1
|
Hung CH, Chiu YF, Wang WH, Chen LW, Chang PJ, Huang TY, Lin YJ, Tsai WJ, Yang CC. Interaction Between BGLF2 and BBLF1 Is Required for the Efficient Production of Infectious Epstein-Barr Virus Particles. Front Microbiol 2020; 10:3021. [PMID: 32038519 PMCID: PMC6993569 DOI: 10.3389/fmicb.2019.03021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 11/13/2022] Open
Abstract
BGLF2 is a tegument protein of the Epstein-Barr virus (EBV). This study finds that BGLF2 is expressed in the late stage of the EBV lytic cycle. Microscopic investigations reveal that BGLF2 is present in both the nucleus and the cytoplasm and colocalized with BBLF1 and gp350 at juxtanuclear regions in the cytoplasm. This study also finds that the basic KKK69 motif of BGLF2 and acidic DYEE31 motif of BBLF1 are crucial for the interaction between BGLF2 and BBLF1, which is required for the recruitment of BGLF2 to the BBLF1 that is anchored on the trans-Golgi-network (TGN). In addition, BGLF2 in a density gradient is co-sedimented with un-enveloped capsids, revealing that BGLF2 associates with the EBV capsid before the final envelopment. The knockout of BGLF2 expression is demonstrated to reduce the numbers of infectious virions that are released into the culture medium, but they do not affect the expression of lytic proteins and viral DNA replication. The production of infectious viral particles by a BGLF2-knockout mutant can be rescued by exogenously expressed BGLF2 but only partially rescued by BGLF2-3KA, which is a mutant with reduced ability to interact with BBLF1 but does not affect its ability to activate the MAPK pathway and the expression of the EBV lytic proteins, suggesting that the interaction of BGLF2 with BBLF1 is important to the efficient production of infectious viral particles during the maturation. The results of this study improve our understanding of how BGLF2 promotes EBV viral production.
Collapse
Affiliation(s)
- Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, Chang-Gung University, Taoyuan, Taiwan.,Department of Medical Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lee-Wen Chen
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Tsung-Yu Huang
- Division of Infectious Diseases, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Ying-Ju Lin
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Wan-Ju Tsai
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Chia-Ching Yang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Chen LW, Hung CH, Wang SS, Yen JB, Liu AC, Hung YH, Chang PJ. Expression and regulation of the BKRF2, BKRF3 and BKRF4 genes of Epstein-Barr virus. Virus Res 2018; 256:76-89. [PMID: 30096410 DOI: 10.1016/j.virusres.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 12/24/2022]
Abstract
The BKRF2, BKRF3 and BKRF4 genes of Epstein-Barr virus (EBV) are located close together in the viral genome, which encode glycoprotein L, uracil-DNA glycosylase and a tegument protein, respectively. Here, we demonstrate that the BKRF2 gene behaves as a true-late lytic gene, whereas the BKRF3 and BKRF4 genes belong to the early lytic gene family. Our results further reveal that both BKRF3 and BKRF4 promoters are new synergistic targets of Zta and Rta, two EBV latent-to-lytic switch transactivators. Multiple Rta- and Zta-responsive elements within the BKRF3 and BKRF4 promoters were identified and characterized experimentally. Importantly, we show that DNA methylation is absolutely required for activation of the BKRF4 promoter by Zta alone or in combination with Rta. Moreover, we find that sodium butyrate, an inducing agent of EBV reactivation, is capable of activating the BKRF4 promoter through a mechanism independent of Zta and Rta. Overall, our studies highlight the complexity of transcriptional regulation of lytic genes within the BKRF2-BKRF3-BKRF4 gene locus.
Collapse
Affiliation(s)
- Lee-Wen Chen
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan; Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Ju-Bei Yen
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan; Department of Pediatrics, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ann-Chi Liu
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Ya-Hui Hung
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 33302, Taiwan; Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi 61363, Taiwan.
| |
Collapse
|
3
|
Almohammed R, Osborn K, Ramasubramanyan S, Perez-Fernandez IBN, Godfrey A, Mancini EJ, Sinclair AJ. Mechanism of activation of the BNLF2a immune evasion gene of Epstein-Barr virus by Zta. J Gen Virol 2018; 99:805-817. [PMID: 29580369 PMCID: PMC6096924 DOI: 10.1099/jgv.0.001056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human gamma herpes virus Epstein–Barr virus (EBV) exploits multiple routes to evade the cellular immune response. During the EBV lytic replication cycle, viral proteins are expressed that provide excellent targets for recognition by cytotoxic T cells. This is countered by the viral BNLF2a gene. In B cells during latency, where BNLF2a is not expressed, we show that its regulatory region is embedded in repressive chromatin. The expression of BNLF2a mirrors the expression of a viral lytic cycle transcriptional regulator, Zta (BZLF1, EB1, ZEBRA), in B cells and we propose that Zta plays a role in up-regulating BNLF2a. In cells undergoing EBV lytic replication, we identified two distinct regions of interaction of Zta with the chromatin-associated BNLF2a promoter. We identify five potential Zta-response elements (ZREs) in the promoter that are highly conserved between virus isolates. Zta binds to these elements in vitro and activates the expression of the BNLF2a promoter in both epithelial and B cells. We also found redundancy amongst the ZREs. The EBV genome undergoes a biphasic DNA methylation cycle during its infection cycle. One of the ZREs contains an integral CpG motif. We show that this can be DNA methylated during EBV latency and that both Zta binding and promoter activation are enhanced by its methylation. In summary, we find that the BNLF2a promoter is directly targeted by Zta and that DNA methylation within the proximal ZRE aids activation. The implications for regulation of this key viral gene during the reactivation of EBV from latency are discussed.
Collapse
Affiliation(s)
- Rajaei Almohammed
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK.,Present address: Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Sharada Ramasubramanyan
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK.,Present address: RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Anja Godfrey
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Erika J Mancini
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Alison J Sinclair
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| |
Collapse
|
4
|
Li KKC, Chau BL, Lee KAW. Differential interaction of PRMT1 with RGG-boxes of the FET family proteins EWS and TAF15. Protein Sci 2017; 27:633-642. [PMID: 29193371 DOI: 10.1002/pro.3354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
The FET sub-family (FUS/TLS, EWS, TAF15) of RNA-binding proteins have remarkably similar overall structure but diverse biological and pathological roles. The molecular basis for FET protein specialization is largely unknown. Gly-Arg-Rich regions (RGG-boxes) within FET proteins are targets for methylation by Protein-Arginine-Methyl-Transferase-1 (PRMT1) and substrate capture is thought to involve electrostatic attraction between positively charged polyRGG substrates and negatively charged surface channels of PRMT1. Unlike FUS and EWS, a high proportion of TAF15 RGG-boxes are embedded within neutrally charged YGGDR(S/G)G repeats, suggesting that they might not bind well to PRMT1. This notion runs contrary however to a report that YGGDR(S/G)G repeats are methylated by PRMT1. Using peptide-based polyRGG substrates and a novel 2-hybrid binding assay, we find that the Asp residue in YGGDR(S/G)G repeats confers poor binding to PRMT1. Our results therefore indicate that YGGDR(S/G)G repeats may contribute to TAF15 specialization by enabling differential interactions with PRMT1 and reduced overall levels of TAF15 methylation compared with other FET proteins. By analogy with molecular recognition of other disordered polyvalent ligands by globular protein partners, we also propose a dynamic polyelectrostatic model for substrate capture by PRMT1.
Collapse
Affiliation(s)
- Kim K C Li
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S.A.R, China
| | - Bess L Chau
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S.A.R, China
| | - Kevin A W Lee
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S.A.R, China
| |
Collapse
|
5
|
Tian Y, Lu Y, Xu X, Wang C, Zhou T, Li X. Construction and comparison of yeast whole-cell biosensors regulated by two RAD54 promoters capable of detecting genotoxic compounds. Toxicol Mech Methods 2016; 27:115-120. [PMID: 27998204 DOI: 10.1080/15376516.2016.1266540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two yeast enhanced green fluorescence protein (yEGFP) yeast reporter vectors, pR1558-yEGFP and pR406-yEGFP, which are regulated by two RAD54 promoters containing 406-bp and 1558-bp DNA sequences, respectively, were constructed using molecular biological techniques and transformed into yeast for the screening of genotoxins. The constructed biosensors were named W303-1A/R1558-yEGFP and W303-1A/R406-yEGFP. To quantify biosensor performance, both transformed yeast cells were exposed to multiple doses of genotoxins including methylmethane sulfonate (MMS; a DNA alkylating agent), 4-nitroquinoline-N-oxide (4-NQO; a DNA cleavage agent), 5-fluorouracil (5-Fu; an inhibitor of polymerases and topoisomerases) and colchicine and canavanine (affecting other biochemical activities). The yeast bioassay performance was analyzed using fluorescence-activated cell sorting (FACS) and Multi-Mode Reader in a 96-well black microplate. The observed W303-1A/R1558-yEGFP dose-effect relationship was more obvious and the maximum inductions were 5.96-fold (MMS), 2.19-fold (4-NQO) and 2.71-fold (5-Fu); the corresponding values for W303-1A/R406-yEGFP were 2.53-, 1.50- and 1.91-fold, respectively. It is suggested that it is best to select the entire RAD54 promoter when constructing recombinant yeast cells for screening mutagens.
Collapse
Affiliation(s)
- Yongjie Tian
- a Preventive Medicine Department , Yangzhou Medical College, Yangzhou University , Yangzhou , Jiangsu , China
| | - Yixin Lu
- a Preventive Medicine Department , Yangzhou Medical College, Yangzhou University , Yangzhou , Jiangsu , China
| | - Xiuju Xu
- a Preventive Medicine Department , Yangzhou Medical College, Yangzhou University , Yangzhou , Jiangsu , China
| | - Chao Wang
- a Preventive Medicine Department , Yangzhou Medical College, Yangzhou University , Yangzhou , Jiangsu , China
| | - Tianqi Zhou
- a Preventive Medicine Department , Yangzhou Medical College, Yangzhou University , Yangzhou , Jiangsu , China
| | - Xiangming Li
- a Preventive Medicine Department , Yangzhou Medical College, Yangzhou University , Yangzhou , Jiangsu , China
| |
Collapse
|
6
|
Ramasubramanyan S, Osborn K, Al-Mohammad R, Naranjo Perez-Fernandez IB, Zuo J, Balan N, Godfrey A, Patel H, Peters G, Rowe M, Jenner RG, Sinclair AJ. Epstein-Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression. Nucleic Acids Res 2015; 43:3563-77. [PMID: 25779048 PMCID: PMC4402532 DOI: 10.1093/nar/gkv212] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/01/2015] [Indexed: 12/13/2022] Open
Abstract
Lytic replication of the human gamma herpes virus Epstein-Barr virus (EBV) is an essential prerequisite for the spread of the virus. Differential regulation of a limited number of cellular genes has been reported in B-cells during the viral lytic replication cycle. We asked whether a viral bZIP transcription factor, Zta (BZLF1, ZEBRA, EB1), drives some of these changes. Using genome-wide chromatin immunoprecipitation coupled to next-generation DNA sequencing (ChIP-seq) we established a map of Zta interactions across the human genome. Using sensitive transcriptome analyses we identified 2263 cellular genes whose expression is significantly changed during the EBV lytic replication cycle. Zta binds 278 of the regulated genes and the distribution of binding sites shows that Zta binds mostly to sites that are distal to transcription start sites. This differs from the prevailing view that Zta activates viral genes by binding exclusively at promoter elements. We show that a synthetic Zta binding element confers Zta regulation at a distance and that distal Zta binding sites from cellular genes can confer Zta-mediated regulation on a heterologous promoter. This leads us to propose that Zta directly reprograms the expression of cellular genes through distal elements.
Collapse
Affiliation(s)
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | | | | - Jianmin Zuo
- School of Cancer Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Nicolae Balan
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Anja Godfrey
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Harshil Patel
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Gordon Peters
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Martin Rowe
- School of Cancer Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Richard G Jenner
- UCL Cancer Institute and MRC Centre for Medical Molecular Virology, Paul O'Gorman Building, University College London, London W1CE 6BT, UK
| | | |
Collapse
|
7
|
Hung CH, Chen LW, Wang WH, Chang PJ, Chiu YF, Hung CC, Lin YJ, Liou JY, Tsai WJ, Hung CL, Liu ST. Regulation of autophagic activation by Rta of Epstein-Barr virus via the extracellular signal-regulated kinase pathway. J Virol 2014; 88:12133-45. [PMID: 25122800 PMCID: PMC4178756 DOI: 10.1128/jvi.02033-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/04/2014] [Indexed: 12/14/2022] Open
Abstract
Autophagy is an intracellular degradation pathway that provides a host defense mechanism against intracellular pathogens. However, many viruses exploit this mechanism to promote their replication. This study shows that lytic induction of Epstein-Barr virus (EBV) increases the membrane-bound form of LC3 (LC3-II) and LC3-containing punctate structures in EBV-positive cells. Transfecting 293T cells with a plasmid that expresses Rta also induces autophagy, revealing that Rta is responsible for autophagic activation. The activation involves Atg5, a key component of autophagy, but not the mTOR pathway. The expression of Rta also activates the transcription of the genes that participate in the formation of autophagosomes, including LC3A, LC3B, and ATG9B genes, as well as those that are involved in the regulation of autophagy, including the genes TNF, IRGM, and TRAIL. Additionally, treatment with U0126 inhibits the Rta-induced autophagy and the expression of autophagy genes, indicating that the autophagic activation is caused by the activation of extracellular signal-regulated kinase (ERK) signaling by Rta. Finally, the inhibition of autophagic activity by an autophagy inhibitor, 3-methyladenine, or Atg5 small interfering RNA, reduces the expression of EBV lytic proteins and the production of viral particles, revealing that autophagy is critical to EBV lytic progression. This investigation reveals how an EBV-encoded transcription factor promotes autophagy to affect viral lytic development.
Collapse
Affiliation(s)
- Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Lee-Wen Chen
- Department of Respiratory Care, Chung-Gung University of Science and Technology, Chiayi, Taiwan
| | - Wen-Hung Wang
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Ya-Fang Chiu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chen-Chia Hung
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Ying-Ju Lin
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Jieh-Yuan Liou
- Department of Medical Research, Chang-Gung Memorial Hospital, Chiayi, Taiwan
| | - Wan-Ju Tsai
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Chia-Ling Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
8
|
Lim CS, Goh SL, Krishnan G, Ng CC. Recombinant production of Epstein-Barr virus BZLF1 trans-activator and characterization of its DNA-binding specificity. Protein Expr Purif 2013; 95:8-12. [PMID: 24291446 DOI: 10.1016/j.pep.2013.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
This paper describes the recombinant production of a biologically active Epstein-Barr virus BZLF1 trans-activator, i.e., Z-encoded broadly reactive activator (ZEBRA), that recognized specific DNA motifs. We used auto-induction for histidine-tagged BZLF1 expression in Escherichia coli and immobilized cobalt affinity membrane chromatography for protein purification under native conditions. We obtained the purified BZLF1 at a yield of 5.4mg per gram of wet weight cells at 75% purity, in which 27% of the recombinant BZLF1 remained biologically active. The recombinant BZLF1 bound to oligonucleotides containing ZEBRA response elements, either AP-1 or ZIIIB, but not a ZIIIB mutant. The recombinant BZLF1 showed a specific DNA-binding activity which could be useful for functional studies.
Collapse
Affiliation(s)
- Chun Shen Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siang Ling Goh
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Gopala Krishnan
- Department of Otorhinolaryngology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ching Ching Ng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Characterization and intracellular trafficking of Epstein-Barr virus BBLF1, a protein involved in virion maturation. J Virol 2012; 86:9647-55. [PMID: 22740416 DOI: 10.1128/jvi.01126-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) BBLF1 shares 13 to 15% amino acid sequence identities with the herpes simplex virus 1 UL11 and cytomegalovirus UL99 tegument proteins, which are involved in the final envelopment during viral maturation. This study demonstrates that BBLF1 is a myristoylated and palmitoylated protein, as are UL11 and UL99. Myristoylation of BBLF1 both facilitates its membrane anchoring and stabilizes it. BBLF1 is shown to localize to the trans-Golgi network (TGN) along with gp350/220, a site where final envelopment of EBV particles takes place. The localization of BBLF1 at the TGN requires myristoylation and two acidic clusters, which interact with PACS-1, a cytosolic protein, to mediate retrograde transport from the endosomes to the TGN. Knockdown of the expression of BBLF1 during EBV lytic replication reduces the production of virus particles, demonstrating the requirement of BBLF1 to achieve optimal production of virus particles. BBLF1 is hypothesized to facilitate the budding of tegumented capsid into glycoprotein-embedded membrane during viral maturation.
Collapse
|
10
|
Frank TD, Carmody AM, Kholodenko BN. Versatility of cooperative transcriptional activation: a thermodynamical modeling analysis for greater-than-additive and less-than-additive effects. PLoS One 2012; 7:e34439. [PMID: 22506020 PMCID: PMC3323628 DOI: 10.1371/journal.pone.0034439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 03/02/2012] [Indexed: 11/20/2022] Open
Abstract
We derive a statistical model of transcriptional activation using equilibrium thermodynamics of chemical reactions. We examine to what extent this statistical model predicts synergy effects of cooperative activation of gene expression. We determine parameter domains in which greater-than-additive and less-than-additive effects are predicted for cooperative regulation by two activators. We show that the statistical approach can be used to identify different causes of synergistic greater-than-additive effects: nonlinearities of the thermostatistical transcriptional machinery and three-body interactions between RNA polymerase and two activators. In particular, our model-based analysis suggests that at low transcription factor concentrations cooperative activation cannot yield synergistic greater-than-additive effects, i.e., DNA transcription can only exhibit less-than-additive effects. Accordingly, transcriptional activity turns from synergistic greater-than-additive responses at relatively high transcription factor concentrations into less-than-additive responses at relatively low concentrations. In addition, two types of re-entrant phenomena are predicted. First, our analysis predicts that under particular circumstances transcriptional activity will feature a sequence of less-than-additive, greater-than-additive, and eventually less-than-additive effects when for fixed activator concentrations the regulatory impact of activators on the binding of RNA polymerase to the promoter increases from weak, to moderate, to strong. Second, for appropriate promoter conditions when activator concentrations are increased then the aforementioned re-entrant sequence of less-than-additive, greater-than-additive, and less-than-additive effects is predicted as well. Finally, our model-based analysis suggests that even for weak activators that individually induce only negligible increases in promoter activity, promoter activity can exhibit greater-than-additive responses when transcription factors and RNA polymerase interact by means of three-body interactions. Overall, we show that versatility of transcriptional activation is brought about by nonlinearities of transcriptional response functions and interactions between transcription factors, RNA polymerase and DNA.
Collapse
Affiliation(s)
- Till D Frank
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.
| | | | | |
Collapse
|
11
|
Huang Q, Gong C, Li J, Zhuo Z, Chen Y, Wang J, Hua ZC. Distance and helical phase dependence of synergistic transcription activation in cis-regulatory module. PLoS One 2012; 7:e31198. [PMID: 22299056 PMCID: PMC3267773 DOI: 10.1371/journal.pone.0031198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 01/03/2012] [Indexed: 01/21/2023] Open
Abstract
Deciphering of the spatial and stereospecific constraints on synergistic transcription activation mediated between activators bound to cis-regulatory elements is important for understanding gene regulation and remains largely unknown. It has been commonly believed that two activators will activate transcription most effectively when they are bound on the same face of DNA double helix and within a boundary distance from the transcription initiation complex attached to the TATA box. In this work, we studied the spatial and stereospecific constraints on activation by multiple copies of bound model activators using a series of engineered relative distances and stereospecific orientations. We observed that multiple copies of the activators GAL4-VP16 and ZEBRA bound to engineered promoters activated transcription more effectively when bound on opposite faces of the DNA double helix. This phenomenon was not affected by the spatial relationship between the proximal activator and initiation complex. To explain these results, we proposed the novel concentration field model, which posits the effective concentration of bound activators, and therefore the transcription activation potential, is affected by their stereospecific positioning. These results could be used to understand synergistic transcription activation anew and to aid the development of predictive models for the identification of cis-regulatory elements.
Collapse
Affiliation(s)
- Qilai Huang
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
- The State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine, Macau University of Science and Technology, Macau, People's Republic of China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, People's Republic of China
| | - Chenguang Gong
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Jiahuang Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Zhu Zhuo
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Yuan Chen
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
| | - Jin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
- * E-mail: (JW); (ZH)
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, People's Republic of China
- The State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine, Macau University of Science and Technology, Macau, People's Republic of China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, People's Republic of China
- * E-mail: (JW); (ZH)
| |
Collapse
|
12
|
Ng KP, Cheung F, Lee KAW. A transcription assay for EWS oncoproteins in Xenopus oocytes. Protein Cell 2010; 1:927-34. [PMID: 21204019 DOI: 10.1007/s13238-010-0114-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 09/18/2010] [Indexed: 11/29/2022] Open
Abstract
Aberrant chromosomal fusion of the Ewing's sarcoma oncogene (EWS) to several different cellular partners produces the Ewing's family of oncoproteins (EWS-fusion-proteins, EFPs) and associated tumors (EFTs). EFPs are potent transcriptional activators, dependent on the N-terminal region of EWS (the EWS-activation-domain, EAD) and this function is thought to be central to EFT oncogenesis and maintenance. Thus EFPs are promising therapeutic targets, but detailed molecular studies will be pivotal for exploring this potential. Such studies have so far largely been restricted to intact mammalian cells while recent evidence has indicated that a mammalian cell-free transcription system may not support bona fide EAD function. Therefore, the lack of manipulatable assays for the EAD presents a significant barrier to progress. Using Xenopus laevis oocytes we describe a plasmid-based micro-injection assay that supports efficient, bona fide EAD transcriptional activity and hence provides a new vehicle for molecular dissection of the EAD.
Collapse
Affiliation(s)
- King Pan Ng
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong, China
| | | | | |
Collapse
|
13
|
A subset of replication proteins enhances origin recognition and lytic replication by the Epstein-Barr virus ZEBRA protein. PLoS Pathog 2010; 6:e1001054. [PMID: 20808903 PMCID: PMC2924361 DOI: 10.1371/journal.ppat.1001054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 07/20/2010] [Indexed: 11/19/2022] Open
Abstract
ZEBRA is a site-specific DNA binding protein that functions as a transcriptional activator and as an origin binding protein. Both activities require that ZEBRA recognizes DNA motifs that are scattered along the viral genome. The mechanism by which ZEBRA discriminates between the origin of lytic replication and promoters of EBV early genes is not well understood. We explored the hypothesis that activation of replication requires stronger association between ZEBRA and DNA than does transcription. A ZEBRA mutant, Z(S173A), at a phosphorylation site and three point mutants in the DNA recognition domain of ZEBRA, namely Z(Y180E), Z(R187K) and Z(K188A), were similarly deficient at activating lytic DNA replication and expression of late gene expression but were competent to activate transcription of viral early lytic genes. These mutants all exhibited reduced capacity to interact with DNA as assessed by EMSA, ChIP and an in vivo biotinylated DNA pull-down assay. Over-expression of three virally encoded replication proteins, namely the primase (BSLF1), the single-stranded DNA-binding protein (BALF2) and the DNA polymerase processivity factor (BMRF1), partially rescued the replication defect in these mutants and enhanced ZEBRA's interaction with oriLyt. The findings demonstrate a functional role of replication proteins in stabilizing the association of ZEBRA with viral DNA. Enhanced binding of ZEBRA to oriLyt is crucial for lytic viral DNA replication. Epstein-Barr virus encodes a protein, ZEBRA, which plays an essential role in the switch between viral latency and the viral lytic cycle. ZEBRA activates transcription of early viral genes and also promotes lytic viral DNA replication. It is not understood how these two functions are discriminated. We studied five ZEBRA mutants that are impaired in activation of replication but are wild-type in the capacity to induce transcription of early viral genes. We demonstrate that these five mutants are impaired in binding to viral DNA regulatory sites. Therefore, replication required stronger interactions between ZEBRA and viral DNA than did transcription. Three components of the EBV-encoded replication machinery, including the single-stranded DNA binding protein, the polymerase processivity factor and the primase markedly enhanced the interaction of ZEBRA with viral DNA. These three components partially rescued the defect in ZEBRA mutants that were impaired in replication. The results suggest that through protein-protein interaction, replication proteins play a role in enhancing ZEBRA's association with the origin of DNA replication and other regulatory sites.
Collapse
|
14
|
Qian L, Li D, Yang Z, Hu M, Yu M, Shi M, Shen B, Guo N. Construction and expression of a spliced variant of Epstein-Barr virus bzlf1 and preparation of its polyclonal antibody. Prep Biochem Biotechnol 2009; 40:46-56. [PMID: 20024794 DOI: 10.1080/10826060903392780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The BZLF1 gene-encoded protein, Zta (EB1, ZEBRA), is a key transcriptional activator of induction of the lytic cycle of EBV. Zta; it contains a basic region with homology to the DNA binding domains of the AP-1 family. In this study, an alternatively spliced BZLF1 (Delta BZLF1) cDNA lacking exon 2, which encodes the DNA-binding domain of Zta, was isolated from B95-8 marmoset cell line releasing EBV. The cDNA was inserted into a prokaryotic expression vector pET-28a+. The His-tagged recombinant protein was overproduced in E. coli BL21(DE3) and purified by nickel affinity chromatography. The purified fraction was characterized by Western blot and MALDI-TOF-MS analysis and used as an antigen to immunize mice. The antibody against Delta Zta can recognize both denatured and natural Zta protein. The Delta Zta protein and its antibody can be used to further investigate its unknown functions.
Collapse
Affiliation(s)
- Lu Qian
- Institute of Basic Medical Sciences, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ng KP, Li KKC, Lee KAW. In vitro activity of the EWS oncogene transcriptional activation domain. Biochemistry 2009; 48:2849-57. [PMID: 19290668 DOI: 10.1021/bi802366h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aberrant chromosomal fusion of the Ewings sarcoma oncogene (EWS) to several different cellular partners gives rise to the Ewing's family of oncogenic proteins [EWS fusion proteins (EFPs)] and associated tumors (EFTs). EFPs are potent transcriptional activators dependent on the N-terminal region of EWS [the EWS activation domain (EAD)], and this function is thought to be central to EFT oncogenesis and maintenance. Thus, EFPs are promising therapeutic targets, and detailed molecular studies of the EAD will be pivotal for exploring this potential. For many reasons, the molecular mechanism of EAD action is poorly understood and one major obstacle to progress is the lack of an in vitro transcription assay. Using well-characterized EAD-dependent activators and soluble nuclear extracts, we have attempted to recapitulate EAD transcriptional activity in vitro. We report that while the EAD activates transcription strongly in vitro, the effect of EAD mutations is strikingly different from that observed in vivo. Our results therefore suggest that crude soluble extracts do not support bona fide EAD activity in vitro, and we discuss our findings in relation to future assay development and potential mechanisms of EAD action.
Collapse
Affiliation(s)
- King Pan Ng
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR China
| | | | | |
Collapse
|
16
|
Paleo-immunology: evidence consistent with insertion of a primordial herpes virus-like element in the origins of acquired immunity. PLoS One 2009; 4:e5778. [PMID: 19492059 PMCID: PMC2686171 DOI: 10.1371/journal.pone.0005778] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 04/22/2009] [Indexed: 11/29/2022] Open
Abstract
Background The RAG encoded proteins, RAG-1 and RAG-2 regulate site-specific recombination events in somatic immune B- and T-lymphocytes to generate the acquired immune repertoire. Catalytic activities of the RAG proteins are related to the recombinase functions of a pre-existing mobile DNA element in the DDE recombinase/RNAse H family, sometimes termed the “RAG transposon”. Methodology/Principal Findings Novel to this work is the suggestion that the DDE recombinase responsible for the origins of acquired immunity was encoded by a primordial herpes virus, rather than a “RAG transposon.” A subsequent “arms race” between immunity to herpes infection and the immune system obscured primary amino acid similarities between herpes and immune system proteins but preserved regulatory, structural and functional similarities between the respective recombinase proteins. In support of this hypothesis, evidence is reviewed from previous published data that a modern herpes virus protein family with properties of a viral recombinase is co-regulated with both RAG-1 and RAG-2 by closely linked cis-acting co-regulatory sequences. Structural and functional similarity is also reviewed between the putative herpes recombinase and both DDE site of the RAG-1 protein and another DDE/RNAse H family nuclease, the Argonaute protein component of RISC (RNA induced silencing complex). Conclusions/Significance A “co-regulatory” model of the origins of V(D)J recombination and the acquired immune system can account for the observed linked genomic structure of RAG-1 and RAG-2 in non-vertebrate organisms such as the sea urchin that lack an acquired immune system and V(D)J recombination. Initially the regulated expression of a viral recombinase in immune cells may have been positively selected by its ability to stimulate innate immunity to herpes virus infection rather than V(D)J recombination Unlike the “RAG-transposon” hypothesis, the proposed model can be readily tested by comparative functional analysis of herpes virus replication and V(D)J recombination.
Collapse
|
17
|
Dickerson SJ, Xing Y, Robinson AR, Seaman WT, Gruffat H, Kenney SC. Methylation-dependent binding of the epstein-barr virus BZLF1 protein to viral promoters. PLoS Pathog 2009; 5:e1000356. [PMID: 19325883 PMCID: PMC2654727 DOI: 10.1371/journal.ppat.1000356] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/27/2009] [Indexed: 11/19/2022] Open
Abstract
The switch between latent and lytic Epstein-Barr virus (EBV) infection is mediated by the viral immediate-early (IE) protein, BZLF1 (Z). Z, a homologue of c-jun that binds to AP1-like motifs (ZREs), induces expression of the BRLF1 (R) and BRRF1 (Na) viral proteins, which cooperatively activate transcription of the Z promoter and thereby establish a positive autoregulatory loop. A unique feature of Z is its ability to preferentially bind to, and activate, the methylated form of the BRLF1 promoter (Rp). To date, however, Rp is the only EBV promoter known to be regulated in this unusual manner. We now demonstrate that the promoter driving transcription of the early BRRF1 gene (Nap) has two CpG-containing ZREs (ACGCTCA and TCGCCCG) that are only bound by Z in the methylated state. Both Nap ZREs are highly methylated in cells with latent EBV infection. Z efficiently activates the methylated, but not unmethylated, form of Nap in reporter gene assays, and both ZREs are required. Z serine residue 186, which was previously shown to be required for Z binding to methylated ZREs in Rp, but not for Z binding to the AP1 site, is required for Z binding to methylated Nap ZREs. The Z(S186A) mutant cannot activate methylated Nap in reporter gene assays and does not induce Na expression in cells with latent EBV infection. Molecular modeling studies of Z bound to the methylated Nap ZREs help to explain why methylation is required for Z binding, and the role of the Z Ser186 residue. Methylation-dependent Z binding to critical viral promoters may enhance lytic reactivation in latently infected cells, where the viral genome is heavily methylated. Conversely, since the incoming viral genome is initially unmethylated, methylation-dependent Z activation may also help the virus to establish latency following infection. In cells with long-term latent Epstein-Barr virus (EBV) infection, the majority of the EBV genome becomes highly methylated. Methylation of cytosines plays a critical role in inhibiting the expression of cellular genes. In contrast, our laboratory previously showed that the EBV protein, BZLF1 (Z), which mediates viral reactivation and replication, preferentially binds to, and activates, the methylated form of the viral BRLF1 promoter. To date, however, BRLF1 is the only EBV promoter known to be activated by Z in this unusual manner. Here, we show that another EBV promoter (Nap, driving transcription of the BRRF1 gene) likewise has two methylation-dependent Z binding sites, and that Z only activates the Nap efficiently in the methylated form. Molecular modeling studies suggest why methylation of the Nap enhances Z binding. Since the BRLF1 and BRRF1 genes encode essential viral transcription factors that work cooperatively with Z to induce the lytic form of viral infection, our results indicate that methylation of the EBV genome enhances Z-mediated disruption of viral latency.
Collapse
Affiliation(s)
- Sarah J. Dickerson
- McArdle Laboratory, Departments of Oncology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Yongna Xing
- McArdle Laboratory, Departments of Oncology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Amanda R. Robinson
- McArdle Laboratory, Departments of Oncology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - William T. Seaman
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Henri Gruffat
- Laboratoire de Virologie U758, ENS-Lyon, INSERM, Lyon, France
| | - Shannon C. Kenney
- McArdle Laboratory, Departments of Oncology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
18
|
Ellison TJ, Izumiya Y, Izumiya C, Luciw PA, Kung HJ. A comprehensive analysis of recruitment and transactivation potential of K-Rta and K-bZIP during reactivation of Kaposi's sarcoma-associated herpesvirus. Virology 2009; 387:76-88. [PMID: 19269659 DOI: 10.1016/j.virol.2009.02.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/06/2009] [Accepted: 02/10/2009] [Indexed: 11/28/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma. K-Rta and K-bZIP are two major viral transcription factors that control reactivation of this virus. Here we report a genome-wide analysis of transcriptional capacity by evaluation of a comprehensive library of 83 putative KSHV promoters. In reporter assays, 34 viral promoters were activated by K-Rta, whereas K-bZIP activated 21 promoters. When K-Rta and K-bZIP were combined, 3 K-Rta responsive promoters were repressed by K-bZIP. The occupancy of K-Rta and K-bZIP across KSHV promoters was analyzed by chromatin immunoprecipitation with a viral promoter-chip in BCBL-1 cells. In addition, acetylation of local histones was examined to determine accessibility of promoters during latency and reactivation. Finally, 10 promoters were selected to study the dynamics of transcription factor recruitment. This study provides a comprehensive overview of the responsiveness of KSHV promoters to K-Rta and K-bZIP, and describes key chromatin changes during viral reactivation.
Collapse
Affiliation(s)
- Thomas J Ellison
- Department of Biological Chemistry, University of California, Davis (UC Davis) School of Medicine, UC Davis Cancer Center, Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
19
|
Chen LW, Raghavan V, Chang PJ, Shedd D, Heston L, Delecluse HJ, Miller G. Two phenylalanines in the C-terminus of Epstein-Barr virus Rta protein reciprocally modulate its DNA binding and transactivation function. Virology 2009; 386:448-61. [PMID: 19232420 DOI: 10.1016/j.virol.2009.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/08/2009] [Accepted: 01/15/2009] [Indexed: 12/12/2022]
Abstract
The Rta (R transactivator) protein plays an essential role in the Epstein-Barr viral (EBV) lytic cascade. Rta activates viral gene expression by several mechanisms including direct and indirect binding to target viral promoters, synergy with EBV ZEBRA protein, and stimulation of cellular signaling pathways. We previously found that Rta proteins with C-terminal truncations of 30 aa were markedly enhanced in their capacity to bind DNA (Chen, L.W., Chang, P.J., Delecluse, H.J., and Miller, G., (2005). Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. J. Virol. 79(15), 9635-9650.). Here we show that two phenylalanines (F600 and F605) in the C-terminus of Rta play a crucial role in mediating this DNA binding inhibitory function. Amino acids 555 to 605 of Rta constitute a functional DNA binding inhibitory sequence (DBIS) that markedly decreased DNA binding when transferred to a minimal DNA binding domain of Rta (aa 1-350). Alanine substitution mutants, F600A/F605A, abolished activity of the DBIS. F600 and F605 are located in the transcriptional activation domain of Rta. Alanine substitutions, F600A/F605A, decreased transcriptional activation by Rta protein, whereas aromatic substitutions, such as F600Y/F605Y or F600W/F605W, partially restored transcriptional activation. Full-length Rta protein with F600A/F605A mutations were enhanced in DNA binding compared to wild-type, whereas Rta proteins with F600Y/F605Y or F600W/F605W substitutions were, like wild-type Rta, relatively poor DNA binders. GAL4 (1-147)/Rta (416-605) fusion proteins with F600A/F605A mutations were diminished in transcriptional activation, relative to GAL4/Rta chimeras without such mutations. The results suggest that, in the context of a larger DBIS, F600 and F605 play a role in the reciprocal regulation of DNA binding and transcriptional activation by Rta. Regulation of DNA binding by Rta is likely to be important in controlling its different modes of action.
Collapse
Affiliation(s)
- Lee-Wen Chen
- Department of Respiratory Care, Chang Gung Institute of Technology, Chaiyi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
20
|
Ishii H, Ogino T, Berger C, Köchli-Schmitz N, Nagato T, Takahara M, Nadal D, Harabuchi Y. Clinical usefulness of serum EBV DNA levels of BamHI W and LMP1 for Nasal NK/T-cell lymphoma. J Med Virol 2007; 79:562-72. [PMID: 17385697 DOI: 10.1002/jmv.20853] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantitative real-time polymerase chain reaction (PCR) was utilized to measure serum EBV DNA levels of BamHI W fragment and latent membrane protein 1 (LMP1) in 20 nasal natural killer (NK)/T-cell lymphoma patients. Both serum EBV DNAs were detected at high levels in all patients, but the levels were below the limit of detection in all healthy controls. The BamHI Z fragment, Epstein-Barr-replication activator (ZEBRA) expression was detected in a small proportion (0.1-3%) of lymphoma cells from 10 (50%) of the patients. Patients with ZEBRA expression showed significantly higher DNA levels of BamHI W and LMP1 (P = 0.0081, P = 0.004), suggesting that EBV DNA may be caused by EBV replication from lymphoma cells. Kaplan-Meier and univariate analyses revealed that high DNA levels of BamHI W and LMP1 at pre-treatment and high BamHI W DNA level at post-treatment were associated with short disease-free survival and overall survival (P < 0.05, each). Although the DNA levels of BamHI W and LMP1 correlated significantly, their dynamics were not always parallel. Patients with low pre-treatment level of both EBV DNAs showed a favorable course, in contrast to patients with high pre-treatment level of both EBV DNAs who showed an aggressive course (P = 0.0085). More importantly, the high pre-treatment level of both EBV DNAs was determined as the only independent prognostic factor among various prognostic factors. These data suggest that simultaneous measurement of serum levels of both BamHI W and LMP1 DNAs may be useful for diagnosis, disease monitoring, and prediction of prognosis for nasal NK/T-cell lymphoma patients.
Collapse
Affiliation(s)
- Hideyuki Ishii
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical College, Asahikawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Heston L, El-Guindy A, Countryman J, Dela Cruz C, Delecluse HJ, Miller G. Amino acids in the basic domain of Epstein-Barr virus ZEBRA protein play distinct roles in DNA binding, activation of early lytic gene expression, and promotion of viral DNA replication. J Virol 2006; 80:9115-33. [PMID: 16940523 PMCID: PMC1563939 DOI: 10.1128/jvi.00909-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ZEBRA protein of Epstein-Barr virus (EBV) drives the viral lytic cycle cascade. The capacity of ZEBRA to recognize specific DNA sequences resides in amino acids 178 to 194, a region in which 9 of 17 residues are either lysine or arginine. To define the basic domain residues essential for activity, a series of 46 single-amino-acid-substitution mutants were examined for their ability to bind ZIIIB DNA, a high-affinity ZEBRA binding site, and for their capacity to activate early and late EBV lytic cycle gene expression. DNA binding was obligatory for the protein to activate the lytic cascade. Nineteen mutants that failed to bind DNA were unable to disrupt latency. A single acidic replacement of a basic amino acid destroyed DNA binding and the biologic activity of the protein. Four mutants that bound weakly to DNA were defective at stimulating the expression of Rta, the essential first target of ZEBRA in lytic cycle activation. Four amino acids, R183, A185, C189, and R190, are likely to contact ZIIIB DNA specifically, since alanine or valine substitutions at these positions drastically weakened or eliminated DNA binding. Twenty-three mutants were proficient in binding to ZIIIB DNA. Some DNA binding-proficient mutants were refractory to supershift by BZ-1 monoclonal antibody (epitope amino acids 214 to 230), likely as the result of the increased solubility of the mutants. Mutants competent to bind DNA could be separated into four functional groups: the wild-type group (eight mutants), a group defective at activating Rta (five mutants, all with mutations at the S186 site), a group defective at activating EA-D (three mutants with the R179A, S186T, and K192A mutations), and a group specifically defective at activating late gene expression (seven mutants). Three late mutants, with a Y180A, Y180E, or K188A mutation, were defective at stimulating EBV DNA replication. This catalogue of point mutants reveals that basic domain amino acids play distinct functions in binding to DNA, in activating Rta, in stimulating early lytic gene expression, and in promoting viral DNA replication and viral late gene expression. These results are discussed in relationship to the recently solved crystal structure of ZEBRA bound to an AP-1 site.
Collapse
Affiliation(s)
- Lee Heston
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
22
|
Alex D, Lee KAW. RGG-boxes of the EWS oncoprotein repress a range of transcriptional activation domains. Nucleic Acids Res 2005; 33:1323-31. [PMID: 15743974 PMCID: PMC552958 DOI: 10.1093/nar/gki270] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Ewings Sarcoma Oncoprotein (EWS) interacts with several components of the mammalian transcriptional and pre-mRNA splicing machinery and is also found in the cytoplasm and even on the cell surface. The apparently diverse cellular functions of EWS are, however, not well characterized. EWS harbours a potent N-terminal transcriptional activation domain (the EAD) that is revealed in the context of oncogenic EWS-fusion proteins (EFPs) and a C-terminal RNA-binding domain (RBD) that recruits pre-mRNA splicing factors and may couple transcription and splicing. In contrast to EFPs, the presumed transcriptional role of normal EWS remains enigmatic. Here, we report that multiple RGG-boxes within the RBD are necessary and sufficient for cis-repression of the EAD and that RGG-boxes can also repress in-trans, within dimeric partners. Lys can functionally substitute for Arg, indicating that the basic nature of the Arg side chain is the critical determinant of RGG-box-mediated repression. In addition to the EAD, RGG-boxes can repress a broad range of activation domains (including those of VP16, E1a and CREB), but repression can be alleviated by the simultaneous presence of more than one activation domain. We therefore propose that a key function of RGG boxes within native EWS is to restrict promiscuous activation by the EAD while still allowing EWS to enter functional transcription complexes and participate in other transactions involving pre-mRNAs.
Collapse
Affiliation(s)
| | - Kevin A. W. Lee
- To whom correspondence should be addressed. Tel: +852 2358 8636; Fax: +852 2358 1559;
| |
Collapse
|
23
|
Pankratova EV, Sytina EV, Luchina NN, Krivega IV. The regulation of the Oct-1 gene transcription is mediated by two promoters. Immunol Lett 2003; 88:15-20. [PMID: 12853155 DOI: 10.1016/s0165-2478(03)00026-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ubiquitous transcription factor Oct-1 is a member of the POU domain family of regulatory proteins. Target genes controlled by Oct-1 include housekeeping genes, e.g. the genes encoding histon H2B or snRNAs, as well as tissue-specific genes, e.g. the genes encoding the light and heavy chains of immunoglobulines, some interleukins, and others. Oct-1 pre-mRNA may be spliced in several ways, resulting in production of several protein isoforms that may differ functionally. The 5'-end of the Oct-1 gene contains two exons-exon 1U and exon 1L that alternatively present in Oct-1 mRNA. We studied regulation of transcription of the Oct-1 gene using reporter gene assays of promoter-luciferase gene-constructs. It was shown that transcription of the Oct-1 gene is regulated by two promoters located upstream of the exon 1U and upstream of the exon 1L. The promoter located upstream of the exon 1U contains G/C-rich sequences and multiple Sp1 sites, while the promoter located upstream of the exon 1L contains A/T-rich motifs and autoregulation-related cis-elements: two octamer sites ATGCAAAT, two octamer related sites and multiple TAAT-core sites. Exons 1U and 1L in the human OTF-1 locus encoding the Oct-1 gene are located at the distance of 108 kbp. In the murine locus otf-1 the distance between exons 1U and 1L is 67 kbp. We suggest that the two promoters can differ functionally.
Collapse
Affiliation(s)
- Elizaveta V Pankratova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, Moscow, 119991, Russia.
| | | | | | | |
Collapse
|
24
|
Hicks MR, Al-Mehairi SS, Sinclair AJ. The zipper region of Epstein-Barr virus bZIP transcription factor Zta is necessary but not sufficient to direct DNA binding. J Virol 2003; 77:8173-7. [PMID: 12829857 PMCID: PMC161931 DOI: 10.1128/jvi.77.14.8173-8177.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viral bZIP transcription factor Zta (BZLF1, EB1, ZEBRA) mediates the switch between the latent and lytic cycles of Epstein-Barr virus (EBV). In part, its activity requires the formation of homodimers and interaction with specific DNA sequence elements (ZREs). Zta has an atypical zipper motif that has a lower stability than do typical bZIP proteins. Here we show that a synthetic peptide directed against the zipper can disrupt the DNA-binding function of Zta. This highlights the relevance of this region for the function of Zta and demonstrates that the zipper region is a potential target for therapeutic agents. We also unmask the relevance of a region adjacent to the zipper (CT region), which is required to direct the interaction of Zta with DNA and to transactivate ZRE-dependent promoters in vivo.
Collapse
Affiliation(s)
- Matthew R Hicks
- School of Biological Sciences, University of Sussex, Brighton, East Sussex BN1 9QG, United Kingdom
| | | | | |
Collapse
|
25
|
Seaman WT, Quinlivan EB. Lytic switch protein (ORF50) response element in the Kaposi's sarcoma-associated herpesvirus K8 promoter is located within but does not require a palindromic structure. Virology 2003; 310:72-84. [PMID: 12788632 DOI: 10.1016/s0042-6822(03)00095-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Kaposi's sarcoma-associated virus (KSHV) ORF50 protein induces lytic replication and activates the K8 promoter. We show that ORF50-induced and tetradecanoyl phorbol acetate (TPA) induced K8 transcripts initiated from the same start site. A newly identified palindrome (PAL2), containing a 12-bp response region required for ORF50-induced activation in lymphoid cells, was identified in the K8 promoter. Specific DNA binding of bacterially expressed ORF50 was not seen with the K8 promoter despite specific binding to the PAN promoter. The new palindrome shared homology with a previously described ORF50 response element (50RE(K8) and 50RE(57)). We demonstrate that the new 50RE(K8) (50RE(K8-PAL2)) is not the palindrome per se. Instead, the response element is buried within the right arm of the palindrome. We propose that the complexity of the K8 response elements reflects the complexity of mechanisms used by ORF50 during viral reactivation.
Collapse
Affiliation(s)
- William T Seaman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599-7295, USA
| | | |
Collapse
|
26
|
Veitia RA. A sigmoidal transcriptional response: cooperativity, synergy and dosage effects. Biol Rev Camb Philos Soc 2003; 78:149-70. [PMID: 12620064 DOI: 10.1017/s1464793102006036] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A sigmoidal transcriptional response (STR) is thought to act as a molecular switch to control gene expression. This nonlinear behaviour arises as a result of the cooperative recognition of a promoter/enhancer by transcription factors (TFs) and/or their synergy to attract the basal transcriptional machinery (BTM). Although this cooperation between TFs is additive in terms of energy, it leads to an exponential increase in affinity between the BTM and the pre-initiation complexes. This exponential increase in the strength of interactions is the principle that governs synergistic systems. Here, I propose a minimalist quasi-equilibrium model to explore qualitatively the STR taking into account cooperative recognition of the promoter/enhancer and synergy. Although the focus is on the effect of activators, a similar treatment can be applied to inhibitors. One of the main insights obtained from the model is that generation of a sigmoidal threshold is possible even in the absence of cooperative DNA binding provided the TFs synergistically interact with the BTM. On the contrary, when there is cooperative binding, the impact of synergy diminishes. It will also be shown that a sigmoidal response to a morphogenetic gradient can be used to generate a nested gradient of another morphogen. Previously, I had proposed that halving the amounts of TFs involved in sigmoidal transcriptional switches could account for the abnormal dominant phenotypes associated with some of these genes. This phenomenon, called haploinsufficiency (HI), has been recognised as the basis of many human diseases. Although a formal proof linking HI and a sigmoidal response is lacking, it is tempting to explore the model from the perspective of dosage effects.
Collapse
Affiliation(s)
- Reiner A Veitia
- UFR de Biologie et Sciences de la Nature, Université Denis Diderot/Paris VII, France
| |
Collapse
|
27
|
Mitsouras K, Wong B, Arayata C, Johnson RC, Carey M. The DNA architectural protein HMGB1 displays two distinct modes of action that promote enhanceosome assembly. Mol Cell Biol 2002; 22:4390-401. [PMID: 12024049 PMCID: PMC133865 DOI: 10.1128/mcb.22.12.4390-4401.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HMGB1 (also called HMG-1) is a DNA-bending protein that augments the affinity of diverse regulatory proteins for their DNA sites. Previous studies have argued for a specific interaction between HMGB1 and target proteins, which leads to cooperative binding of the complex to DNA. Here we propose a different model that emerged from studying how HMGB1 stimulates enhanceosome formation by the Epstein-Barr viral activator Rta on a target gene, BHLF-1. HMGB1 stimulates binding of individual Rta dimers to multiple sites in the enhancer. DNase I and hydroxyl radical footprinting, electrophoretic mobility shift assays, and immobilized template assays failed to reveal stable binding of HMGB1 within the complex. Furthermore, mutational analysis failed to identify a specific HMGB1 target sequence. The effect of HMGB1 on Rta could be reproduced by individual HMG domains, yeast HMO1, or bacterial HU. These results, combined with the effects of single-amino-acid substitutions within the DNA-binding surface of HMGB1 domain A, argue for a mechanism whereby DNA-binding and bending by HMGB1 stimulate Rta-DNA complex formation in the absence of direct interaction with Rta or a specific HMGB1 target sequence. The data contrast with our analysis of HMGB1 action on another BHLF-1 regulatory protein called ZEBRA. We discuss the two distinct modes of HMGB1 action on a single regulatory region and propose how HMGB1 can function in diverse contexts.
Collapse
Affiliation(s)
- Katherine Mitsouras
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | | | |
Collapse
|
28
|
Feng L, Lee KA. A repetitive element containing a critical tyrosine residue is required for transcriptional activation by the EWS/ATF1 oncogene. Oncogene 2001; 20:4161-8. [PMID: 11464282 DOI: 10.1038/sj.onc.1204522] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2000] [Revised: 04/09/2001] [Accepted: 04/09/2001] [Indexed: 11/08/2022]
Abstract
Chromosomal fusion of the N-terminal region of the Ewings Sarcoma Oncogene (EWS-activation-domain, EAD) to the DNA-binding domains of a variety of cellular transcription factors produce oncogenic proteins (EWS-fusion proteins (EFPs)) that cause distinct malignancies. In EFPs, the EAD acts as a potent transcriptional activation domain and this ability is repressed in the context of normal, non-tumorigenic, EWS. Trans-activation by the EAD is therefore a specific characteristic of EFPs and it is thought that EFPs induce tumorigenesis via improper transcriptional activation of cellular genes. Functional elements required for transcriptional activation are dispersed throughout the EAD, as are thirty-one copies of a Degenerate Hexapeptide Repeat (DHR, consensus SYGQQS). This suggests that the EAD contains a highly reiterated functional element related to DHRs. Here we show that in the context of EWS/ATF1, the EFP that causes malignant melanoma of soft parts, trans-cooperation by small regions of the EAD ( approximately 30 residues) results in potent transcriptional activation dependent on the conserved tyrosine residues present in DHRs. These findings provide the first evidence for a role of DHRs in EAD-mediated trans-activation and demonstrate that the EAD represents a novel tyrosine-dependent transcriptional activation domain.
Collapse
Affiliation(s)
- L Feng
- Department of Biology, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, S.A.R. China
| | | |
Collapse
|
29
|
Solow S, Salunek M, Ryan R, Lieberman PM. Taf(II) 250 phosphorylates human transcription factor IIA on serine residues important for TBP binding and transcription activity. J Biol Chem 2001; 276:15886-92. [PMID: 11278496 DOI: 10.1074/jbc.m009385200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor IIA (TFIIA) is a positive acting general factor that contacts the TATA-binding protein (TBP) and mediates an activator-induced conformational change in the transcription factor IID (TFIID) complex. Previously, we have found that phosphorylation of yeast TFIIA stimulates TFIIA.TBP.TATA complex formation and transcription activation in vivo. We now show that human TFIIA is phosphorylated in vivo on serine residues that are partially conserved between yeast and human TFIIA large subunits. Alanine substitution mutation of serine residues 316 and 321 in TFIIA alphabeta reduced TFIIA phosphorylation significantly in vivo. Additional alanine substitutions at serines 280 and 281 reduced phosphorylation to undetectable levels. Mutation of all four serine residues reduced the ability of TFIIA to stimulate transcription in transient transfection assays with various activators and promoters, indicating that TFIIA phosphorylation is required globally for optimal function. In vitro, holo-TFIID and TBP-associated factor 250 (TAF(II)250) phosphorylated TFIIA on the beta subunit. Mutation of the four serines required for in vivo phosphorylation eliminated TFIID and TAF(II)250 phosphorylation in vitro. The NH(2)-terminal kinase domain of TAF(II)250 was sufficient for TFIIA phosphorylation, and this activity was inhibited by full-length retinoblastoma protein but not by a retinoblastoma protein mutant defective for TAF(II)250 interaction or tumor suppressor activity. TFIIA phosphorylation had little effect on the TFIIA.TBP.TATA complex in electrophoretic mobility shift assay. However, phosphorylation of TFIIA containing a gamma subunit Y65A mutation strongly stimulated TFIIA.TBP.TATA complex formation. TFIIA-gammaY65A is defective for binding to the beta-sheet domain of TBP identified in the crystal structure. These results suggest that TFIIA phosphorylation is important for strengthening the TFIIA.TBP contact or creating a second contact between TFIIA and TBP that was not visible in the crystal structure.
Collapse
Affiliation(s)
- S Solow
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
30
|
Wu FY, Ahn JH, Alcendor DJ, Jang WJ, Xiao J, Hayward SD, Hayward GS. Origin-independent assembly of Kaposi's sarcoma-associated herpesvirus DNA replication compartments in transient cotransfection assays and association with the ORF-K8 protein and cellular PML. J Virol 2001; 75:1487-506. [PMID: 11152521 PMCID: PMC114054 DOI: 10.1128/jvi.75.3.1487-1506.2001] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Six predicted Kaposi's sarcoma virus herpesvirus (KSHV) proteins have homology with other well-characterized herpesvirus core DNA replication proteins and are expected to be essential for viral DNA synthesis. Intact Flag-tagged protein products from all six were produced from genomic expression vectors, although the ORF40/41 transcript encoding a primase-helicase component proved to be spliced with a 127-bp intron. The intracellular localization of these six KSHV replication proteins and the mechanism of their nuclear translocation were investigated. SSB (single-stranded DNA binding protein, ORF6) and PPF (polymerase processivity factor, ORF59) were found to be intrinsic nuclear proteins, whereas POL (polymerase, ORF9), which localized in the cytoplasm on its own, was translocated to the nucleus when cotransfected with PPF. PAF (primase-associated factor, ORF40/41), a component of the primase-helicase tripartite subcomplex together with PRI (primase, ORF56) and HEL (helicase, ORF44), required the presence of all five other replication proteins for efficient nuclear translocation. Surprisingly, even in the absence of a lytic cycle replication origin (ori-Lyt) and any known initiator or origin binding protein, the protein products of all six KSHV core replication genes cooperated in a transient cotransfection assay to form large globular shaped pseudo-replication compartments (pseudo-RC), which excluded cellular DNA. These pseudo-RC structures were confirmed to include POL, SSB, PRI, and PAF but did not contain any newly synthesized DNA. Similar to the human cytomegalovirus system, the peripheries of these KSHV pre-RC were also found to be surrounded by punctate PML oncogenic domains (PODs). Furthermore, by transient cotransfection, the six KSHV core replication machinery proteins successfully replicated a plasmid containing EBV ori-Lyt in the presence of the Epstein-Barr virus-encoded DNA binding initiator protein, ZTA. The KSHV-encoded K8 (ORF-K8) protein, which is a distant evolutionary homologue to ZTA, was incorporated into pseudo-RC structures formed by transient cotransfection with the six core KSHV replication genes. However, unlike ZTA, K8 displayed a punctate nuclear pattern both in transfected cells and at early stages of lytic infection and colocalized with the cellular PML proteins in PODs. Finally, K8 was also found to accumulate in functional viral RC, detected by incorporation of pulse-labeled bromodeoxyuridine into newly synthesized DNA in both tetradecanoyl phorbol acetate-induced JSC-1 primary effusion lymphoblasts and in KSHV lytically infected endothelial cells.
Collapse
Affiliation(s)
- F Y Wu
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231-1000, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Sheppard HM, Liu X. Transcription by RNA polymerase II in DNA-PK deficient scid mouse cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:41-7. [PMID: 10978505 DOI: 10.1016/s0167-4781(00)00155-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA-dependent protein kinase (DNA-PK) is involved in DNA repair but there is some evidence to suggest that it is also involved in regulating transcription. We used a pair of cell lines, SCVA2 and SC(8)-10, which are DNA-PK negative and positive respectively, in order to examine the effect of DNA-PK upon transcription. Initial experiments were performed using p53 as an activator of transcription because DNA-PK has been proposed as a candidate upstream activator of p53. It was found both in vivo and in vitro that efficient p53-dependent transcription required the presence of DNA-PK. However, phosphorylation of p53 by DNA-PK did not affect the DNA-binding ability of p53 nor its transcriptional activity when tested in vitro. Subsequent in vivo experiments suggested that a number of transcription activators functioned more efficiently in the presence of DNA-PK. Therefore DNA-PK may play a general role in regulation of transcription driven by RNA polymerase II. In addition, DNA-PK is shown to have no specific effect on p53-dependent transcription.
Collapse
Affiliation(s)
- H M Sheppard
- Department of Biochemistry, University of California, 92521, Riverside, CA, USA
| | | |
Collapse
|
32
|
Ikeda T, Kobayashi R, Horiuchi M, Nagata Y, Hasegawa M, Mizuno F, Hirai K. Detection of lymphocytes productively infected with Epstein-Barr virus in non-neoplastic tonsils. J Gen Virol 2000; 81:1211-6. [PMID: 10769062 DOI: 10.1099/0022-1317-81-5-1211] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) persists for life in the infected host. Little is known about EBV reactivation and regulation of virus persistence in healthy individuals. We examined tonsils of chronic tonsillitis patients to detect EBV transcripts, EBV genomes and lytic proteins. LMP1 transcripts were observed in 11 of 15 specimens and BZLF1 transcripts were detected in six. Multiple copies of EBV genome equivalents per cell, and ZEBRA- and viral capsid antigen-positive cells were also detected in tonsillar lymphocytes. These results indicate that EBV productively infected cells may survive in the face of immune surveillance in the tonsils. Thus, EBV replication may occur in tonsillar lymphocytes, and tonsillar lymphoid tissues may play a role in the maintenance of EBV load in vivo.
Collapse
Affiliation(s)
- T Ikeda
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Ozer J, Moore PA, Lieberman PM. A testis-specific transcription factor IIA (TFIIAtau) stimulates TATA-binding protein-DNA binding and transcription activation. J Biol Chem 2000; 275:122-8. [PMID: 10617594 DOI: 10.1074/jbc.275.1.122] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor IIA (TFIIA) stimulates RNA polymerase II-specific transcription by stabilizing the association of the TATA-binding protein (TBP) with promoter DNA, inhibiting repressors of TBP, and facilitating activator-dependent conformational changes in the preinitiation complex. TFIIA is encoded by two genes (alphabeta and gamma) that are highly conserved between human and yeast. Here, we report the molecular cloning of a novel human gene that shares significant sequence similarity to the evolutionarily conserved amino- and carboxyl-terminal domains of TFIIAalphabeta. The TFIIA-related protein (TFIIAtau) was cloned from a testis-specific cDNA library, and its mRNA is expressed predominantly in testis tissue as determined by expressed sequence tag data base analysis and Northern blotting analysis. The TFIIA complex reconstituted with the testis-specific subunit, TFIIA (tau+gamma), formed the TFIIA-TBP-TATA DNA (T-A) and TFIIA-TFIIB-TBP-TATA DNA (TAB) complexes indistinguishably from TFIIA (alphabeta+gamma). TFIIA (tau+gamma) supported basal and activated transcription for most activators in reactions reconstituted with TFIIA-depleted nuclear extracts. However, TFIIA (tau+gamma) was reduced relative to TFIIA (alphabeta+gamma) for stimulating transcription with at least one activator, suggesting that these two forms of TFIIA have activator specificity. These results suggest that TFIIAtau may be important for testis-specific transcription regulation.
Collapse
Affiliation(s)
- J Ozer
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
34
|
Ragoczy T, Miller G. Role of the epstein-barr virus RTA protein in activation of distinct classes of viral lytic cycle genes. J Virol 1999; 73:9858-66. [PMID: 10559298 PMCID: PMC113035 DOI: 10.1128/jvi.73.12.9858-9866.1999] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initiation of the Epstein-Barr virus (EBV) lytic cycle is controlled by two immediate-early genes, BZLF1 and BRLF1. In certain epithelial and B-cell lines, their protein products, ZEBRA and Rta, stimulate their own expression, reciprocally stimulate each other's expression, and activate downstream viral targets. It has been difficult to examine the individual roles of these two transactivators in EBV-infected lymphocytes, as they are expressed simultaneously upon induction of the lytic cycle. Here we show that the Burkitt lymphoma cell line Raji represents an experimental system that allows the study of Rta's role in the lytic cycle of EBV in the absence and presence of ZEBRA. When expressed in Raji cells, exogenous Rta does not activate endogenous BZLF1 expression, yet Rta remains competent to transactivate certain downstream viral targets. Some genes, such as BaRF1, BMLF1, and a late gene, BLRF2, are maximally activated by Rta itself in the absence of detectable ZEBRA. The use of the Z(S186A) mutant form of ZEBRA, whose transactivation function is manifest only by coexpression of Rta, allows identification of a second class of lytic cycle genes, such as BMRF1 and BHRF1, that are activated in synergy by Rta and ZEBRA. It has already been documented that of the two activators, only ZEBRA stimulates the BRLF1 gene in Raji cells. Thus, there is a third class of viral genes activated by ZEBRA but not Rta. Moreover, ZEBRA exhibits an inhibitory effect on Rta's capacity to stimulate the late gene, BLRF2. Consequently ZEBRA may function to repress Rta's potential to activate some late genes. Raji cells thus allow delineation of the combinatorial roles of Rta and ZEBRA in control of several distinct classes of lytic cycle genes.
Collapse
Affiliation(s)
- T Ragoczy
- Departments Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
35
|
Dreyfus DH, Nagasawa M, Pratt JC, Kelleher CA, Gelfand EW. Inactivation of NF-κB by EBV BZLF-1-Encoded ZEBRA Protein in Human T Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.11.6261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We have previously shown that the EBV ZEBRA protein (also denoted EB1, Z, or Zta) encoded by the BZLF open reading frame is expressed in primary human thymocytes and in human T lymphoblastoid cell lines infected by EBV. Expression of EBV-encoded gene products in T lymphocytes could contribute to viral pathogenesis during acute EBV infection as well as in individuals coinfected with EBV and HIV. HPB-ALL and Jurkat T lymphoblastoid cell lines transiently and stably expressing ZEBRA were characterized in this work. Expression of ZEBRA protein in human T lymphoblastoid cells was associated with decreased expression of an NF-κB reporter gene, altered expression of the NF-κB p50 protein subunit, and decreased DNA binding by components of NF-κB. These observations suggest that inactivation of NF-κB transcription by ZEBRA in EBV-infected T cells may be a novel mechanism of viral pathogenesis analogous in part to over-expression of the endogenous cytoplasmic inhibitor of NF-κB, IκBα.
Collapse
Affiliation(s)
- David H. Dreyfus
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206
| | - Masayuki Nagasawa
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206
| | - Joanne C. Pratt
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206
| | - Colm A. Kelleher
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206
| | - Erwin W. Gelfand
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206
| |
Collapse
|
36
|
Moore PA, Ozer J, Salunek M, Jan G, Zerby D, Campbell S, Lieberman PM. A human TATA binding protein-related protein with altered DNA binding specificity inhibits transcription from multiple promoters and activators. Mol Cell Biol 1999; 19:7610-20. [PMID: 10523649 PMCID: PMC84787 DOI: 10.1128/mcb.19.11.7610] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/1999] [Accepted: 07/28/1999] [Indexed: 11/20/2022] Open
Abstract
The TATA binding protein (TBP) plays a central role in eukaryotic and archael transcription initiation. We describe the isolation of a novel 23-kDa human protein that displays 41% identity to TBP and is expressed in most human tissue. Recombinant TBP-related protein (TRP) displayed barely detectable binding to consensus TATA box sequences but bound with slightly higher affinities to nonconsensus TATA sequences. TRP did not substitute for TBP in transcription reactions in vitro. However, addition of TRP potently inhibited basal and activated transcription from multiple promoters in vitro and in vivo. General transcription factors TFIIA and TFIIB bound glutathione S-transferase-TRP in solution but failed to stimulate TRP binding to DNA. Preincubation of TRP with TFIIA inhibited TBP-TFIIA-DNA complex formation and addition of TFIIA overcame TRP-mediated transcription repression. TRP transcriptional repression activity was specifically reduced by mutations in TRP that disrupt the TFIIA binding surface but not by mutations that disrupt the TFIIB or DNA binding surface of TRP. These results suggest that TFIIA is a primary target of TRP transcription inhibition and that TRP may modulate transcription by a novel mechanism involving the partial mimicry of TBP functions.
Collapse
Affiliation(s)
- P A Moore
- Human Genome Sciences, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Ellwood K, Chi T, Huang W, Mitsouras K, Carey M. Cooperative assembly of RNA polymerase II transcription complexes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:253-61. [PMID: 10384289 DOI: 10.1101/sqb.1998.63.253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- K Ellwood
- Department of Biological Chemistry, University of California School of Medicine, Los Angeles 90095-1737, USA
| | | | | | | | | |
Collapse
|
38
|
Ellwood K, Huang W, Johnson R, Carey M. Multiple layers of cooperativity regulate enhanceosome-responsive RNA polymerase II transcription complex assembly. Mol Cell Biol 1999; 19:2613-23. [PMID: 10082527 PMCID: PMC84054 DOI: 10.1128/mcb.19.4.2613] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two coordinate forms of transcriptional synergy mediate eukaryotic gene regulation: the greater-than-additive transcriptional response to multiple promoter-bound activators, and the sigmoidal response to increasing activator concentration. The mechanism underlying the sigmoidal response has not been elucidated but is almost certainly founded on the cooperative binding of activators and the general machinery to DNA. Here we explore that mechanism by using highly purified transcription factor preparations and a strong Epstein-Barr virus promoter, BHLF-1, regulated by the virally encoded activator ZEBRA. We demonstrate that two layers of cooperative binding govern transcription complex assembly. First, the architectural proteins HMG-1 and -2 mediate cooperative formation of an enhanceosome containing ZEBRA and cellular Sp1. This enhanceosome then recruits transcription factor IIA (TFIIA) and TFIID to the promoter to form the DA complex. The DA complex, however, stimulates assembly of the enhanceosome itself such that the entire reaction can occur in a highly concerted manner. The data reveal the importance of reciprocal cooperative interactions among activators and the general machinery in eukaryotic gene regulation.
Collapse
Affiliation(s)
- K Ellwood
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | |
Collapse
|
39
|
Zerby D, Chen CJ, Poon E, Lee D, Shiekhattar R, Lieberman PM. The amino-terminal C/H1 domain of CREB binding protein mediates zta transcriptional activation of latent Epstein-Barr virus. Mol Cell Biol 1999; 19:1617-26. [PMID: 10022850 PMCID: PMC83956 DOI: 10.1128/mcb.19.3.1617] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1998] [Accepted: 11/30/1998] [Indexed: 12/29/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) is maintained as a nucleosome-covered episome that can be transcriptionally activated by overexpression of the viral immediate-early protein, Zta. We show here that reactivation of latent EBV by Zta can be significantly enhanced by coexpression of the cellular coactivators CREB binding protein (CBP) and p300. A stable complex containing both Zta and CBP could be isolated from lytically stimulated, but not latently infected RAJI nuclear extracts. Zta-mediated viral reactivation and transcriptional activation were both significantly inhibited by coexpression of the E1A 12S protein but not by an N-terminal deletion mutation of E1A (E1ADelta2-36), which fails to bind CBP. Zta bound directly to two related cysteine- and histidine-rich domains of CBP, referred to as C/H1 and C/H3. These domains both interacted specifically with the transcriptional activation domain of Zta in an electrophoretic mobility shift assay. Interestingly, we found that the C/H3 domain was a potent dominant negative inhibitor of Zta transcriptional activation function. In contrast, an amino-terminal fragment containing the C/H1 domain was sufficient for coactivation of Zta transcription and viral reactivation function. Thus, CBP can stimulate the transcription of latent EBV in a histone acetyltransferase-independent manner mediated by the CBP amino-terminal C/H1-containing domain. We propose that CBP may regulate aspects of EBV latency and reactivation by integrating cellular signals mediated by competitive interactions between C/H1, C/H3, and the Zta activation domain.
Collapse
Affiliation(s)
- D Zerby
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
40
|
Wang J, Ellwood K, Lehman A, Carey MF, She ZS. A mathematical model for synergistic eukaryotic gene activation. J Mol Biol 1999; 286:315-25. [PMID: 9973553 DOI: 10.1006/jmbi.1998.2489] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The precise biochemical mechanism underlying the synergistic action of gene activators on eukaryotic transcription has eluded a solution, largely because of the technical difficulties inherent in analyzing the mechanics of a 2.5 MDa complex comprising greater than 50 polypeptide components. To complement the biochemical approach we have employed mathematical modeling as a means to understand the mechanism of synergy. Parameters relevant to activated transcription were varied in a simple biochemical system and the data were compared to the transcriptional response predicted by a multi-component statistical model. We found that the model achieved a consistent, semi-quantitative description of the measured transcriptional response, and enabled the characterization and measurement of thermodynamic parameters in the in vitro system. The results provide evidence for the existence of cooperativity in the activation process beyond what would be predicted from one current model suggesting that activators function solely by simple recruitment of the general transcription machinery to the promoter.
Collapse
Affiliation(s)
- J Wang
- School of Medicine, University of California, Los Angeles, CA, Box 1737, USA
| | | | | | | | | |
Collapse
|
41
|
Gao Z, Krithivas A, Finan JE, Semmes OJ, Zhou S, Wang Y, Hayward SD. The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. J Virol 1998; 72:8559-67. [PMID: 9765394 PMCID: PMC110266 DOI: 10.1128/jvi.72.11.8559-8567.1998] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/1998] [Accepted: 07/02/1998] [Indexed: 01/13/2023] Open
Abstract
The Epstein-Barr virus transactivator Zta triggers lytic gene expression and is essential for replication of the lytic origin, oriLyt. Previous analysis indicated that the Zta activation domain contributed a replication-specific function. We now show that the Zta activation domain interacts with components of the EBV helicase-primase complex. The three helicase-primase proteins BBLF4 (helicase), BSLF1 (primase), and BBLF2/3 (primase-associated factor) were expressed fused to the Myc epitope. When expression plasmids for BBLF4 or BBLF2/3 plus BSLF1 (primase subcomplex) were separately transfected, the proteins localized to the cytoplasm. Interaction between Zta and the components of the helicase-primase complex was tested by examining the ability of Zta to alter the intracellular localization of these proteins. Cotransfection of Zta with Myc-BBLF4 resulted in nuclear translocation of Myc-BBLF4; similarly, cotransfection of Zta with the primase subcomplex led to nuclear translocation of the Myc-BSLF1 and Myc-BBLF2/3 proteins. This relocalization provides evidence for an interaction between Zta and the helicase and Zta and the primase subcomplex. An affinity assay using glutathione S-transferase-Zta fusion proteins demonstrated that Myc-BBLF4 and Myc-BBLF2/3 plus BSLF1 bound to the Zta activation domain (amino acids 1 to 133). In the nuclear relocalization assay, the amino-terminal 25 amino acids of Zta were required for efficient interaction with the primase subcomplex but not for interaction with BBLF4. Evidence for interaction between oriLyt bound Zta and the helicase-primase complex was obtained in a superactivation assay using an oriLyt-chloramphenicol acetyltransferase (CAT) reporter. Zta activated expression from a CAT reporter containing the complete oriLyt region and regulated by the oriLyt BHLF1 promoter. Cotransfection of the helicase-primase proteins, one of which was fused to a heterologous activation domain, led to Zta-dependent superactivation of CAT expression. This assay also provided evidence for an interaction between the single-stranded DNA binding protein, BALF2, and the Zta-tethered helicase-primase complex. The helicase-primase interaction is consistent with a role for Zta in stabilizing the formation of an origin-bound replication complex.
Collapse
Affiliation(s)
- Z Gao
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Asković S, Taylor W, Baumann R. The position of the ZEBRA activation domain does not influence its biological activity. Virus Res 1998; 57:125-38. [PMID: 9870581 DOI: 10.1016/s0168-1702(98)00089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus which latently infects B lymphocytes. EBV encodes a unique transcriptional activator, known as ZEBRA, which can disrupt viral latency in B cells and induce lytic viral replication. Furthermore, ZEBRA has been shown to bind at the EBV origin of lytic replication, and is necessary for viral DNA replication to occur. Previously we demonstrated that heterologous activation domains can fully substitute for the ZEBRA activation domain. Here we extend those results by showing that the position of the ZEBRA activation domain or a heterologous replacement domain does not influence its ability to function in the disruption of EBV latency. In this study three novel clones were constructed in which the ZEBRA activation region was repositioned to the carboxy terminus of the protein. These mutants were used to demonstrate that the ability of ZEBRA's wild type domain to function in the complex biological process of virus activation is not compromised by altering its position within the protein.
Collapse
Affiliation(s)
- S Asković
- Department of Microbiology, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | |
Collapse
|
43
|
He S, Weintraub SJ. Stepwise recruitment of components of the preinitiation complex by upstream activators in vivo. Mol Cell Biol 1998; 18:2876-83. [PMID: 9566906 PMCID: PMC110666 DOI: 10.1128/mcb.18.5.2876] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recently, it was found that if either the TATA binding protein or RNA polymerase II holoenzyme is artificially tethered to a promoter, transcription is activated. This finding provided presumptive evidence that upstream activating proteins function by recruiting components of the preinitiation complex (PIC) to the promoter. To date, however, there have been no studies demonstrating that upstream factors actually recruit components of the PIC to the promoter in vivo. Therefore, we have studied the mechanism of action of two disparate transactivating domains. We present a series of in vivo functional assays that demonstrate that each of these proteins targets different components of the PIC for recruitment. We show that, by targeting different components of the PIC for recruitment, these activating domains can cooperate with each other to activate transcription synergistically and that, even within one protein, two different activating subdomains can activate transcription synergistically by cooperating to recruit different components of the PIC. Finally, considering our work together with previous studies, we propose that certain transcription factors both recruit components of the PIC and facilitate steps in transcriptional activation that occur subsequent to recruitment.
Collapse
Affiliation(s)
- S He
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | |
Collapse
|
44
|
Lehman AM, Ellwood KB, Middleton BE, Carey M. Compensatory energetic relationships between upstream activators and the RNA polymerase II general transcription machinery. J Biol Chem 1998; 273:932-9. [PMID: 9422752 DOI: 10.1074/jbc.273.2.932] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation of RNA polymerase II transcription in vivo and in vitro is synergistic with respect to increasing numbers of activator binding sites or increasing concentrations of activator. The Epstein-Barr virus ZEBRA protein manifests both forms of synergy during activation of genes involved in the viral lytic cycle. The synergy has an underlying mechanistic basis that we and others have proposed is founded largely on the energetic contributions of (i) upstream ZEBRA binding to its sites, (ii) the general pol II machinery binding to the core promoter, and (iii) interactions between ZEBRA and the general machinery. We hypothesize that these interactions form a network for which a minimum stability must be attained to activate transcription. One prediction of this model is that the energetic contributions should be reciprocal, such that a strong core promoter linked to a weak upstream promoter would be functionally analogous to a weak core linked to a strong upstream promoter. We tested this view by measuring the transcriptional response after systematically altering the upstream and core promoters. Our data provide strong qualitative support for this hypothesis and provide a theoretical basis for analyzing Epstein-Barr virus gene regulation.
Collapse
Affiliation(s)
- A M Lehman
- Department of Biological Chemistry, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | |
Collapse
|
45
|
Veenstra GJ, van der Vliet PC, Destrée OH. POU domain transcription factors in embryonic development. Mol Biol Rep 1997; 24:139-55. [PMID: 9291088 DOI: 10.1023/a:1006855632268] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- G J Veenstra
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | | | | |
Collapse
|
46
|
Zerby D, Lieberman PM. Functional analysis of TFIID-activator interaction by magnesium-agarose gel electrophoresis. Methods 1997; 12:217-23. [PMID: 9237166 DOI: 10.1006/meth.1997.0474] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The general transcription factors TFIID and TFIIA are critical for the recognition of promoter start sites and mediate the stimulatory effect of some transcriptional activators. The regulation of TFIID binding to promoter DNA by activators and coactivators can be studied using a modified gel electrophoresis mobility shift assay (EMSA). TFIID is a multiprotein complex that consists of the TATA binding protein (TBP) and TBP associated factors (TAFs). TBP is a sequence-specific DNA binding protein that binds in the minor groove and introduces an energetically unfavorable bending angle of 100 degrees in the DNA. The activated preinitiation complex consists of TAFs, TBP, TFIIA, multiple activators, and approximately 200 bp of promoter DNA. The large mass and DNA distortions of the preinitiation complex preclude the use of conventional low ionic strength polyacrylamide gel EMSA for analysis. These large complexes can be analyzed by EMSA in agarose gels that contain magnesium ion. The Mg-agarose EMSA is a simple system useful for resolution of large multiprotein complexes that may introduce distortions in linear DNA. Important parameters are discussed so that this technique can be generally applied to other model activators.
Collapse
Affiliation(s)
- D Zerby
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
47
|
Francis AL, Gradoville L, Miller G. Alteration of a single serine in the basic domain of the Epstein-Barr virus ZEBRA protein separates its functions of transcriptional activation and disruption of latency. J Virol 1997; 71:3054-61. [PMID: 9060666 PMCID: PMC191435 DOI: 10.1128/jvi.71.4.3054-3061.1997] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The ZEBRA protein from Epstein-Barr virus (EBV) activates a switch from the latent to the lytic expression program of the virus. ZEBRA, a member of the bZIP family of DNA-binding proteins, is a transcriptional activator capable of inducing expression from viral lytic cycle promoters. It had previously been thought that ZEBRA's capacity to disrupt EBV latency resided primarily in its ability to activate transcription of genes that encode products required for lytic replication. We generated a point mutant of ZEBRA, Z(S186A), that was not impaired in its ability to activate transcription; however, this mutation abolished its ability to initiate the viral lytic cascade. The mutant, containing a serine-to-alanine substitution in the DNA-binding domain of the protein, bound to several known ZEBRA-binding sites and activated transcription from reporters bearing known ZEBRA-responsive promoters but did not disrupt latency in EBV-infected cell lines. Therefore, initiation of the EBV lytic cycle by the ZEBRA protein requires a function in addition to transcriptional activation; a change of serine 186 to alanine in the DNA-binding domain of ZEBRA abolished this additional function and uncovered a new role for the ZEBRA protein in disruption of EBV latency. The additional function that is required for initiation of the lytic viral life cycle is likely to require phosphorylation of serine 186 of the ZEBRA protein, which may influence either DNA recognition or transcriptional activation of lytic viral promoters in a chromatinized viral episome.
Collapse
Affiliation(s)
- A L Francis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
48
|
Kirov NC, Lieberman PM, Rushlow C. The transcriptional corepressor DSP1 inhibits activated transcription by disrupting TFIIA-TBP complex formation. EMBO J 1996; 15:7079-87. [PMID: 9003783 PMCID: PMC452533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transcriptional repression of eukaryotic genes is essential for many cellular and developmental processes, yet the precise mechanisms of repression remain poorly understood. The Dorsal Switch Protein (DSP1) was identified in a genetic screen for activities which convert Dorsal into a transcriptional repressor. DSP1 shares structural homology with the HMG-1/2 family and inhibits activation by the rel transcription factors Dorsal and NF-kappaB in transfection studies. Here we investigate the mechanism of transcriptional repression by DSP1. We found that DSP1 protein can act as a potent transcriptional repressor for multiple activator families in vitro and in transfection studies. DSP1 bound directly to the TATA binding protein (TBP), and formed a stable ternary complex with TBP bound to DNA. DSP1 preferentially disrupted the DNA binding of TBP complexes containing TFIIA and displaced TFIIA from binding to TBP. Consistent with the inhibition of TFIIA-bound complexes, DSP1 was shown to inhibit activated but not basal transcription reactions in vitro. The ability of DSP1 to interact with TBP and to repress transcription was mapped to the carboxy-terminal domain which contains two HMG boxes. Our results support the model that DSP1 represses activated transcription by interfering with the binding of TFIIA, a general transcription factor implicated in activated transcription pathways.
Collapse
Affiliation(s)
- N C Kirov
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|
49
|
Sarisky RT, Gao Z, Lieberman PM, Fixman ED, Hayward GS, Hayward SD. A replication function associated with the activation domain of the Epstein-Barr virus Zta transactivator. J Virol 1996; 70:8340-7. [PMID: 8970953 PMCID: PMC190921 DOI: 10.1128/jvi.70.12.8340-8347.1996] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Zta transactivator is crucial for both Epstein-Barr virus (EBV) lytic gene expression and lytic DNA replication. We have used a cotransfection-replication assay to examine the effect of mutations in the Zta activation domain (amino acids [aa] 1 to 167) on Zta replication activity. Deletion of Zta aa 25 to 86, which are critical for transcriptional activation of ori-Lyt, or aa 93 to 141 did not adversely affect replication of an ori-Lyt-containing target plasmid. However, removal of aa 2 to 25 (delta2-25) abolished replication activity. Within this subdomain, deletion of aa 2 to 10 (delta2-10) or mutation of codons 18 and 19 (m18/19) or 22 and 26 (m22/26) did not affect replication competency, while deletion of codons 13 to 19 (delta13-19) or mutation at codons 12 and 13 (m12/13) impaired Zta replication function. Each of the replication-negative Zta variants was capable of transactivating expression from both BHLF1 promoter-chloramphenicol acetyltransferase constructions and the BMRF1 promoter on endogenous EBV genomes in Raji cells with efficiency comparable to that of the wild-type polypeptide. Thus, a replication contribution of Zta was functionally separable from its transactivation activity and was supplied by the N-terminal region encompassing aa 11 to 25. Replication by a subset of the impaired Zta mutants was partially rescued upon the addition of Rta to the replication assay. The contribution of Rta mapped to domain II of the Rta activation domain and was specific for this region. A chimeric Rta-EBNA-2 transactivation domain fusion, which retains the DNA-binding and transactivation properties associated with wild-type Rta, failed to rescue replication-deficient Zta. Our data suggest that Rta may act as an ancillary replication factor in EBV ori-Lyt DNA synthesis by stabilizing Zta-replisome interactions.
Collapse
Affiliation(s)
- R T Sarisky
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | | | | | | | |
Collapse
|
50
|
Chi T, Carey M. Assembly of the isomerized TFIIA--TFIID--TATA ternary complex is necessary and sufficient for gene activation. Genes Dev 1996; 10:2540-50. [PMID: 8895656 DOI: 10.1101/gad.10.20.2540] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The prevailing view of eukaryotic gene activation poses that activators stimulate transcription by recruiting limiting components of the general transcription machinery to a core promoter. In one such model case, activation by the Epstein-Barr virus ZEBRA protein correlated closely with recruitment of the general transcription factors TFIIA and TFIID (the DA complex) as measured by DNase I footprinting and gel mobility shift assays. We now report that simple recruitment is not sufficient for full-level activation. An additional concentration-independent, rate-limiting step is activator-mediated isomerization of the DA complex characterized by an extended TFIID footprint. The isomerized complex supports both binding of TFIIB in gel mobility shift assays and activated transcription in heat-treated nuclear extracts, even after removal of ZEBRA. Surprisingly, the regulatory phenomenon of synergy was manifested only when the concentration of TFIID was limiting. When the DA complex was saturating, transcription was not synergistic, as indicated by the ability of a single activator to induce isomerization effectively and turn on a gene. On the basis of these observations, we propose a new biochemical model for eukaryotic gene activation and synergy.
Collapse
Affiliation(s)
- T Chi
- Department of Biological Chemistry, University of California, Los Angeles, School of Medicine, 90095-1737, USA
| | | |
Collapse
|