1
|
Piasecki T, Harkins GW, Chrząstek K, Julian L, Martin DP, Varsani A. Avihepadnavirus diversity in parrots is comparable to that found amongst all other avian species. Virology 2013; 438:98-105. [PMID: 23411008 DOI: 10.1016/j.virol.2013.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/12/2013] [Accepted: 01/17/2013] [Indexed: 12/15/2022]
Abstract
Avihepadnaviruses have previously been isolated from various species of duck, goose, stork, heron and crane. Recently the first parrot avihepadnavirus was isolated from a Ring-necked Parakeet in Poland. In this study, 41 psittacine liver samples archived in Poland over the last nine years were tested for presence of Parrot hepatitis B virus (PHBV). We cloned and sequenced PHBV isolates from 18 birds including a Crimson Rosella, an African grey parrot and sixteen Ring-necked Parakeets. PHBV isolates display a degree of diversity (>78% genome wide pairwise identity) that is comparable to that found amongst all other avihepadnaviruses (>79% genome wide pairwise identity). The PHBV viruses can be subdivided into seven genetically distinct groups (tentatively named A-G) of which the two isolated of PHBV-G are the most divergent sharing ∼79% genome wide pairwise identity with all their PHBVs. All PHBV isolates display classical avihepadnavirus genome architecture.
Collapse
Affiliation(s)
- Tomasz Piasecki
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-360 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
2
|
Characterization of nucleosome positioning in hepadnaviral covalently closed circular DNA minichromosomes. J Virol 2012; 86:10059-69. [PMID: 22787202 DOI: 10.1128/jvi.00535-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepadnaviral covalently closed circular DNA (cccDNA) exists as an episomal minichromosome in the nucleus of virus-infected hepatocytes, and serves as the transcriptional template for the synthesis of viral mRNAs. To obtain insight on the structure of hepadnaviral cccDNA minichromosomes, we utilized ducks infected with the duck hepatitis B virus (DHBV) as a model and determined the in vivo nucleosome distribution pattern on viral cccDNA by the micrococcal nuclease (MNase) mapping and genome-wide PCR amplification of isolated mononucleosomal DHBV DNA. Several nucleosome-protected sites in a region of the DHBV genome [nucleotides (nt) 2000 to 2700], known to harbor various cis transcription regulatory elements, were consistently identified in all DHBV-positive liver samples. In addition, we observed other nucleosome protection sites in DHBV minichromosomes that may vary among individual ducks, but the pattern of MNase mapping in those regions is transmittable from the adult ducks to the newly infected ducklings. These results imply that the nucleosomes along viral cccDNA in the minichromosomes are not random but sequence-specifically positioned. Furthermore, we showed in ducklings that a significant portion of cccDNA possesses a few negative superhelical turns, suggesting the presence of intermediates of viral minichromosomes assembled in the liver, where dynamic hepatocyte growth and cccDNA formation occur. This study supplies the initial framework for the understanding of the overall complete structure of hepadnaviral cccDNA minichromosomes.
Collapse
|
3
|
Piasecki T, Kurenbach B, Chrząstek K, Bednarek K, Kraberger S, Martin DP, Varsani A. Molecular characterisation of an avihepadnavirus isolated from Psittacula krameri (ring-necked parrot). Arch Virol 2011; 157:585-90. [DOI: 10.1007/s00705-011-1197-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/07/2011] [Indexed: 02/08/2023]
|
4
|
Kim BK, Lim SO, Park YG. Requirement of the cyclic adenosine monophosphate response element-binding protein for hepatitis B virus replication. Hepatology 2008; 48:361-73. [PMID: 18615500 DOI: 10.1002/hep.22359] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED The cyclic adenosine monophosphate-response element (CRE)-transcription factor complex participates in the regulation of viral gene expression and pathologic processes caused by various viruses. The hepatitis B virus (HBV) enhancer I directs liver-specific transcription of viral genes and contains a CRE sequence (HBV-CRE); however, whether the HBV-CRE and CRE-binding protein (CREB) are required for the HBV life cycle remains to be determined. This study was designed to investigate the role of CREB in HBV replication and gene expression. Sequence-comparison analysis of 984 HBVs reported worldwide showed that the HBV-CRE sequence is highly conserved, indicating the possibility that it plays an important role in the HBV life cycle. The binding of CREB to the HBV-CRE site was markedly inhibited by oligonucleotides containing HBV-CRE and consensus CRE sequences in vitro and in vivo. The HBV promoter activity was demonstrated to be dependent upon the transactivation activity of CREB. Treatment with CRE decoy oligonucleotides reduced HBV promoter activity, and this was reversed by CREB overexpression. The levels of viral transcripts, DNA, and antigens were remarkably decreased in response to the overexpression of CREB mutants or treatment with the CRE decoy oligonucleotides, whereas enhancing CREB activity increased the levels of viral transcripts. In addition, introduction of a three-base mutation into the HBV-CRE led to a marked reduction in HBV messenger RNA synthesis. CONCLUSION Taken together, our results demonstrate that both replication and gene expression of HBV require a functional CREB and HBV-CRE. We have also demonstrated that CRE decoy oligonucleotides and the overexpression of CREB mutants can effectively block the HBV life cycle, suggesting that interventions against CREB activity could provide a new avenue to treat HBV infection.
Collapse
Affiliation(s)
- Bo Kyung Kim
- Department of Biochemistry, Korea University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
5
|
Zinc finger proteins designed to specifically target duck hepatitis B virus covalently closed circular DNA inhibit viral transcription in tissue culture. J Virol 2008; 82:8013-21. [PMID: 18524822 DOI: 10.1128/jvi.00366-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Duck hepatitis B virus (DHBV) is a model virus for human hepatitis B virus (HBV), which infects approximately 360 million individuals worldwide. Nucleoside analogs can decrease virus production by inhibiting the viral polymerase; however, complete clearance by these drugs is not common because of the persistence of the HBV episome. HBV DNA is present in the nucleus as a covalently closed circular (cccDNA) form, where it drives viral transcription and progeny virus production. cccDNA is not the direct target of antiviral nucleoside analogs and is the source of HBV reemergence when antiviral therapy is stopped. To target cccDNA, six different zinc finger proteins (ZFP) were designed to bind DNA sequences in the DHBV enhancer region. After the binding kinetics were assessed by using electrophoretic mobility shift assays and surface plasmon resonance, two candidates with dissociation constants of 12.3 and 40.2 nM were focused on for further study. The ZFPs were cloned into a eukaryotic expression vector and cotransfected into longhorn male hepatoma cells with the plasmid pDHBV1.3, which replicates the DHBV life cycle. In the presence of each ZFP, viral RNA was significantly reduced, and protein levels were dramatically decreased. As a result, intracellular viral particle production was also significantly decreased. In summary, designed ZFPs are able to bind to the DHBV enhancer and interfere with viral transcription, resulting in decreased production of viral products and progeny virus genomes.
Collapse
|
6
|
Guo H, Mason WS, Aldrich CE, Saputelli JR, Miller DS, Jilbert AR, Newbold JE. Identification and characterization of avihepadnaviruses isolated from exotic anseriformes maintained in captivity. J Virol 2005; 79:2729-42. [PMID: 15708992 PMCID: PMC548436 DOI: 10.1128/jvi.79.5.2729-2742.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Five new hepadnaviruses were cloned from exotic ducks and geese, including the Chiloe wigeon, mandarin duck, puna teal, Orinoco sheldgoose, and ashy-headed sheldgoose. Sequence comparisons revealed that all but the mandarin duck viruses were closely related to existing isolates of duck hepatitis B virus (DHBV), while mandarin duck virus clones were closely related to Ross goose hepatitis B virus. Nonetheless, the S protein, core protein, and functional domains of the Pol protein were highly conserved in all of the new isolates. The Chiloe wigeon and puna teal hepatitis B viruses, the two new isolates most closely related to DHBV, also lacked an AUG start codon at the beginning of their X open reading frame (ORF). But as previously reported for the heron, Ross goose, and stork hepatitis B viruses, an AUG codon was found near the beginning of the X ORF of the mandarin duck, Orinoco, and ashy-headed sheldgoose viruses. In all of the new isolates, the X ORF ended with a stop codon at the same position. All of the cloned viruses replicated when transfected into the LMH line of chicken hepatoma cells. Significant differences between the new isolates and between these and previously reported isolates were detected in the pre-S domain of the viral envelope protein, which is believed to determine viral host range. Despite this, all of the new isolates were infectious for primary cultures of Pekin duck hepatocytes, and infectivity in young Pekin ducks was demonstrated for all but the ashy-headed sheldgoose isolate.
Collapse
Affiliation(s)
- Haitao Guo
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Tang H, McLachlan A. Avian and Mammalian hepadnaviruses have distinct transcription factor requirements for viral replication. J Virol 2002; 76:7468-72. [PMID: 12097559 PMCID: PMC136384 DOI: 10.1128/jvi.76.15.7468-7472.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepadnavirus replication occurs in hepatocytes in vivo and in hepatoma cell lines in cell culture. Hepatitis B virus (HBV) replication can occur in nonhepatoma cells when pregenomic RNA synthesis from viral DNA is activated by the expression of the nuclear hormone receptors hepatocyte nuclear factor 4 (HNF4) and the retinoid X receptor alpha (RXR alpha) plus peroxisome proliferator-activated receptor alpha (PPAR alpha) heterodimer. Nuclear hormone receptor-dependent HBV replication is inhibited by hepatocyte nuclear factor 3 (HNF3). In contrast, HNF3 and HNF4 support duck hepatitis B virus (DHBV) replication in nonhepatoma cells, whereas the RXR alpha-PPAR alpha heterodimer inhibits HNF4-dependent DHBV replication. HNF3 and HNF4 synergistically activate DHBV pregenomic RNA synthesis and viral replication. The conditions that support HBV or DHBV replication in nonhepatoma cells are not able to support woodchuck hepatitis virus replication. These observations indicate that avian and mammalian hepadnaviruses have distinct transcription factor requirements for viral replication.
Collapse
Affiliation(s)
- Hong Tang
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
8
|
Pult I, Netter HJ, Bruns M, Prassolov A, Sirma H, Hohenberg H, Chang SF, Frölich K, Krone O, Kaleta EF, Will H. Identification and analysis of a new hepadnavirus in white storks. Virology 2001; 289:114-28. [PMID: 11601923 DOI: 10.1006/viro.2001.1115] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We identified, cloned, and functionally characterized a new avian hepadnavirus infecting storks (STHBV). STHBV has the largest DNA genome of all avian hepadnaviruses and, based on sequence and phylogenetic analysis, is most closely related to, but distinct from, heron hepatitis B virus (HHBV). Unique for STHBV among the other avian hepadnaviruses is a potential HNF1 binding site in the preS promoter. In common only with HHBV, STHBV has a myristylation signal on the S and not the preS protein, two C terminally located glycosylation sites on the precore/core proteins and lacks the phosphorylation site essential for the transcriptional transactivation activity of duck-HBV preS protein. The cloned STHBV genomes were competent in gene expression, replication, and viral particle secretion. STHBV infected primary duck hepatocytes very inefficiently suggesting a restricted host range, similar to other hepadnaviruses. This discovery of stork infections unravels novel evolutionary aspects of hepadnaviruses and provides new opportunities for hepadnavirus research.
Collapse
Affiliation(s)
- I Pult
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, 20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chang SF, Netter HJ, Bruns M, Schneider R, Frölich K, Will H. A new avian hepadnavirus infecting snow geese (Anser caerulescens) produces a significant fraction of virions containing single-stranded DNA. Virology 1999; 262:39-54. [PMID: 10489339 DOI: 10.1006/viro.1999.9844] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We describe the identification and functional analysis of an evolutionary distinct new avian hepadnavirus. Infection of snow geese (Anser caerulescens) with a duck hepatitis B virus (DHBV)-related virus, designated SGHBV, was demonstrated by detection of envelope proteins in sera with anti-DHBV preS and S antibodies. Comparative sequence analysis of the PCR-amplified SGHBV genomes revealed unique SGHBV sequence features compared with other avian hepadnaviruses. Unlike DHBV, SGHBV shows an open reading frame in an analogous position to orthohepadnavirus X genes. Four of five cloned genomes were competent in replication, gene expression, and virus particle secretion in chicken hepatoma cells. Primary duck hepatocytes were permissive for infection with SGHBV, suggesting a similar or identical host range. SGHBV was found to secrete a significant fraction of virion-like particles containing single-stranded viral DNA. This was observed both in cell culture medium of SGHBV DNA-transfected LMH cells and in viremic sera of several birds, suggesting that it is a stable trait of SGHBV. Taken together, SGHBV has several unique features that expand the knowledge of the functional and evolutionary diversity of hepadnaviruses and offers new experimental opportunities for studies on the life cycle of hepadnaviruses.
Collapse
Affiliation(s)
- S F Chang
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrabetae 52, Hamburg, 20251, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Fourel G, Ringeisen F, Flajolet M, Tiollais P, Buendia MA. Functional analysis of ground squirrel hepatitis virus enhancer II. J Virol 1998; 72:1616-22. [PMID: 9445066 PMCID: PMC124644 DOI: 10.1128/jvi.72.2.1616-1622.1998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1997] [Accepted: 10/15/1997] [Indexed: 02/05/2023] Open
Abstract
We have characterized a major regulatory element of ground squirrel hepatitis virus (GSHV) located within a 90-nucleotide fragment of the core promoter upstream sequences and have compared its organization to that of woodchuck hepatitis virus (WHV) enhancer II (We2). The GSHV element (Ge2) stimulates transcription from the viral core promoter and heterologous promoters in an orientation-independent manner but displays a lower level of activity than We2 in transient transfection assays in human hepatoma cells. The general organization of Ge2 into binding sites for the liver-enriched HNF-1 and HNF-4 proteins and for ubiquitous factors of the NF1 and Oct families was found to be mostly conserved with respect to the homologous We2 region. Accordingly, transactivation by HNF-1 and HNF-4 plays an essential role in the liver-specific transcriptional activity of both the GSHV and WHV core promoters. Distinctive features of the GSHV enhancer consist of its ability to bind C/EBP family factors in a central motif that overlaps with one of the two HNF-4 sites and its differential binding affinities for HNF-4.
Collapse
Affiliation(s)
- G Fourel
- Unité de Recombinaison et Expression Génétique, INSERM U163, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
11
|
Welsheimer T, Newbold JE. A functional hepatocyte nuclear factor 3 binding site is a critical component of the duck hepatitis B virus major surface antigen promoter. J Virol 1996; 70:8813-20. [PMID: 8971010 PMCID: PMC190978 DOI: 10.1128/jvi.70.12.8813-8820.1996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gene coding for the S protein, the smaller of the two envelope antigens of the duck hepatitis B virus (DHBV), is transcribed from a TATA-less promoter. In this study, we localized the promoter to a 245-bp segment of the genome that was capable of efficiently driving expression of a linked reporter gene upon transient transfection into the differentiated hepatoma cell lines LMH and HepG2. However, no measurable activity from this construct could be detected in similar assays with the dedifferentiated cell line HepG2.1 or the nonhepatic cell line HeLa. Located at position -25 relative to the transcriptional start site was a sequence conforming to the consensus binding site for hepatocyte nuclear factor 3 (HNF3). Deletion of this region reduced activity of the reporter gene to barely detectable levels in LMH cells. The results of electrophoretic mobility shift analysis (EMSA) demonstrated that a double-stranded oligonucleotide containing this sequence formed a specific complex with DNA-binding proteins from LMH and HepG2 cells but not with nuclear extracts obtained from HepG2.1 or HeLa cells. Cotransfection of HepG2.1 cells with DHBV S promoter constructs and a rat HNF3beta expression plasmid resulted in transactivation of only those constructs in which the candidate HNF3 site was present. Furthermore, EMSA using HepG2.1 nuclear extracts containing exogenously expressed HNF3 formed complexes with the same migration and competition properties as those in which the proteins were derived from the differentiated hepatoma cells. Thus, several lines of evidence suggest a critical role for HNF3 in activity from the DHBV S promoter.
Collapse
Affiliation(s)
- T Welsheimer
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, 27599-7290, USA
| | | |
Collapse
|
12
|
Günther S, Piwon N, Iwanska A, Schilling R, Meisel H, Will H. Type, prevalence, and significance of core promoter/enhancer II mutations in hepatitis B viruses from immunosuppressed patients with severe liver disease. J Virol 1996; 70:8318-31. [PMID: 8970951 PMCID: PMC190919 DOI: 10.1128/jvi.70.12.8318-8331.1996] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Little is known about the functional significance of hepatitis B virus (HBV) sequence heterogeneity. Here we analyzed the type, frequency, and function of mutations in the core promoter/enhancer II region of HBV in immunosuppressed patients. The major HBV population in immunosuppressed patients with severe liver disease had deletions, insertions, and/or base changes in this region. Such mutations were not found in immunosuppressed patients with mild disease. Except for two mutations, all created a hepatocyte nuclear factor 1 (HNF1) binding site or a potential HNF3 binding site. Occasionally, known binding sites for C/EBP and HNF4 were additionally duplicated. Eleven mutated core promoter prototype sequences were functionally tested in the context of a wild-type genome by transfection in Huh7 cells. Despite the diversity of mutations tested, all decreased steady-state levels of pre-C mRNA drastically and increased those of the C mRNA/ pregenomic RNA. This correlated with reduced levels of secreted hepatitis B e antigen and increased intracellular levels of core and Pol proteins and replicative HBV DNA intermediates. The levels of secreted HBV DNA-containing particles were also increased although most of the mutations reduced the levels of pre-S/S mRNA and pre-S1, and pre-S2 proteins as well as secretion of hepatitis B surface antigen. These data reveal a novel class of HBV variants with HNF1 binding sites in the core promoter which are characterized by a defect in hepatitis B e antigen expression, enhanced replication, and altered protein levels, all probably mediated by altered transcription factor binding. The phenotype of these variants and their prevalence only in immunosuppressed patients with severe liver disease may indicate that they play a role in pathogenesis.
Collapse
Affiliation(s)
- S Günther
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
13
|
Fourel G, Ringeisen F, Flajolet M, Tronche F, Pontoglio M, Tiollais P, Buendia MA. The HNF1/HNF4-dependent We2 element of woodchuck hepatitis virus controls viral replication and can activate the N-myc2 promoter. J Virol 1996; 70:8571-83. [PMID: 8970982 PMCID: PMC190950 DOI: 10.1128/jvi.70.12.8571-8583.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transcriptional activation of myc family proto-oncogenes through the insertion of viral sequences is the predominant mechanism by which woodchuck hepatitis virus (WHV) induces liver tumors in chronically infected animals. The main target is N-myc2, a functional retroposon of the N-myc gene, but c-myc and N-myc are also marginally involved. Here we identify a major, liver-specific regulatory element in the WHV genome (We2) which efficiently activates the N-myc2 promoter in cultured hepatoma cells. In the context of the episomal viral genome, We2 governs the production of pregenomic RNA and thus plays a central role in the control of viral replication. We2 activity is primarily controlled by the liver-enriched HNF1 and HNF4 transcription factors, although NF1 and Oct proteins were also shown to bind in a central region. The expression of HNF1 and HNF4 appears to be maintained in woodchuck tumors. Thus, We2 is a prime candidate for controlling myc gene cis activation during WHV-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- G Fourel
- Unité de Recombinaison et Expression Génétique, INSERM U163, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Tagawa M, Yokosuka O, Imazeki F, Ohto M, Omata M. Gene expression and active virus replication in the liver after injection of duck hepatitis B virus DNA into the peripheral vein of ducklings. J Hepatol 1996; 24:328-34. [PMID: 8778201 DOI: 10.1016/s0168-8278(96)80013-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND/AIMS Duck hepatitis B virus is a member of the hepadnavirus family, which possesses strong hepatotropism. Duck hepatitis B virus DNA serves as a replicative template for producing biologically active virus particles after transfection into cell lines established from human hepatocellular carcinoma or into duck liver by direct injection of calcium phosphate-precipitated DNA. Our aim was to develop a new method of liver-specific gene expression after intravenous DNA delivery. METHODS/RESULTS We inoculated duck hepatitis B virus DNA with and without cationic liposomes, Lipofectin or LipofectAMINE, as DNA carries. Two weeks after a single intravenous injection of 10 or 50 micrograms of plasmid DNA containing a head-to-tail dimer of duck hepatitis B virus DNA into 25 one-day old ducklings, duck hepatitis B virus RNA transcripts including the pregenome replicative intermediate were detected by Northern blot in the liver of eight ducks (100%) of the Lipofectin group, five ducks (63%) of the LipofectAMINE group, and three ducks (50%) of the group which received DNA without carrier. Duck hepatitis B virus RNA transcription was almost exclusively liver specific, even though the liposomes had no tissue specificity. Replicative forms of duck hepatitis B virus DNA were detected in the liver and DHBsAg was observed in the cytoplasm of the hepatocytes by immunostaining. The serum of transfected ducklings contained virus particles which were infectious in other ducklings. CONCLUSION The efficient and liver-specific expression of inoculated DNA was due to the amplification of nucleic acids by active virus replication process under the control of hepatocyte specific regulation.
Collapse
Affiliation(s)
- M Tagawa
- First Department of Medicine, Chiba University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
15
|
Liu C, Mason WS, Burch JB. Identification of factor-binding sites in the duck hepatitis B virus enhancer and in vivo effects of enhancer mutations. J Virol 1994; 68:2286-96. [PMID: 8139013 PMCID: PMC236704 DOI: 10.1128/jvi.68.4.2286-2296.1994] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hepatitis B viruses (hepadnaviruses) can cause chronic, productive infections of hepatocytes. Analyses of the enhancers and promoters of these viruses in cell lines have suggested a requirement of these elements for liver-enriched transcription factors. In this study, a minimum of seven factor-binding sites on the duck hepatitis B virus enhancer were detected by DNase I footprinting using duck liver nuclear extracts. Among the sites that were tentatively identified were one C/EBP-, one HNF1-, and two HNF3-binding sites. Mutations of the HNF1- and HNF3-like sites, which eliminated factor binding, as assessed by both DNase I footprinting and competitive gel shift assays, were evaluated for their effects on enhancer activity. Using a construct in which human growth hormone was expressed from the viral enhancer and core gene promoter, we found that all of the mutations, either alone or in combination, reduced expression two- to fourfold in LMH chicken hepatoma cells. The mutations in the HNF1 site and one of the HNF3 sites, when inserted into the intact viral genome, also suppressed virus RNA synthesis in primary hepatocyte cultures. Virus carrying the latter HNF3 mutation was also examined for its ability to infect and replicate in ducks. No significant inhibition of virus replication was observed in a short-term assay; however, virus with the HNF3 mutation was apparently unable to grow in the pancreas, a second site of duck hepatitis B virus replication in the duck.
Collapse
Affiliation(s)
- C Liu
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | | | |
Collapse
|