found in rodent intracisternal A-particle LTR retrotransposons. We demonstrate here that the minimal RNA transport element (musD transport element) of musD comprises multiple secondary structure elements that presumably serve as recognition signals for the cellular export machinery. We identified two classes of tertiary interactions, namely kissing loops and a pseudoknot. This work constitutes the first example of an RNA transport element requiring such structural motifs to mediate nuclear export.
Collapse
Affiliation(s)
- Michal Legiewicz
- RT Biochemistry Section, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Up to 10% of the mouse genome is comprised of endogenous retrovirus (ERV) sequences, and most represent the remains of ancient germ line infections. Our knowledge of the three distinct classes of ERVs is inversely correlated with their copy number, and their characterization has benefited from the availability of divergent wild mouse species and subspecies, and from ongoing analysis of the Mus genome sequence. In contrast to human ERVs, which are nearly all extinct, active mouse ERVs can still be found in all three ERV classes. The distribution and diversity of ERVs has been shaped by host-virus interactions over the course of evolution, but ERVs have also been pivotal in shaping the mouse genome by altering host genes through insertional mutagenesis, by adding novel regulatory and coding sequences, and by their co-option by host cells as retroviral resistance genes. We review mechanisms by which an adaptive coexistence has evolved. (Part of a multi-author review).
Collapse
Affiliation(s)
- C. Stocking
- Heinrich-Pette-Institute, Martinistrasse 52, 20251 Hamburg, Germany
| | - C. A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive MSC 0460, Bethesda, Maryland, 20892-0460 USA
| |
Collapse
|
4
|
Abstract
Infection of germline cells with retroviruses initiates permanent proviral colonization of the germline genome. The germline-integrated proviruses, called endogenous retroviruses (ERVs), are inherited to offspring in a Mendelian order and belong to the transposable element family. Endogenous retroviruses and other long terminal repeat retroelements constitute ~8% and ~10% of the human and mouse genomes, respectively. It is likely that each individual has a distinct genomic ERV profile. Recent studies have revealed that a substantial fraction of ERVs retains the coding potentials necessary for virion assembly and replication. There are several layers of potential mechanisms controlling ERV expression: intracellular transcription environment (e.g., transcription factor pool, splicing machinery, hormones), epigenetic status of the genome (e.g., proviral methylation, histone acetylation), profile of transcription regulatory elements on each ERV's promoter, and a range of stress signals (e.g., injury, infection, environment). Endogenous retroviruses may exert pathophysiologic effects by infection followed by random reintegration into the genome, by their gene products (e.g., envelope, superantigen), and by altering the expression of neighboring genes. Several studies have provided evidence that ERVs are associated with a range of pathogenic processes involving multiple sclerosis, systemic lupus erythematosus, breast cancer, and the response to burn injury. For instance, the proinflammatory properties of the human ERV-W envelope protein play a central role in demyelination of oligodendrocytes. As reviewed in this article, recent advances in ERV biology and mammalian genomics suggest that ERVs may have a profound influence on various pathogenic processes including the response to injury and infection. Understanding the roles of ERVs in the pathogenesis of injury and infection will broaden insights into the underlying mechanisms of systemic immune disorder and organ failure in these patients.
Collapse
|
5
|
Voisset C, Weiss RA, Griffiths DJ. Human RNA "rumor" viruses: the search for novel human retroviruses in chronic disease. Microbiol Mol Biol Rev 2008; 72:157-96, table of contents. [PMID: 18322038 PMCID: PMC2268285 DOI: 10.1128/mmbr.00033-07] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Retroviruses are an important group of pathogens that cause a variety of diseases in humans and animals. Four human retroviruses are currently known, including human immunodeficiency virus type 1, which causes AIDS, and human T-lymphotropic virus type 1, which causes cancer and inflammatory disease. For many years, there have been sporadic reports of additional human retroviral infections, particularly in cancer and other chronic diseases. Unfortunately, many of these putative viruses remain unproven and controversial, and some retrovirologists have dismissed them as merely "human rumor viruses." Work in this field was last reviewed in depth in 1984, and since then, the molecular techniques available for identifying and characterizing retroviruses have improved enormously in sensitivity. The advent of PCR in particular has dramatically enhanced our ability to detect novel viral sequences in human tissues. However, DNA amplification techniques have also increased the potential for false-positive detection due to contamination. In addition, the presence of many families of human endogenous retroviruses (HERVs) within our DNA can obstruct attempts to identify and validate novel human retroviruses. Here, we aim to bring together the data on "novel" retroviral infections in humans by critically examining the evidence for those putative viruses that have been linked with disease and the likelihood that they represent genuine human infections. We provide a background to the field and a discussion of potential confounding factors along with some technical guidelines. In addition, some of the difficulties associated with obtaining formal proof of causation for common or ubiquitous agents such as HERVs are discussed.
Collapse
Affiliation(s)
- Cécile Voisset
- CNRS-UMR8161, Institut de Biologie de Lille et Institut Pasteur de Lille, Lille, France
| | | | | |
Collapse
|
6
|
Ribet D, Harper F, Dupressoir A, Dewannieux M, Pierron G, Heidmann T. An infectious progenitor for the murine IAP retrotransposon: emergence of an intracellular genetic parasite from an ancient retrovirus. Genome Res 2008; 18:597-609. [PMID: 18256233 DOI: 10.1101/gr.073486.107] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mammalian genomes contain a high load of mobile elements among which long terminal repeat (LTR)- retrotransposons may represent up to 10% of the genomic DNA. The murine intracisternal A-type particle (IAP) sequences, the prototype of these mammalian "genetic parasites," have an intracellular replicative life cycle and are responsible for a very large fraction of insertional mutagenesis in mice. Yet, phylogenetic analyses strongly suggest that they derive from an ancestral retrovirus that has reached the germline of a remote rodent ancestor and has been "endogenized." A genome-wide screening of the mouse genome now has led us to identify the likely progenitor of the intracellular IAP retrotransposons. This identified "living fossil"-that we found to be present only as a single fully active copy-discloses all the characteristics of a bona fide retrovirus, with evidence for particle formation at the cell membrane, and release of virions with a mature morphology that are infectious. We show, by generating appropriate chimeras, that IAPs derive from this element via passive loss of its env gene, and gain of an endoplasmic reticulum targeting signal, resulting in its "intracellularization" and in the gain of transpositional activity. The identification within the mouse genome of the still active retroviral progenitor of the IAP endogenous mobile elements and the experimental dissection of the molecular events responsible for the shift in its life cycle provide a conclusive illustration of the process that has led, during evolution, to the generation of very successful intracellular retrotransposons from ancient retroviruses.
Collapse
Affiliation(s)
- David Ribet
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, CNRS UMR 8122, Institut Gustave Roussy, Villejuif, F-94805, France
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
When introduced into EC cells of a blastocyst, polyomavirus (Py) T-Ag results in mice mosaic for T-Ag but otherwise essentially normal. It had been reported that SV40 T-Ag does not inhibit differentiation of F9 EC cells, but did inhibit endogenous retrovirus (ERV) production. We therefore sought to determine if Py T-Ag had any affect on EC derived embryoid body implantation onto mouse placenta. F9 EC cells were selected for T-Ag maintenance. Like the SV40 transformed cells, we show that these Py T-Ag selected EC cells no longer express IAP transcripts following differentiation into embryoid bodies. Normal and Py T-Ag selected F9 cells were differentiated into embryoid bodies then implanted into pseudopregnant mice. We observe, that normal F9 derived embryoid bodies underwent the initial stages of implantation whereas the Py T-Ag selected embryoid bodied did not implant. The implications of this observation with respect to trophectoderm and ERV function are discussed. We examine the idea that ERVs may be a required element for normal embryo implantation.
Collapse
Affiliation(s)
- A Espinosa
- Department of Molecular Biology and Biochemistry, University of California, Irvine, USA
| | | |
Collapse
|
8
|
Affiliation(s)
- L P Villarreal
- Center for Viral Vector Design, Department of Molecular Biology and Biochemistry, University of California, Irvine 92697, USA.
| | | |
Collapse
|
9
|
Reuss FU, Frankel WN, Moriwaki K, Shiroishi T, Coffin JM. Genetics of intracisternal-A-particle-related envelope-encoding proviral elements in mice. J Virol 1996; 70:6450-4. [PMID: 8709280 PMCID: PMC190678 DOI: 10.1128/jvi.70.9.6450-6454.1996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Intracisternal-A-particle-related envelope-encoding (IAPE) proviral elements in the mouse genome encode and express an envelope-like protein that may allow transmission of IAPEs as infectious agents. To test IAPE mobility and potential transmission in mice, we have analyzed the distribution of IAPE elements in the genomes of Mus spretus and Mus musculus inbred strains and wild-caught animals. Potential full-length (IAPE-A) proviral elements are present as repetitive copies in DNA from male but not female animals of M. musculus inbred strains and Mus musculus castaneus. Analysis of IAPE-cellular junction fragments indicates that fixation of most IAPEs in the germ line occurred in M. musculus and M. spretus after speciation but before M. musculus inbred strains were derived.
Collapse
Affiliation(s)
- F U Reuss
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|