1
|
Tsurutani N, Momose F, Ogawa K, Sano K, Morikawa Y. Intracellular trafficking of HIV-1 Gag via Syntaxin 6-positive compartments/vesicles: Involvement in tumor necrosis factor secretion. J Biol Chem 2024; 300:105687. [PMID: 38280430 PMCID: PMC10891346 DOI: 10.1016/j.jbc.2024.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/29/2024] Open
Abstract
HIV-1 Gag protein is synthesized in the cytosol and is transported to the plasma membrane, where viral particle assembly and budding occur. Endosomes are alternative sites of Gag accumulation. However, the intracellular transport pathways and carriers for Gag have not been clarified. We show here that Syntaxin6 (Syx6), a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) involved in membrane fusion in post-Golgi networks, is a molecule responsible for Gag trafficking and also for tumor necrosis factor-α (TNFα) secretion and that Gag and TNFα are cotransported via Syx6-positive compartments/vesicles. Confocal and live-cell imaging revealed that Gag colocalized and cotrafficked with Syx6, a fraction of which localizes in early and recycling endosomes. Syx6 knockdown reduced HIV-1 particle production, with Gag distributed diffusely throughout the cytoplasm. Coimmunoprecipitation and pulldown show that Gag binds to Syx6, but not its SNARE partners or their assembly complexes, suggesting that Gag preferentially binds free Syx6. The Gag matrix domain and the Syx6 SNARE domain are responsible for the interaction and cotrafficking. In immune cells, Syx6 knockdown/knockout similarly impaired HIV-1 production. Interestingly, HIV-1 infection facilitated TNFα secretion, and this enhancement did not occur in Syx6-depleted cells. Confocal and live-cell imaging revealed that TNFα and Gag partially colocalized and were cotransported via Syx6-positive compartments/vesicles. Biochemical analyses indicate that TNFα directly binds the C-terminal domain of Syx6. Altogether, our data provide evidence that both Gag and TNFα make use of Syx6-mediated trafficking machinery and suggest that Gag expression does not inhibit but rather facilitates TNFα secretion in HIV-1 infection.
Collapse
Affiliation(s)
- Naomi Tsurutani
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Fumitaka Momose
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Keiji Ogawa
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kouichi Sano
- Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Yuko Morikawa
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan.
| |
Collapse
|
2
|
Alfadhli A, Romanaggi C, Barklis RL, Barklis E. Second site reversion of HIV-1 envelope protein baseplate mutations maps to the matrix protein. J Virol 2024; 98:e0174223. [PMID: 38193694 PMCID: PMC10878238 DOI: 10.1128/jvi.01742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
The HIV-1 Envelope (Env) protein cytoplasmic tail (CT) recently has been shown to assemble an unusual trimeric baseplate structure that locates beneath Env ectodomain trimers. Mutations at linchpin residues that help organize the baseplate impair virus replication in restrictive T cell lines but not in permissive cell lines. We have identified and characterized a second site suppressor of these baseplate mutations, located at residue 34 in the viral matrix (MA) protein, that rescues viral replication in restrictive cells. The suppressor mutation was dependent on the CT to exert its activity and did not appear to affect Env protein traffic or fusion functions in restrictive cells. Instead, the suppressor mutation increased Env incorporation into virions 3-fold and virus infectivity in single-round infections 10-fold. We also found that a previously described suppressor of Env-incorporation defects that stabilizes the formation of MA trimers was ineffective at rescuing Env baseplate mutations. Our results support an interpretation in which changes at MA residue 34 induce conformational changes that stabilize MA lattice trimer-trimer interactions and/or direct MA-CT associations.IMPORTANCEHow HIV-1 Env trimers assemble into virus particles remains incompletely understood. In restrictive cells, viral incorporation of Env is dependent on the Env CT and on the MA protein, which assembles lattices composed of hexamers of trimers in immature and mature viruses. Recent evidence indicates that CT assembles trimeric baseplate structures that require membrane-proximal residues to interface with trimeric transmembrane domains and C-terminal helices in the CT. We found that mutations of these membrane-proximal residues impaired replication in restrictive cells. This defect was countered by a MA mutation that does not localize to any obvious interprotein regions but was only inefficiently suppressed by a MA mutation that stabilizes MA trimers and has been shown to suppress other CT-dependent Env defects. Our results suggest that efficient suppression of baseplate mutations involves stabilization of MA inter-trimer contacts and/or direct MA-CT associations. These observations shed new light on how Env assembles into virions.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - CeAnn Romanaggi
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| |
Collapse
|
3
|
Structural Domains of the Herpes Simplex Type 1 gD Protein that Restrict HIV-1 Particle Infectivity. J Virol 2021; 95:JVI.02355-20. [PMID: 33536165 PMCID: PMC8103709 DOI: 10.1128/jvi.02355-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we showed that the presence of the herpes simplex virus type 1 (HSV-1) gD glycoprotein but not gB potently restricted HIV-1 particle infectivity. This restriction was characterized by incorporation of HSV-1 gD and the exclusion of the HIV-1 gp120/gp41 from budding virus particles. To determine the structural domains involved in gD restriction of HIV-1, a series of deletion mutants and chimeric proteins between gD and the non-restrictive gB were generated. Our results show that deletion of the cytoplasmic tail domain (CTD) of gD or that replacement of the transmembrane domain (TMD) with the TMD from gB slightly reduced restriction activity. However, replacement of the gD CTD with that of gB resulted in lower cell surface expression, significantly less incorporation into HIV-1 particles, and inefficient restriction of the release of infectious HIV-1. Analysis of gB/gD chimeric proteins revealed that removal of the gB CTD or replacement with gD CTD resulted in enhanced surface expression and an increase in restriction activity. Finally, we show that expression of gD without other HSV-1 proteins resulted in gD fractionation into detergent resistant membranes (DRM) and that gD co-localized with the raft marker GM1, which may partially explain its incorporation into budding virus particles. Taken together, our results suggest that expression of gD at the cell surface is likely a major factor but that other intrinsic properties are also involved in the gD-mediated restriction of HIV-1 particle infectivity.IMPORTANCE Previously, we showed that unlike the HSV-1, the presence of the gD glycoprotein in virus producer cells but not gB potently restricted HIV-1 particle infectivity. To better understand the relationship between cell surface expression, virus incorporation and restriction of HIV-1, we analyzed a series of deletion mutants and chimeric proteins in which domains of gD and gB were swapped. Our results indicate that: a) gD/gB chimeras having the cytoplasmic domain (CTD) of gB significantly reduced cell surface expression, release from cells, incorporation into virus, and reduced HIV-1 restriction; b) removal of the gB CTD or replacement with the gD CTD resulted in better surface expression, incorporation into HIV-1, and enhanced restriction; and c) the transmembrane domain of gB can influence transport and ultimately effect incorporation of gB into HIV-1. Overall, these data support a role for gD surface expression as crucial to restriction of infectious HIV-1 release.
Collapse
|
4
|
Alfadhli A, Staubus AO, Tedbury PR, Novikova M, Freed EO, Barklis E. Analysis of HIV-1 Matrix-Envelope Cytoplasmic Tail Interactions. J Virol 2019; 93:e01079-19. [PMID: 31375589 PMCID: PMC6803273 DOI: 10.1128/jvi.01079-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/30/2019] [Indexed: 01/08/2023] Open
Abstract
The matrix (MA) domains of HIV-1 precursor Gag (PrGag) proteins direct PrGag proteins to plasma membrane (PM) assembly sites where envelope (Env) protein trimers are incorporated into virus particles. MA targeting to PM sites is facilitated by its binding to phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2], and MA binding to cellular RNAs appears to serve a chaperone function that prevents MA from associating with intracellular membranes prior to arrival at the PI(4,5)P2-rich PM. Investigations have shown genetic evidence of an interaction between MA and the cytoplasmic tails (CTs) of Env trimers that contributes to Env incorporation into virions, but demonstrations of direct MA-CT interactions have proven more difficult. In direct binding assays, we show here that MA binds to Env CTs. Using MA mutants, matrix-capsid (MACA) proteins, and MA proteins incubated in the presence of inositol polyphosphate, we show a correlation between MA trimerization and CT binding. RNA ligands with high affinities for MA reduced MA-CT binding levels, suggesting that MA-RNA binding interferes with trimerization and/or directly or indirectly blocks MA-CT binding. Rough-mapping studies indicate that C-terminal CT helices are involved in MA binding and are in agreement with cell culture studies with replication-competent viruses. Our results support a model in which full-length HIV-1 Env trimers are captured in assembling PrGag lattices by virtue of their binding to MA trimers.IMPORTANCE The mechanism by which HIV-1 envelope (Env) protein trimers assemble into virus particles is poorly understood but involves an interaction between Env cytoplasmic tails (CTs) and the matrix (MA) domain of the structural precursor Gag (PrGag) proteins. We show here that direct binding of MA to Env CTs correlates with MA trimerization, suggesting models where MA lattices regulate CT interactions and/or MA-CT trimer-trimer associations increase the avidity of MA-CT binding. We also show that MA binding to RNA ligands impairs MA-CT binding, potentially by interfering with MA trimerization and/or directly or allosterically blocking MA-CT binding sites. Rough mapping implicated CT C-terminal helices in MA binding, in agreement with cell culture studies on MA-CT interactions. Our results indicate that targeting HIV-1 MA-CT interactions may be a promising avenue for antiviral therapy.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - August O Staubus
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Philip R Tedbury
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Mariia Novikova
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| |
Collapse
|
5
|
Staubus AO, Alfadhli A, Barklis RL, Barklis E. Replication of HIV-1 envelope protein cytoplasmic domain variants in permissive and restrictive cells. Virology 2019; 538:1-10. [PMID: 31550607 DOI: 10.1016/j.virol.2019.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 01/01/2023]
Abstract
Wild type (WT) HIV-1 envelope (Env) protein cytoplasmic tails (CTs) appear to be composed of membrane-proximal, N-terminal unstructured regions, and three C-terminal amphipathic helices. Previous studies have shown that WT and CT-deleted (ΔCT) Env proteins are incorporated into virus particles via different mechanisms. WT Env proteins traffic to cell plasma membranes (PMs), are rapidly internalized, recycle to PMs, and are incorporated into virions in permissive and restrictive cells in a Gag matrix (MA) protein-dependent fashion. In contrast, previously described ΔCT proteins do not appear to be internalized after their arrival to PMs, and do not require MA, but are only incorporated into virions in permissive cell lines. We have analyzed a new set of HIV-1 CT variants with respect to their replication in permissive and restrictive cells. Our results provide novel details as to how CT elements regulate HIV-1 Env protein function.
Collapse
Affiliation(s)
- August O Staubus
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
6
|
Polpitiya Arachchige S, Henke W, Kalamvoki M, Stephens EB. Analysis of herpes simplex type 1 gB, gD, and gH/gL on production of infectious HIV-1: HSV-1 gD restricts HIV-1 by exclusion of HIV-1 Env from maturing viral particles. Retrovirology 2019; 16:9. [PMID: 30940160 PMCID: PMC6444546 DOI: 10.1186/s12977-019-0470-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously showed that the gM of HSV-1 could restrict the release of infectious HIV-1 from cells. In this study, we analyzed if the four HSV-1 glycoproteins (gD, gB, and gH/gL), which are the minimum glycoproteins required for HSV-1 entry, restricted the release of infectious HIV-1. RESULTS Of these four glycoproteins, gD and gH/gL restricted the production of infectious HIV-1 from cells transfected with an infectious molecular clone of HIV-1 (strain NL4-3) while gB had no significant effect. Pulse-chase analyses indicated that gD did not affect the biosynthesis and processing of gp160 into gp120/gp41, the transport of the gp120/gp41 to the cell surface, or the release of HIV-1 particles from the cell surface. Our analyses revealed that gD was incorporated into HIV-1 virus particles while gp120/gp41 was excluded from released virus particles. Truncated mutants of gD revealed that the cytoplasmic domain was dispensable but that a membrane bound gD was required for the restriction of release of infectious HIV-1. Finally, cell lines expressing gD also potently restricted the release of infectious virus. CONCLUSIONS Due to its ability to exclude HIV-1 gp120/gp41 from maturing virus, gD may provide a useful tool in deciphering mechanisms of Env incorporation into maturing virus particles.
Collapse
Affiliation(s)
- Sachith Polpitiya Arachchige
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 2000 Hixon Hall, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Wyatt Henke
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 2000 Hixon Hall, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 2000 Hixon Hall, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Edward B Stephens
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 2000 Hixon Hall, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
7
|
Barklis E, Staubus AO, Mack A, Harper L, Barklis RL, Alfadhli A. Lipid biosensor interactions with wild type and matrix deletion HIV-1 Gag proteins. Virology 2018; 518:264-271. [PMID: 29549788 DOI: 10.1016/j.virol.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 11/19/2022]
Abstract
The matrix (MA) domain of the HIV-1 precursor Gag protein (PrGag) has been shown interact with the HIV-1 envelope (Env) protein, and to direct PrGag proteins to plasma membrane (PM) assembly sites by virtue of its affinity to phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2). Unexpectedly, HIV-1 viruses with large MA deletions (ΔMA) have been shown to be conditionally infectious as long as they are matched with Env truncation mutant proteins or alternative viral glycoproteins. To characterize the interactions of wild type (WT) and ΔMA Gag proteins with PI(4,5)P2 and other acidic phospholipids, we have employed a set of lipid biosensors as probes. Our investigations showed marked differences in WT and ΔMA Gag colocalization with biosensors, effects on biosensor release, and association of biosensors with virus-like particles. These results demonstrate an alternative approach to the analysis of viral protein-lipid associations, and provide new data as to the lipid compositions of HIV-1 assembly sites.
Collapse
Affiliation(s)
- Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97035, United States.
| | - August O Staubus
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97035, United States
| | - Andrew Mack
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97035, United States
| | - Logan Harper
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97035, United States
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97035, United States
| | - Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97035, United States
| |
Collapse
|
8
|
Meister M, Bänfer S, Gärtner U, Koskimies J, Amaddii M, Jacob R, Tikkanen R. Regulation of cargo transfer between ESCRT-0 and ESCRT-I complexes by flotillin-1 during endosomal sorting of ubiquitinated cargo. Oncogenesis 2017; 6:e344. [PMID: 28581508 PMCID: PMC5519196 DOI: 10.1038/oncsis.2017.47] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/02/2017] [Accepted: 05/02/2017] [Indexed: 01/02/2023] Open
Abstract
Ubiquitin-dependent sorting of membrane proteins in endosomes directs them to lysosomal degradation. In the case of receptors such as the epidermal growth factor receptor (EGFR), lysosomal degradation is important for the regulation of downstream signalling. Ubiquitinated proteins are recognised in endosomes by the endosomal sorting complexes required for transport (ESCRT) complexes, which sequentially interact with the ubiquitinated cargo. Although the role of each ESCRT complex in sorting is well established, it is not clear how the cargo is passed on from one ESCRT to the next. We here show that flotillin-1 is required for EGFR degradation, and that it interacts with the subunits of ESCRT-0 and -I complexes (hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) and Tsg101). Flotillin-1 is required for cargo recognition and sorting by ESCRT-0/Hrs and for its interaction with Tsg101. In addition, flotillin-1 is also required for the sorting of human immunodeficiency virus 1 Gag polyprotein, which mimics ESCRT-0 complex during viral assembly. We propose that flotillin-1 functions in cargo transfer between ESCRT-0 and -I complexes.
Collapse
Affiliation(s)
- M Meister
- Institute of Biochemistry, Medical Faculty, Justus-Liebig University of Giessen, Giessen, Germany
| | - S Bänfer
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany
| | - U Gärtner
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig University of Giessen, Giessen, Germany
| | - J Koskimies
- Institute of Biochemistry, Medical Faculty, Justus-Liebig University of Giessen, Giessen, Germany
| | - M Amaddii
- Institute of Biochemistry, Medical Faculty, Justus-Liebig University of Giessen, Giessen, Germany
| | - R Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany
| | - R Tikkanen
- Institute of Biochemistry, Medical Faculty, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
9
|
Trimer Enhancement Mutation Effects on HIV-1 Matrix Protein Binding Activities. J Virol 2016; 90:5657-5664. [PMID: 27030269 DOI: 10.1128/jvi.00509-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The HIV-1 matrix (MA) protein is the amino-terminal domain of the HIV-1 precursor Gag (Pr55Gag) protein. MA binds to membranes and RNAs, helps transport Pr55Gag proteins to virus assembly sites at the plasma membranes of infected cells, and facilitates the incorporation of HIV-1 envelope (Env) proteins into virions by virtue of an interaction with the Env protein cytoplasmic tails (CTs). MA has been shown to crystallize as a trimer and to organize on membranes in hexamer lattices. MA mutations that localize to residues near the ends of trimer spokes have been observed to impair Env protein assembly into virus particles, and several of these are suppressed by the 62QR mutation at the hubs of trimer interfaces. We have examined the binding activities of wild-type (WT) MA and 62QR MA variants and found that the 62QR mutation stabilized MA trimers but did not alter the way MA proteins organized on membranes. Relative to WT MA, the 62QR protein showed small effects on membrane and RNA binding. However, 62QR proteins bound significantly better to Env CTs than their WT counterparts, and CT binding efficiencies correlated with trimerization efficiencies. Our data suggest a model in which multivalent binding of trimeric HIV-1 Env proteins to MA trimers contributes to the process of Env virion incorporation. IMPORTANCE The HIV-1 Env proteins assemble as trimers, and incorporation of the proteins into virus particles requires an interaction of Env CT domains with the MA domains of the viral precursor Gag proteins. Despite this knowledge, little is known about the mechanisms by which MA facilitates the virion incorporation of Env proteins. To help elucidate this process, we examined the binding activities of an MA mutant that stabilizes MA trimers. We found that the mutant proteins organized similarly to WT proteins on membranes, and that mutant and WT proteins revealed only slight differences in their binding to RNAs or lipids. However, the mutant proteins showed better binding to Env CTs than the WT proteins, and CT binding correlated with MA trimerization. Our results suggest that multivalent binding of trimeric HIV-1 Env proteins to MA trimers contributes to the process of Env virion incorporation.
Collapse
|
10
|
HIV-1 matrix domain removal ameliorates virus assembly and processing defects incurred by positive nucleocapsid charge elimination. FEBS Open Bio 2015; 5:283-91. [PMID: 25905033 PMCID: PMC4402288 DOI: 10.1016/j.fob.2015.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 01/10/2023] Open
Abstract
Human immunodeficiency virus type 1 nucleocapsid (NC) basic residues presumably contribute to virus assembly via RNA, which serves as a scaffold for Gag-Gag interaction during particle assembly. To determine whether NC basic residues play a role in Gag cleavage (thereby impacting virus assembly), Gag processing efficiency and virus particle production were analyzed for an HIV-1 mutant NC15A, with alanine serving as a substitute for all NC basic residues. Results indicate that NC15A significantly impaired virus maturation in addition to significantly affecting Gag membrane binding and assembly. Interestingly, removal of the matrix (MA) central globular domain ameliorated the NC15A assembly and processing defects, likely through enhancement of Gag multimerization and membrane binding capacities.
Collapse
|
11
|
Abstract
UNLABELLED We have examined the interactions of wild-type (WT) and matrix protein-deleted (ΔMA) HIV-1 precursor Gag (PrGag) proteins in virus-producing cells using a biotin ligase-tagging approach. To do so, WT and ΔMA PrGag proteins were tagged with the Escherichia coli promiscuous biotin ligase (BirA*), expressed in cells, and examined. Localization patterns of PrGag proteins and biotinylated proteins overlapped, consistent with observations that BirA*-tagged proteins biotinylate neighbor proteins that are in close proximity. Results indicate that BirA*-tagged PrGag proteins biotinylated themselves as well as WT PrGag proteins in trans. Previous data have shown that the HIV-1 Envelope (Env) protein requires an interaction with MA for assembly into virions. Unexpectedly, ΔMA proteins biotinylated Env, whereas WT BirA*-tagged proteins did not, suggesting that the presence of MA made Env inaccessible to biotinylation. We also identified over 50 cellular proteins that were biotinylated by BirA*-tagged PrGag proteins. These included membrane proteins, cytoskeleton-associated proteins, nuclear transport factors, lipid metabolism regulators, translation factors, and RNA-processing proteins. The identification of these biotinylated proteins offers new insights into HIV-1 Gag protein trafficking and activities and provides new potential targets for antiviral interference. IMPORTANCE We have employed a novel strategy to analyze the interactions of the HIV-1 structural Gag proteins, which involved tagging wild-type and mutant Gag proteins with a biotin ligase. Expression of the tagged proteins in cells allowed us to analyze proteins that came in close proximity to the Gag proteins as they were synthesized, transported, assembled, and released from cells. The tagged proteins biotinylated proteins encoded by the HIV-1 pol gene and neighbor Gag proteins, but, surprisingly, only the mutant Gag protein biotinylated the HIV-1 Envelope protein. We also identified over 50 cellular proteins that were biotinylated, including membrane and cytoskeletal proteins and proteins involved in lipid metabolism, nuclear import, translation, and RNA processing. Our results offer new insights into HIV-1 Gag protein trafficking and activities and provide new potential targets for antiviral interference.
Collapse
|
12
|
Olety B, Ono A. Roles played by acidic lipids in HIV-1 Gag membrane binding. Virus Res 2014; 193:108-15. [PMID: 24998886 PMCID: PMC4252750 DOI: 10.1016/j.virusres.2014.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
The MA domain mediates plasma membrane (PM) targeting of HIV-1 Gag, leading to particle assembly at the PM. The interaction between MA and acidic phospholipids, in addition to N-terminal myristoyl moiety, promotes Gag binding to lipid membranes. Among acidic phospholipids, PI(4,5)P2, a PM-specific phosphoinositide, is essential for proper HIV-1 Gag localization to the PM and efficient virus particle production. Recent studies further revealed that MA-bound RNA negatively regulates HIV-1 Gag membrane binding and that PI(4,5)P2 is necessary to overcome this RNA-imposed block. In this review, we will summarize the current understanding of Gag-membrane interactions and discuss potential roles played by acidic phospholipids.
Collapse
Affiliation(s)
- Balaji Olety
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
13
|
López CS, Sloan R, Cylinder I, Kozak SL, Kabat D, Barklis E. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release. Virology 2014; 462-463:126-34. [PMID: 24971705 DOI: 10.1016/j.virol.2014.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/16/2014] [Accepted: 05/17/2014] [Indexed: 12/14/2022]
Abstract
The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export.
Collapse
Affiliation(s)
- Claudia S López
- Departments of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| | - Rachel Sloan
- Departments of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Isabel Cylinder
- Departments of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Susan L Kozak
- Biochemistry and Molecular Biology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - David Kabat
- Biochemistry and Molecular Biology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Eric Barklis
- Departments of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| |
Collapse
|
14
|
Alfadhli A, Barklis E. The roles of lipids and nucleic acids in HIV-1 assembly. Front Microbiol 2014; 5:253. [PMID: 24917853 PMCID: PMC4042026 DOI: 10.3389/fmicb.2014.00253] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/08/2014] [Indexed: 11/23/2022] Open
Abstract
During HIV-1 assembly, precursor Gag (PrGag) proteins are delivered to plasma membrane (PM) assembly sites, where they are triggered to oligomerize and bud from cells as immature virus particles. The delivery and triggering processes are coordinated by the PrGag matrix (MA) and nucleocapsid (NC) domains. Targeting of PrGag proteins to membranes enriched in cholesterol and phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2) is mediated by the MA domain, which also has been shown to bind both RNA and DNA. Evidence suggests that the nucleic-acid-binding function of MA serves to inhibit PrGag binding to inappropriate intracellular membranes, prior to delivery to the PM. At the PM, MA domains putatively trade RNA ligands for PI(4,5)P2 ligands, fostering high-affinity membrane binding. Triggering of oligomerization, budding, and virus particle release results when NC domains on adjacent PrGag proteins bind to viral RNA, leading to capsid (CA) domain oligomerization. This process leads to the assembly of immature virus shells in which hexamers of membrane-bound MA trimers appear to organize above interlinked CA hexamers. Here, we review the functions of retroviral MA proteins, with an emphasis on the nucleic-acid-binding capability of the HIV-1 MA protein, and its effects on membrane binding.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University Portland, OR, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University Portland, OR, USA
| |
Collapse
|
15
|
Gregory DA, Olinger GY, Lucas TM, Johnson MC. Diverse viral glycoproteins as well as CD4 co-package into the same human immunodeficiency virus (HIV-1) particles. Retrovirology 2014; 11:28. [PMID: 24708808 PMCID: PMC3985584 DOI: 10.1186/1742-4690-11-28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/19/2014] [Indexed: 12/17/2022] Open
Abstract
Background Retroviruses can acquire not only their own glycoproteins as they bud from the cellular membrane, but also some cellular and foreign viral glycoproteins. Many of these non-native glycoproteins are actively recruited to budding virions, particularly other viral glycoproteins. This observation suggests that there may be a conserved mechanism underlying the recruitment of glycoproteins into viruses. If a conserved mechanism is used, diverse glycoproteins should localize to a single budding retroviral particle. On the other hand, if viral glycoproteins have divergent mechanisms for recruitment, the different glycoproteins could segregate into different particles. Results To determine if co-packaging occurs among different glycoproteins, we designed an assay that combines virion antibody capture and a determination of infectivity based on a luciferase reporter. Virions were bound to a plate with an antibody against one glycoprotein, and then the infectivity was measured with cells that allow entry only with a second glycoprotein. We tested pairings of glycoproteins from HIV, murine leukemia virus (MLV), Rous sarcoma virus (RSV), vesicular stomatitis virus (VSV), and Ebola virus. The results showed that glycoproteins that were actively recruited into virions were co-packaged efficiently with each other. We also tested cellular proteins and found CD4 also had a similar correlation between active recruitment and efficient co-packaging, but other cellular proteins did not. Conclusion Glycoproteins that are actively incorporated into HIV-1 virions are efficiently co-packaged into the same virus particles, suggesting that the same general mechanism for recruitment may act in many viruses.
Collapse
Affiliation(s)
| | | | | | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
16
|
[Membrane Binding of Retroviral Gag Proteins]. Uirusu 2014; 64:155-64. [PMID: 26437838 DOI: 10.2222/jsv.64.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Location of virus assembly in infected cells has major influences on efficiencies of virus assembly and release and on post-assembly processes including cell-to-cell transmission. Therefore, for better understanding of virus spread and for developing new antiviral strategies, it is important to elucidate mechanisms by which the subcellular site of virus particle assembly is determined. Retrovirus particle assembly is driven by viral structural protein Gag. In the case of HIV-1, Gag binds to the plasma membrane (PM) via the N-terminal MA domain and forms nascent particles at this location. Recent studies reveled that PM-specific phospholipid PI(4,5)P2 plays an important role in directing Gag to the PM through its interaction with MA. In this review, I will summarize our current understanding of relationships between retroviral MA domains and phospholipids in cellular membranes and discuss possible mechanisms by which lipids and other factors regulate membrane binding and subcellular localization of retroviral Gag proteins.
Collapse
|
17
|
Basic residues in the matrix domain and multimerization target murine leukemia virus Gag to the virological synapse. J Virol 2013; 87:7113-26. [PMID: 23616653 DOI: 10.1128/jvi.03263-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine leukemia virus (MLV) can efficiently spread in tissue cultures by polarizing assembly to virological synapses. The viral envelope glycoprotein (Env) establishes cell-cell contacts and subsequently recruits Gag by a process that depends on its cytoplasmic tail. MLV Gag is recruited to virological synapses through the matrix domain (MA) (J. Jin, F. Li, and W. Mothes, J. Virol. 85:7672-7682, 2011). However, how MA targets Gag to sites of cell-cell contact remains unknown. Here we report that basic residues within MA are critical for directing MLV Gag to virological synapses. Alternative membrane targeting domains (MTDs) containing multiple basic residues can efficiently substitute MA to direct polarized assembly. Similarly, mutations in the polybasic cluster of MA that disrupt Gag polarization can be rescued by N-terminal addition of MTDs containing basic residues. MTDs containing basic residues alone fail to be targeted to the virological synapse. Systematic deletion experiments reveal that domains within Gag known to mediate Gag multimerization are also required. Thus, our data predict the existence of a specific "acidic" interface at virological synapses that mediates the recruitment of MLV Gag via the basic cluster of MA and Gag multimerization.
Collapse
|
18
|
Gautam A, Bhattacharya J. Evidence that Vpu modulates HIV-1 Gag-envelope interaction towards envelope incorporation and infectivity in a cell type dependent manner. PLoS One 2013; 8:e61388. [PMID: 23613843 PMCID: PMC3628852 DOI: 10.1371/journal.pone.0061388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 03/08/2013] [Indexed: 12/03/2022] Open
Abstract
The HIV-1 Vpu is required for efficient virus particle release from the plasma membrane and intracellular CD4 degradation in infected cells. In the present study, we found that the loss of virus infectivity as a result of envelope (Env) incorporation defect caused by a Gag matrix (MA) mutation (L30E) was significantly alleviated by introducing a start codon mutation in vpu. Inactivation of Vpu partially restored the Env incorporation defect imposed by L30E substitution in MA. This effect was found to be comparable in cell types such as 293T, HeLa, NP2 and GHOST as well as in peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM). However, in HeLa cells BST-2 knockdown was found to further alleviate the effect of Vpu inactivation on infectivity of L30E mutant. Our data demonstrated that the impaired infectivity of virus particles due to Env incorporation defect caused by MA mutation was modulated by start codon mutation in Vpu.
Collapse
Affiliation(s)
- Archana Gautam
- Department of Molecular Virology, National AIDS Research Institute, Bhosari, Pune, India
| | - Jayanta Bhattacharya
- Department of Molecular Virology, National AIDS Research Institute, Bhosari, Pune, India
| |
Collapse
|
19
|
Multiple Gag domains contribute to selective recruitment of murine leukemia virus (MLV) Env to MLV virions. J Virol 2012; 87:1518-27. [PMID: 23152533 DOI: 10.1128/jvi.02604-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Retroviruses, like all enveloped viruses, must incorporate viral glycoproteins to form infectious particles. Interactions between the glycoprotein cytoplasmic tail and the matrix domain of Gag are thought to direct recruitment of glycoproteins to native virions for many retroviruses. However, retroviruses can also incorporate glycoproteins from other viruses to form infectious virions known as pseudotyped particles. The glycoprotein murine leukemia virus (MLV) Env can readily form pseudotyped particles with many retroviruses, suggesting a generic mechanism for recruitment. Here, we sought to identify which components of Gag, particularly the matrix domain, contribute to recruitment of MLV Env into retroviral particles. Unexpectedly, we discovered that the matrix domain of HIV-1 Gag is dispensable for generic recruitment, since it could be replaced with a nonviral membrane-binding domain without blocking active incorporation of MLV Env into HIV virions. However, MLV Env preferentially assembles with MLV virions. When MLV and HIV particles are produced from the same cell, MLV Env is packaged almost exclusively by MLV particles, thus preventing incorporation into HIV particles. Surprisingly, the matrix domain of MLV Gag is not required for this selectivity, since MLV Gag containing the matrix domain from HIV is still able to outcompete HIV particles for MLV Env. Although MLV Gag is sufficient for selective incorporation to occur, no single Gag domain dictates the selectivity. Our findings indicate that Env recruitment is more complex than previously believed and that Gag assembly/budding sites have fundamental properties that affect glycoprotein incorporation.
Collapse
|
20
|
Alfadhli A, McNett H, Eccles J, Tsagli S, Noviello C, Sloan R, López CS, Peyton DH, Barklis E. Analysis of small molecule ligands targeting the HIV-1 matrix protein-RNA binding site. J Biol Chem 2012; 288:666-76. [PMID: 23135280 DOI: 10.1074/jbc.m112.399865] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The matrix domain (MA) of the HIV-1 precursor Gag (PrGag) protein directs PrGag proteins to assembly sites at the plasma membrane by virtue of its affinity to the phospholipid, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)). MA also binds to RNA at a site that overlaps its PI(4,5)P(2) site, suggesting that RNA binding may protect MA from associating with inappropriate cellular membranes prior to PrGag delivery to the PM. Based on this, we have developed an assay in which small molecule competitors to MA-RNA binding can be characterized, with the assumption that such compounds might interfere with essential MA functions and help elucidate additional features of MA binding. Following this approach, we have identified four compounds, including three thiadiazolanes, that compete with RNA for MA binding. We also have identified MA residues involved in thiadiazolane binding and found that they overlap the MA PI(4,5)P(2) and RNA sites. Cell culture studies demonstrated that thiadiazolanes inhibit HIV-1 replication but are associated with significant levels of toxicity. Nevertheless, these observations provide new insights into MA binding and pave the way for the development of antivirals that target the HIV-1 matrix domain.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Vollum Institute and Department of Microbiology, Oregon Health and Science University, Portland, Oregon 97201-3098, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cytoplasmic utilization of human immunodeficiency virus type 1 genomic RNA is not dependent on a nuclear interaction with gag. J Virol 2012; 86:2990-3002. [PMID: 22258250 DOI: 10.1128/jvi.06874-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In some retroviruses, such as Rous sarcoma virus and prototype foamy virus, Gag proteins are known to shuttle between the nucleus and the cytoplasm and are implicated in nuclear export of the viral genomic unspliced RNA (gRNA) for subsequent encapsidation. A similar function has been proposed for human immunodeficiency virus type 1 (HIV-1) Gag based on the identification of nuclear localization and export signals. However, the ability of HIV-1 Gag to transit through the nucleus has never been confirmed. In addition, the lentiviral Rev protein promotes efficient nuclear gRNA export, and previous reports indicate a cytoplasmic interaction between Gag and gRNA. Therefore, functional effects of HIV-1 Gag on gRNA and its usage were explored. Expression of gag in the absence of Rev was not able to increase cytoplasmic gRNA levels of subgenomic, proviral, or lentiviral vector constructs, and gene expression from genomic reporter plasmids could not be induced by Gag provided in trans. Furthermore, Gag lacking the reported nuclear localization and export signals was still able to mediate an efficient packaging process. Although small amounts of Gag were detectable in the nuclei of transfected cells, a Crm1-dependent nuclear export signal in Gag could not be confirmed. Thus, our study does not provide any evidence for a nuclear function of HIV-1 Gag. The encapsidation process of HIV-1 therefore clearly differs from that of Rous sarcoma virus and prototype foamy virus.
Collapse
|
22
|
Ganser-Pornillos BK, Yeager M, Pornillos O. Assembly and architecture of HIV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:441-65. [PMID: 22297526 PMCID: PMC6743068 DOI: 10.1007/978-1-4614-0980-9_20] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIV forms spherical, membrane-enveloped, pleomorphic virions, 1,000-1,500 Å in diameter, which contain two copies of its single-stranded, positive-sense RNA genome. Virus particles initially bud from host cells in a noninfectious or immature form, in which the genome is further encapsulated inside a spherical protein shell composed of around 2,500 copies of the virally encoded Gag polyprotein. The Gag molecules are radially arranged, adherent to the inner leaflet of the viral membrane, and closely associated as a hexagonal, paracrystalline lattice. Gag comprises three major structural domains called MA, CA, and NC. For immature virions to become infectious, they must undergo a maturation process that is initiated by proteolytic processing of Gag by the viral protease. The new Gag-derived proteins undergo dramatic rearrangements to form the mature virus. The mature MA protein forms a "matrix" layer and remains attached to the viral envelope, NC condenses with the genome, and approximately 1,500 copies of CA assemble into a new cone-shaped protein shell, called the mature capsid, which surrounds the genomic ribonucleoprotein complex. The HIV capsid conforms to the mathematical principles of a fullerene shell, in which the CA subunits form about 250 CA hexamers arrayed on a variably curved hexagonal lattice, which is closed by incorporation of exactly 12 pentamers, seven pentamers at the wide end and five at the narrow end of the cone. This chapter describes our current understanding of HIV's virion architecture and its dynamic transformations: the process of virion assembly as orchestrated by Gag, the architecture of the immature virion, the virus maturation process, and the structure of the mature capsid.
Collapse
Affiliation(s)
- Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
23
|
Alfadhli A, McNett H, Tsagli S, Bächinger HP, Peyton DH, Barklis E. HIV-1 matrix protein binding to RNA. J Mol Biol 2011; 410:653-66. [PMID: 21762806 PMCID: PMC3139429 DOI: 10.1016/j.jmb.2011.04.063] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 11/26/2022]
Abstract
The matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) precursor Gag (PrGag) protein plays multiple roles in the viral replication cycle. One essential role is to target PrGag proteins to their lipid raft-associated phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] assembly sites at the plasma membranes of infected cells. In addition to this role, several reports have implicated nucleic acid binding properties to retroviral MAs. Evidence indicates that RNA binding enhances the binding specificity of MA to PI(4,5)P(2)-containing membranes and supports a hypothesis in which RNA binding to MA acts as a chaperone that protects MA from associating with inappropriate cellular membranes prior to PrGag delivery to plasma membrane assembly sites. To gain a better understanding of HIV-1 MA-RNA interactions, we have analyzed the interaction of HIV MA with RNA ligands that were selected previously for their high affinities to MA. Binding interactions were characterized via bead binding, fluorescence anisotropy, gel shift, and analytical ultracentrifugation methods. Moreover, MA residues that are involved in RNA binding were identified from NMR chemical shift data. Our results indicate that the MA RNA and PI(4,5)P(2) binding sites overlap and suggest models for Gag-membrane and Gag-RNA interactions and for the HIV assembly pathway.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Vollum Institute and Department of Microbiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201-3098
| | - Henry McNett
- Vollum Institute and Department of Microbiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201-3098
| | - Seyram Tsagli
- Vollum Institute and Department of Microbiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201-3098
| | - Hans Peter Bächinger
- Shriners Hospital for children, Research Unit and the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97201
| | - David H. Peyton
- Department of Chemistry, Portland State University, PO Box 751, Portland, Oregon 97207-0751
| | - Eric Barklis
- Vollum Institute and Department of Microbiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201-3098
| |
Collapse
|
24
|
Chukkapalli V, Ono A. Molecular determinants that regulate plasma membrane association of HIV-1 Gag. J Mol Biol 2011; 410:512-24. [PMID: 21762797 PMCID: PMC3139151 DOI: 10.1016/j.jmb.2011.04.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 11/17/2022]
Abstract
Human immunodeficiency virus type 1 assembly is a multistep process that occurs at the plasma membrane (PM). Targeting and binding of Gag to the PM are the first steps in this assembly process and are mediated by the matrix domain of Gag. This review highlights our current knowledge on viral and cellular determinants that affect specific interactions between Gag and the PM. We will discuss potential mechanisms by which the matrix domain might integrate three regulatory components, myristate, phosphatidylinositol-(4,5)-bisphosphate, and RNA, to ensure that human immunodeficiency virus type 1 assembly occurs at the PM.
Collapse
Affiliation(s)
- Vineela Chukkapalli
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
25
|
Abstract
The human immunodeficiency virus (HIV) capsid (CA) protein assembles into a hexameric lattice that forms the mature virus core. Contacts between the CA N-terminal domain (NTD) of one monomer and the C-terminal domain (CTD) of the adjacent monomer are important for the assembly of this core. In this study, we have examined the effects of mutations in the NTD region associated with this interaction. We have found that such mutations yielded modest reductions of virus release but major effects on viral infectivity. Cell culture and in vitro assays indicate that the infectivity defects relate to abnormalities in the viral cores. We have selected second-site compensatory mutations that partially restored HIV infectivity. These mutations map to the CA CTD and to spacer peptide 1 (SP1), the portion of the precursor Gag protein immediately C terminal to the CTD. The compensatory mutations do not locate to the molecularly modeled intermolecular NTD-CTD interface. Rather, the compensatory mutations appear to act indirectly, possibly by realignment of the C-terminal helix of the CA CTD, which participates in the NTD-CTD interface and has been shown to serve an important role in the assembly of infectious virus.
Collapse
|
26
|
Abstract
A mandatory step in the formation of an infectious retroviral particle is the acquisition of its envelope glycoprotein (Env). This step invariably occurs by Env positioning itself in the host membrane at the location of viral budding and being incorporated along with the host membrane into the viral particle. In some ways, this step of the viral life cycle would appear to be imprecise. There is no specific sequence in Env or in the retroviral structural protein, Gag, that is inherently required for the production of an infectious Env-containing particle. Additionally, Env-defective proviruses can efficiently produce infectious particles with any of a number of foreign retroviral Env glycoproteins or even glycoproteins from unrelated viral families, a process termed pseudotyping. However, mounting evidence suggests that Env incorporation is neither passive nor random. Rather, several redundant mechanisms appear to contribute to the carefully controlled process of Env acquisition, many of which are apparently used by a wide variety of enveloped viruses. This review presents and discusses the evidence for these different mechanisms contributing to incorporation.
Collapse
Affiliation(s)
- Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, 65211, USA.
| |
Collapse
|
27
|
Kutluay SB, Bieniasz PD. Analysis of the initiating events in HIV-1 particle assembly and genome packaging. PLoS Pathog 2010; 6:e1001200. [PMID: 21124996 PMCID: PMC2987827 DOI: 10.1371/journal.ppat.1001200] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/19/2010] [Indexed: 01/26/2023] Open
Abstract
HIV-1 Gag drives a number of events during the genesis of virions and is the only viral protein required for the assembly of virus-like particles in vitro and in cells. Although a reasonable understanding of the processes that accompany the later stages of HIV-1 assembly has accrued, events that occur at the initiation of assembly are less well defined. In this regard, important uncertainties include where in the cell Gag first multimerizes and interacts with the viral RNA, and whether Gag-RNA interaction requires or induces Gag multimerization in a living cell. To address these questions, we developed assays in which protein crosslinking and RNA/protein co-immunoprecipitation were coupled with membrane flotation analyses in transfected or infected cells. We found that interaction between Gag and viral RNA occurred in the cytoplasm and was independent of the ability of Gag to localize to the plasma membrane. However, Gag:RNA binding was stabilized by the C-terminal domain (CTD) of capsid (CA), which participates in Gag-Gag interactions. We also found that Gag was present as monomers and low-order multimers (e.g. dimers) but did not form higher-order multimers in the cytoplasm. Rather, high-order multimers formed only at the plasma membrane and required the presence of a membrane-binding signal, but not a Gag domain (the CA-CTD) that is essential for complete particle assembly. Finally, sequential RNA-immunoprecipitation assays indicated that at least a fraction of Gag molecules can form multimers on viral genomes in the cytoplasm. Taken together, our results suggest that HIV-1 particle assembly is initiated by the interaction between Gag and viral RNA in the cytoplasm and that this initial Gag-RNA encounter involves Gag monomers or low order multimers. These interactions per se do not induce or require high-order Gag multimerization in the cytoplasm. Instead, membrane interactions are necessary for higher order Gag multimerization and subsequent particle assembly in cells. Human immunodeficiency virus (HIV) assembles at the plasma membrane of the infected host cell, resulting in the release of infectious virus particles. HIV assembly is directed by the viral structural protein, Gag that performs a number of functions including specific recruitment of viral genomic RNA and multimerization around this RNA to form a virus particle. However, it is currently not clear where in the cell these two key events, Gag-RNA interaction and Gag multimerization, are initiated and whether they are coordinated. In this study we provide strong evidence that recruitment of viral genomic RNA by Gag is initiated in the cytoplasm of the host cell. However, this interaction per se does not require or induce a high degree of Gag multimerization, as Gag is present as monomers or dimers in the cytoplasm. In contrast, plasma membrane seems to be the only site at which higher order Gag multimerization occurs. Notably, at least a fraction of the Gag dimers in the cytoplasm are bound to the viral RNA. These results provide deeper insights to our understanding of the molecular details of the initiating events in HIV-1 assembly, which are potential targets for development of new antiviral drugs.
Collapse
Affiliation(s)
- Sebla B. Kutluay
- Aaron Diamond AIDS Research Center, Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Paul D. Bieniasz
- Aaron Diamond AIDS Research Center, Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids. J Virol 2009; 83:12196-203. [PMID: 19776118 DOI: 10.1128/jvi.01197-09] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein targets HIV-1 precursor Gag (PrGag) proteins to assembly sites at plasma membrane (PM) sites that are enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)]. MA is myristoylated, which enhances membrane binding, and specifically binds PI(4,5)P(2) through headgroup and 2' acyl chain contacts. MA also binds nucleic acids, although the significance of this association with regard to the viral life cycle is unclear. We have devised a novel MA binding assay and used it to examine MA interactions with membranes and nucleic acids. Our results indicate that cholesterol increases the selectivity of MA for PI(4,5)P(2)-containing membranes, that PI(4,5)P(2) binding tolerates 2' acyl chain variation, and that the MA myristate enhances membrane binding efficiency but not selectivity. We also observed that soluble PI(4,5)P(2) analogues do not compete effectively with PI(4,5)P(2)-containing liposomes for MA binding but surprisingly do increase nonspecific binding to liposomes. Finally, we have demonstrated that PI(4,5)P(2)-containing liposomes successfully outcompete nucleic acids for MA binding, whereas other liposomes do not. These results support a model in which RNA binding protects MA from associating with inappropriate cellular membranes prior to PrGag delivery to PM assembly sites.
Collapse
|
29
|
Alfadhli A, Barklis RL, Barklis E. HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. Virology 2009; 387:466-72. [PMID: 19327811 PMCID: PMC2680355 DOI: 10.1016/j.virol.2009.02.048] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/11/2009] [Accepted: 02/23/2009] [Indexed: 12/31/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein represents the N-terminal domain of the HIV-1 precursor Gag (PrGag) protein and carries an N-terminal myristate (Myr) group. HIV-1 MA fosters PrGag membrane binding, as well as assembly of envelope (Env) proteins into virus particles, and recent studies have shown that HIV-1 MA preferentially directs virus assembly at plasma membrane sites enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate (PI[4,5]P(2)). To characterize the membrane binding of MA and PrGag proteins, we have examined how Myr-MA proteins, and proteins composed of Myr-MA and its neighbor Gag capsid (CA) protein associate on membranes containing cholesterol and PI[4,5]P(2). Our results indicate that Myr-MA assembles as a hexamer of trimers on such membranes, and imply that MA trimers interconnect CA hexamer rings in immature virus particles. Our observations suggest a model for the organization of PrGag proteins, and for MA-Env protein interactions.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Vollum Institute and Department of Microbiology, Oregon Health & Science University, 3181, SW Sam Jackson Park Road, Portland, Oregon 97201-3098
| | - Robin Lid Barklis
- Vollum Institute and Department of Microbiology, Oregon Health & Science University, 3181, SW Sam Jackson Park Road, Portland, Oregon 97201-3098
| | - Eric Barklis
- Vollum Institute and Department of Microbiology, Oregon Health & Science University, 3181, SW Sam Jackson Park Road, Portland, Oregon 97201-3098
| |
Collapse
|
30
|
Jorgenson RL, Vogt VM, Johnson MC. Foreign glycoproteins can be actively recruited to virus assembly sites during pseudotyping. J Virol 2009; 83:4060-7. [PMID: 19224995 PMCID: PMC2668502 DOI: 10.1128/jvi.02425-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/05/2009] [Indexed: 11/20/2022] Open
Abstract
Retroviruses like human immunodeficiency virus type 1 (HIV-1), as well as many other enveloped viruses, can efficiently produce infectious virus in the absence of their own surface glycoprotein if a suitable glycoprotein from a foreign virus is expressed in the same cell. This process of complementation, known as pseudotyping, often can occur even when the glycoprotein is from an unrelated virus. Although pseudotyping is widely used for engineering chimeric viruses, it has remained unknown whether a virus can actively recruit foreign glycoproteins to budding sites or, alternatively, if a virus obtains the glycoproteins through a passive mechanism. We have studied the specificity of glycoprotein recruitment by immunogold labeling viral glycoproteins and imaging their distribution on the host plasma membrane using scanning electron microscopy. Expressed alone, all tested viral glycoproteins were relatively randomly distributed on the plasma membrane. However, in the presence of budding HIV-1 or Rous sarcoma virus (RSV) particles, some glycoproteins, such as those encoded by murine leukemia virus and vesicular stomatitis virus, were dramatically redistributed to viral budding sites. In contrast, the RSV Env glycoprotein was robustly recruited only to the homologous RSV budding sites. These data demonstrate that viral glycoproteins are not in preformed membrane patches prior to viral assembly but rather that glycoproteins are actively recruited to certain viral assembly sites.
Collapse
Affiliation(s)
- Rebecca L Jorgenson
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | | | | |
Collapse
|
31
|
Urano E, Aoki T, Futahashi Y, Murakami T, Morikawa Y, Yamamoto N, Komano J. Substitution of the myristoylation signal of human immunodeficiency virus type 1 Pr55Gag with the phospholipase C-delta1 pleckstrin homology domain results in infectious pseudovirion production. J Gen Virol 2009; 89:3144-3149. [PMID: 19008404 PMCID: PMC2885030 DOI: 10.1099/vir.0.2008/004820-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The matrix domain (MA) of human immunodeficiency virus type 1 Pr55Gag is covalently modified with a myristoyl group that mediates efficient viral production. However, the role of myristoylation, particularly in the viral entry process, remains uninvestigated. This study replaced the myristoylation signal of MA with a well-studied phosphatidylinositol 4,5-biphosphate-binding plasma membrane (PM) targeting motif, the phospholipase C-delta1 pleckstrin homology (PH) domain. PH-Gag-Pol PM targeting and viral production efficiencies were improved compared with Gag-Pol, consistent with the estimated increases in Gag-PM affinity. Both virions were recovered in similar sucrose density-gradient fractions and had similar mature virion morphologies. Importantly, PH-Gag-Pol and Gag-Pol pseudovirions had almost identical infectivity, suggesting a dispensable role for myristoylation in the virus life cycle. PH-Gag-Pol might be useful in separating the myristoylation-dependent processes from the myristoylation-independent processes. This the first report demonstrating infectious pseudovirion production without myristoylated Pr55Gag.
Collapse
Affiliation(s)
- Emiko Urano
- Kitasato Institute of Life Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan.,AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Toru Aoki
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuko Futahashi
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuko Morikawa
- Kitasato Institute of Life Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Naoki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Jun Komano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
32
|
Mortuza GB, Dodding MP, Goldstone DC, Haire LF, Stoye JP, Taylor IA. Structure of B-MLV capsid amino-terminal domain reveals key features of viral tropism, gag assembly and core formation. J Mol Biol 2008; 376:1493-508. [PMID: 18222469 DOI: 10.1016/j.jmb.2007.12.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 11/25/2022]
Abstract
The Gag polyprotein is the major structural protein found in all classes of retroviruses. Interactions between Gag molecules control key events at several stages in the cycle of infection. In particular, the capsid (CA) domain of Gag mediates many of the protein-protein interactions that drive retrovirus assembly, maturation and disassembly. Moreover, in murine leukaemia virus (MLV), sequence variation in CA confers N and B tropism that determines susceptibility to the intracellular restriction factors Fv1n and Fv1b. We have determined the structure of the N-terminal domain (NtD) of CA from B-tropic MLV. A comparison of this structure with that of the NtD of CA from N-tropic MLV reveals that although the crystals belong to different space groups, CA monomers are packed with the same P6 hexagonal arrangement. Moreover, interhexamer crystal contacts between residues located at the periphery of the discs are conserved, indicating that switching of tropism does not result in large differences in the backbone conformation, nor does it alter the quaternary arrangement of the disc. We have also examined crystals of the N-tropic MLV CA containing both N- and C-terminal domains. In this case, the NtD hexamer is still present; however, the interhexamer spacing is increased and the conserved interhexamer contacts are absent. Investigation into the effects of mutation of residues that mediate interhexamer contacts reveals that amino acid substitutions at these positions cause severe defects in viral assembly, budding and Gag processing. Based on our crystal structures and mutational analysis, we propose that in MLV, interactions between the NtDs of CA are required for packing of Gag molecules in the early part of immature particle assembly. Moreover, we present a model where proteolytic cleavage at maturation results in migration of CA C-terminal domains into interstitial spaces between NtD hexamers. As a result, NtD-mediated interhexamer contacts present in the immature particle are displaced and the less densely packed lattice with increased hexamer-hexamer spacing characteristic of the viral core is produced.
Collapse
Affiliation(s)
- Gulnahar B Mortuza
- Division of Molecular Structure, National Institute for Medical Research, Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | |
Collapse
|
33
|
Scholz I, Still A, Dhenub TC, Coday K, Webb M, Barklis E. Analysis of human immunodeficiency virus matrix domain replacements. Virology 2008; 371:322-35. [PMID: 17996264 PMCID: PMC2708115 DOI: 10.1016/j.virol.2007.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/21/2007] [Accepted: 10/10/2007] [Indexed: 11/17/2022]
Abstract
The matrix (MA) domain of the HIV-1 structural precursor Gag (PrGag) protein targets PrGag proteins to membrane assembly sites, and facilitates incorporation of envelope proteins into virions. To evaluate the specific requirements for the MA membrane-binding domain (MBD) in HIV-1 assembly and replication, we examined viruses in which MA was replaced by alternative MBDs. Results demonstrated that the pleckstrin homology domains of AKT protein kinase and phospholipase C delta1 efficiently directed the assembly and release of virus-like particles (VLPs) from cells expressing chimeric proteins. VLP assembly and release also were mediated in a phorbol ester-dependent fashion by the cysteine-rich binding domain of phosphokinase Cgamma. Although alternative MBDs promoted VLP assembly and release, the viruses were not infectious. Notably, PrGag processing was reduced, while cleavage of GagPol precursors resulted in the accumulation of Pol-derived intermediates within virions. Our results indicate that the HIV-1 assembly machinery is flexible with regard to its means of membrane association, but that alternative MBDs can interfere with the elaboration of infectious virus cores.
Collapse
Affiliation(s)
- Isabel Scholz
- Vollum Institute and Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, OR, USA
| | - Amelia Still
- Vollum Institute and Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, OR, USA
| | - Tenzin Choesang Dhenub
- Vollum Institute and Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, OR, USA
| | - Kelsey Coday
- Vollum Institute and Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, OR, USA
| | - Mike Webb
- Vollum Institute and Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, OR, USA
| | - Eric Barklis
- Vollum Institute and Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, OR, USA
| |
Collapse
|
34
|
Jouvenet N, Neil SJD, Bess C, Johnson MC, Virgen CA, Simon SM, Bieniasz PD. Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol 2007; 4:e435. [PMID: 17147474 PMCID: PMC1750931 DOI: 10.1371/journal.pbio.0040435] [Citation(s) in RCA: 281] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 10/13/2006] [Indexed: 01/10/2023] Open
Abstract
Recently proposed models that have gained wide acceptance posit that HIV-1 virion morphogenesis is initiated by targeting the major structural protein (Gag) to late endosomal membranes. Thereafter, late endosome-based secretory pathways are thought to deliver Gag or assembled virions to the plasma membrane (PM) and extracellular milieu. We present several findings that are inconsistent with this model. Specifically, we demonstrate that HIV-1 Gag is delivered to the PM, and virions are efficiently released into the extracellular medium, when late endosome motility is abolished. Furthermore, we show that HIV-1 virions are efficiently released when assembly is rationally targeted to the PM, but not when targeted to late endosomes. Recently synthesized Gag first accumulates and assembles at the PM, but a proportion is subsequently internalized via endocytosis or phagocytosis, thus accounting for observations of endosomal localization. We conclude that HIV-1 assembly is initiated and completed at the PM, and not at endosomal membranes.
Collapse
Affiliation(s)
- Nolwenn Jouvenet
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Stuart J. D Neil
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Cameron Bess
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, United States of America
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Cesar A Virgen
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, United States of America
| | - Paul D Bieniasz
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Adamson CS, Freed EO. Human Immunodeficiency Virus Type 1 Assembly, Release, and Maturation. ADVANCES IN PHARMACOLOGY 2007; 55:347-87. [PMID: 17586320 DOI: 10.1016/s1054-3589(07)55010-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Catherine S Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | |
Collapse
|
36
|
Lopez-Vergès S, Camus G, Blot G, Beauvoir R, Benarous R, Berlioz-Torrent C. Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc Natl Acad Sci U S A 2006; 103:14947-52. [PMID: 17003132 PMCID: PMC1595456 DOI: 10.1073/pnas.0602941103] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The presence of the envelope glycoprotein Env in HIV-1 virions is essential for infectivity. To date, the molecular mechanism by which Env is packaged into virions has been largely unknown. Here, we show that TIP47 (tail-interacting protein of 47 kDa), which has been shown to interact with Env, also binds the MA (matrix) domain of HIV-1 Gag protein and that these three proteins form a ternary complex. Mutations in Gag that abrogate interaction with TIP47 inhibit Env incorporation and virion infectivity as well as colocalization between Gag and Env. We also show that TIP47 silencing impairs Env incorporation and infectivity and abolishes coimmunoprecipitation of Gag with Env. In contrast, overexpression of TIP47 increases Env packaging. Last, we demonstrate that TIP47 can interact simultaneously with Env and Gag. Taken together, our results show that TIP47 is a cellular cofactor that plays an essential role in Env incorporation, allowing the encounter and the physical association between HIV-1 Gag and Env proteins during the viral assembly process.
Collapse
Affiliation(s)
- Sandra Lopez-Vergès
- Institut Cochin, Département Maladies Infectieuses, F-75014 Paris, France; Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and Faculté de Médecine René Descartes, Université Paris 5, Unité Mixte de Recherche 3, F-75014 Paris, France
| | - Grégory Camus
- Institut Cochin, Département Maladies Infectieuses, F-75014 Paris, France; Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and Faculté de Médecine René Descartes, Université Paris 5, Unité Mixte de Recherche 3, F-75014 Paris, France
| | - Guillaume Blot
- Institut Cochin, Département Maladies Infectieuses, F-75014 Paris, France; Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and Faculté de Médecine René Descartes, Université Paris 5, Unité Mixte de Recherche 3, F-75014 Paris, France
| | - Roxane Beauvoir
- Institut Cochin, Département Maladies Infectieuses, F-75014 Paris, France; Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and Faculté de Médecine René Descartes, Université Paris 5, Unité Mixte de Recherche 3, F-75014 Paris, France
| | - Richard Benarous
- Institut Cochin, Département Maladies Infectieuses, F-75014 Paris, France; Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and Faculté de Médecine René Descartes, Université Paris 5, Unité Mixte de Recherche 3, F-75014 Paris, France
- *To whom correspondence may be addressed at:
Institut Cochin, 27 Rue du Faubourg Saint Jacques, F-75014 Paris, France. E-mail:
or
| | - Clarisse Berlioz-Torrent
- Institut Cochin, Département Maladies Infectieuses, F-75014 Paris, France; Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and Faculté de Médecine René Descartes, Université Paris 5, Unité Mixte de Recherche 3, F-75014 Paris, France
- *To whom correspondence may be addressed at:
Institut Cochin, 27 Rue du Faubourg Saint Jacques, F-75014 Paris, France. E-mail:
or
| |
Collapse
|
37
|
Scholz I, Arvidson B, Huseby D, Barklis E. Virus particle core defects caused by mutations in the human immunodeficiency virus capsid N-terminal domain. J Virol 2005; 79:1470-9. [PMID: 15650173 PMCID: PMC544128 DOI: 10.1128/jvi.79.3.1470-1479.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 09/14/2004] [Indexed: 12/18/2022] Open
Abstract
The N-terminal domains (NTDs) of the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein have been modeled to form hexamer rings in the mature cores of virions. In vitro, hexamer ring units organize into either tubes or spheres, in a pH-dependent fashion. To probe factors which might govern hexamer assembly preferences in vivo, we examined the effects of mutations at CA histidine residue 84 (H84), modeled at the outer edges of NTD hexamers, as well as a nearby histidine (H87) in the cyclophilin A (CypA) binding loop. Although mutations at H87 yielded infectious virions, mutations at H84 produced assembly-competent but poorly infectious virions. The H84 mutant viruses incorporated wild-type levels of CypA and viral RNAs and showed nearly normal signals in virus entry assays. However, mutant CA proteins assembled aberrant virus cores, and mutant core fractions retained abnormally high levels of CA but reduced reverse transcriptase activities. Our results suggest that HIV-1 CA residue 84 contributes to a structure which helps control either NTD hexamer assembly or the organization of hexamers into higher-order structures.
Collapse
Affiliation(s)
- Isabel Scholz
- Vollum Institute and Department of Microbiology, Mail Code L220, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97201-3098, USA
| | | | | | | |
Collapse
|
38
|
Chiu HC, Liao WH, Chen SW, Wang CT. The human immunodeficiency virus type 1 carboxyl-terminal third of capsid sequence in Gag-Pol is essential but not sufficient for efficient incorporation of Pr160(gag-pol) into virus particles. J Biomed Sci 2004; 11:398-407. [PMID: 15067224 DOI: 10.1007/bf02254445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Accepted: 11/05/2003] [Indexed: 10/25/2022] Open
Abstract
To elucidate the role of the C-terminal portion of Gag in the incorporation of human immunodeficiency virus type 1 (HIV-1) Gag-Pol into virus particles, a series of HIV-1 Gag-Pol mutants with deletions in the C-terminal gag sequence was constructed and viral incorporation of the Gag-Pol deletion mutants was analyzed using co-transfecting 293T cells with a Pr55(gag) expression plasmid. The biological function of the incorporated HIV-1 pol gene product was tested using an infectivity assay of the released virus particles which were pseudotyped with the murine leukemia virus Env. Analysis indicated that Gag-Pol deletion mutants, with a removal of the matrix (MA) and/or nucleocapsid (NC) or of the N-terminal two thirds of the gag coding sequence, could be incorporated efficiently into virus particles and produce significant amounts of infectious virions when assayed in a single-cycle infection assay. In contrast, mutations involving a deletion of the major homology region and the adjacent C-terminal capsid sequence significantly affected Gag-Pol incorporation. However, incorporation into virus particles of a Gag-Pol deletion mutant retaining both the major homology region and the adjacent C-terminal capsid intact was still severely impaired. This suggests that the capsid major homology region and the adjacent C-terminal capsid sequence in Gag-Pol are necessary but not sufficient for the incorporation of HIV-1 Pr160(gag-pol) into virus particles.
Collapse
Affiliation(s)
- Hsu-Chen Chiu
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine and Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
39
|
Liao WH, Chiu HC, Wang CT. Effects of mutations in an HIV-1gag gene containing a 107-codon tandem repeat in the matrix region on assembly and processing of the protein product. J Med Virol 2004; 74:528-35. [PMID: 15484268 DOI: 10.1002/jmv.20209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It has been demonstrated previously that a human immunodeficiency virus (HIV) type 1 Gag mutant (MA2) with a tandem repeat of 107-matrix codons in the matrix domain could direct virus particle assembly and budding [Wang et al. (2000c): J Med Virol 61:423-432]. Since the regions involved functionally in HIV Gag assembly and transport have been mapped to the matrix domain, it was interesting to test the effects of the duplicated matrix-coding sequence on Gag assembly, transport, and virus processing of some assembly-defective HIV matrix mutants. In this study, a number of HIV matrix mutations were introduced into either the proximal or distal copy of the duplicated matrix-coding sequence. Assembly, release, processing, and subcellular localization of the Gag mutants were analyzed by transient expression in 293T cells. The result indicates that the budding defect of HIV matrix mutants could be moderately or significantly reversed when the additional 107-matrix codons were present; however, these matrix double mutations affected significantly the virus particle processing. Mislocalized matrix mutants could also be redistributed to a certain degree in the presence of the duplicated matrix copy. Although the subcellular distribution patterns of the matrix mutants did not correlate completely with the budding efficiency, the data suggest that the budding defect caused by the matrix mutations could be masked to some extent by the duplicated matrix coding sequence.
Collapse
Affiliation(s)
- Wei-Hao Liao
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
40
|
Ellenrieder AD, Kremer W, Kattenbeck B, Hantschel O, Horn G, Kalbitzer HR, Modrow S. The central domain of the matrix protein of HIV-1: influence on protein structure and virus infectivity. Biol Chem 2004; 385:303-13. [PMID: 15134345 DOI: 10.1515/bc.2004.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The central region of the matrix protein p17 of HIV-1 is known to be essential during virus assembly. We substituted alanines for amino acid triplets in this region of p17 (amino acid residues 47 to 55: NPG LLE TSE). Introduction of the respective mutations into the gag-coding sequence of HI-proviruses and subsequent transfection into Cos-7 cells led to particle production and release. Exchange of LLE resulted in the production of non-infectious particles. These residues may be important for correct folding and assembly of the processed matrix protein and the production of infectious HIV. In vitro studies of wild-type and mutated matrix proteins using spectroscopic methods (NMR, fluorescence, CD) yielded detailed data about structure and stability. Two-dimensional NMR spectroscopy showed that wild-type and mutant proteins (p17-NPG and p17-TSE) are well folded. Besides structural changes at the mutated site, chemical shift changes indicate small but significant long range structural rearrangements. The stability against chemically and thermally induced unfolding of the mutants p17-NPG and p17-TSE was slightly decreased, while that of p17-LLE was drastically diminished. The alterations have only a local effect on protein folding for the mutants p17-NPG and p17-TSE, and the globular tertiary structure remains nearly unchanged. For p17-LLE, however, the substitutions seem to trigger significant changes in structural elements.
Collapse
Affiliation(s)
- Anja-Daniela Ellenrieder
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
After entry of the human immunodeficiency virus type 1 (HIV-1) into T cells and the subsequent synthesis of viral products, viral proteins and RNA must somehow find each other in the host cells and assemble on the plasma membrane to form the budding viral particle. In this general review of HIV-1 assembly, we present a brief overview of the HIV life cycle and then discuss assembly of the HIV Gag polyprotein on RNA and membrane substrates from a biochemical perspective. The role of the domains of Gag in targeting to the plasma membrane and the role of the cellular host protein cyclophilin are also reviewed.
Collapse
Affiliation(s)
- Suzanne Scarlata
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY 11794-8661, USA.
| | | |
Collapse
|
42
|
Arvidson B, Seeds J, Webb M, Finlay L, Barklis E. Analysis of the retrovirus capsid interdomain linker region. Virology 2003; 308:166-77. [PMID: 12706100 DOI: 10.1016/s0042-6822(02)00142-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In structural studies, the retrovirus capsid interdomain linker region has been shown as a flexible connector between the CA N-terminal domain and its C-terminal domain. To analyze the function of the linker region, we have examined the effects of three Moloney murine leukemia virus (M-MuLV) capsid linker mutations/variations in vivo, in the context of the full-length M-MuLV structural precursor protein (PrGag). Two mutations, A1SP and A5SP, respectively, inserted three and seven additional codons within the linker region to test the effects of increased linker lengths. The third variant, HIV/Mo, represented a chimeric HIV-1/M-MuLV PrGag protein, fused at the linker region. When expressed in cells, the three variants reduced the efficiency of virus particle assembly, with PrGag proteins and particles accumulating at the cellular plasma membranes. Although PrGag recognition of viral RNA was not impaired, the capsid linker variant particles were abnormal, with decreased stabilities, anomalous densities, and aberrant multiple lobed and tubular morphologies. Additionally, rather than crosslinking as PrGag dimers, particle-associated A1SP, A5SP, and HIV/Mo proteins showed an increased propensity to crosslink as trimers. Our results suggest that a wild-type retrovirus capsid linker region is required for the proper alignment of capsid protein domains.
Collapse
Affiliation(s)
- Brian Arvidson
- Vollum Institute and Department of Microbiology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | | | | | | | | |
Collapse
|
43
|
Chiu HC, Wang FD, Yao SY, Wang CT. Effects of gag mutations on human immunodeficiency virus type 1 particle assembly, processing, and cyclophilin A incorporation. J Med Virol 2002; 68:156-63. [PMID: 12210402 DOI: 10.1002/jmv.10197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A series of human immunodeficiency virus (HIV) mutants was constructed either by deletion or by linker insertion at various regions in the gag coding sequences. The ability of each mutant to assemble virus particles and to process them proteolytically, as well as incorporate cyclophilin A, was analyzed by Western immunoblot. This investigation indicated that most of the gag mutants were assembled and released at a level comparable to that of wild-type virus. In an assay involving a single cycle of infection, mutants containing significant levels of cyclophilin A showed less in trans interference effects on wild-type infectivity than did cyclophilin A-deficient mutants. Mutations in the N-terminal two-thirds of capsid protein severely disrupted cyclophilin A incorporation, but they affected virus processing only slightly to moderately. Virions released from cyclosporine-treated cells were processed, as well as virions made by the mock-treated cells. Also, protease inhibitor treatment had no detectable effect on the cyclophilin A incorporation. These results indicate that cyclophilin A incorporation is not required for virus particle processing and that virus processing does not affect cyclophilin A incorporation.
Collapse
Affiliation(s)
- Hsu-Chen Chiu
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | |
Collapse
|
44
|
Dorfman T, Popova E, Pizzato M, Göttlinger HG. Nef enhances human immunodeficiency virus type 1 infectivity in the absence of matrix. J Virol 2002; 76:6857-62. [PMID: 12050401 PMCID: PMC136271 DOI: 10.1128/jvi.76.13.6857-6862.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef enhances the serine phosphorylation of the human immunodeficiency virus type 1 matrix (MA) protein, which suggests that MA may be a functional target of Nef. Using mutants that remain infectious despite the absence of most or all of MA, we show in the present study that the ability of Nef to enhance virus infectivity is not compromised even if MA is entirely replaced by a heterologous lipid anchor.
Collapse
Affiliation(s)
- Tatyana Dorfman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
45
|
Mayo K, McDermott J, Barklis E. Hexagonal organization of Moloney murine leukemia virus capsid proteins. Virology 2002; 298:30-8. [PMID: 12093170 DOI: 10.1006/viro.2002.1452] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To help elucidate the mechanisms by which retrovirus structural proteins associate to form virus particles, we have examined membrane-bound assemblies of Moloney murine leukemia virus (M-MuLV) capsid (CA) proteins. Electron microscopy and image reconstruction techniques showed that CA dimers appear to function as organizational subunits of the cage-like, membrane-bound protein arrays. However, new three-dimensional (3D) data also were consistent with hexagonal (p6) assembly models. The p6 3D reconstructions of membrane-bound M-MuLV CA proteins gave unit cells of a = b = 80.3 A, c = 110 A, gamma = 120 degrees, in which six dimer units formed a cage lattice. Neighbor cage hole-to-hole distances were 45 A, while distances between hexagonal cage holes corresponded to unit cell lengths (80.3 A). The hexagonal model predicts two types of cage holes (trimer and hexamer holes), uses symmetric head-to-head dimer building blocks, and permits the introduction of lattice curvature by conversion of hexamer to pentamer units. The M-MuLV CA lattice is similar to those formed in helical tubes by HIV CA in that hexamer units surround cage holes of 25-30 A, but differs in that M-MuLV hexamer units appear to be CA dimers, whereas HIV CA units appear to be monomers. These results suggest that while general assembly principles apply to different retroviruses, clear assembly distinctions exist between these virus types.
Collapse
Affiliation(s)
- Keith Mayo
- Vollum Institute and Department of Microbiology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | |
Collapse
|
46
|
Chiu HC, Yao SY, Wang CT. Coding sequences upstream of the human immunodeficiency virus type 1 reverse transcriptase domain in Gag-Pol are not essential for incorporation of the Pr160(gag-pol) into virus particles. J Virol 2002; 76:3221-31. [PMID: 11884546 PMCID: PMC136043 DOI: 10.1128/jvi.76.7.3221-3231.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Incorporation of the human immunodeficiency virus type 1 (HIV-1) Gag-Pol into virions is thought to be mediated by the N-terminal Gag domain via interaction with the Gag precursor. However, one recent study has demonstrated that the murine leukemia virus Pol can be incorporated into virions independently of Gag-Pol expression, implying a possible interaction between the Pol and Gag precursor. To test whether the HIV-1 Pol can be incorporated into virions on removal of the N-terminal Gag domain and to define sequences required for the incorporation of Gag-Pol into virions in more detail, a series of HIV Gag-Pol expression plasmids with various extensive deletions in the region upstream of the reverse transcriptase (RT) domain was constructed, and viral incorporation of the Gag-Pol deletion mutants was examined by cotransfecting 293T cells with a plasmid expressing Pr55(gag). Analysis indicated that deletion of the N-terminal two-thirds of the gag coding region did not significantly affect the incorporation of Gag-Pol into virions. In contrast, Gag-Pol proteins with deletions covering the capsid (CA) major homology regions and the adjacent C-terminal CA regions were impaired with respect to assembly into virions. However, Gag-Pol with sequences deleted upstream of the protease, or of the RT domain but retaining 15 N-terminal gag codons, could still be rescued into virions at a level about 20% of the wild-type level. When assayed in a nonmyristylated Gag-Pol context, all of the Gag-Pol deletion mutants were incorporated into virions at a level comparable to their myristylated counterparts, suggesting that the incorporation of the Gag-Pol deletion mutants into virions is independent of the N-terminal myristylation signal.
Collapse
Affiliation(s)
- Hsu-Chen Chiu
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Department of Medical Research and Education, Taipei Veterans General Hospital, Taiwan
| | | | | |
Collapse
|
47
|
Singh AR, Hill RL, Lingappa JR. Effect of mutations in Gag on assembly of immature human immunodeficiency virus type 1 capsids in a cell-free system. Virology 2001; 279:257-70. [PMID: 11145907 DOI: 10.1006/viro.2000.0706] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies of HIV-1 capsid formation in a cell-free system revealed that capsid assembly occurs via an ordered series of assembly intermediates and requires host machinery. Here we use this system to examine 12 mutations in HIV-1 Gag that others studied previously in intact cells. With respect to capsid formation, these mutations generally produced the same phenotype in the cell-free system as in cells, indicating the cell-free system's high degree of fidelity. Analysis of assembly intermediates reveals that a mutation in the distal region of CA (322 LDeltaS) and truncations proximal to the second cys-his box in NC block multimerization of Gag at early stages in the cell-free capsid assembly pathway. In contrast, mutations in the region of amino acids 56-68 (located in the proximal portion of MA) inhibit assembly at a later point in the pathway. Other mutations, including truncations distal to the first cys-his box in NC and mutations in the distal half of MA (88HDeltaG, 85YDeltaG, Delta104-115, and Delta115-129), do not affect formation of immature capsids in the cell-free system. These data provide new information on the role of different domains in Gag during the early events of capsid assembly.
Collapse
Affiliation(s)
- A R Singh
- Department of Physiology, University of California at San Francisco, San Francisco, California, 94117, USA
| | | | | |
Collapse
|
48
|
Wang CT, Chen SS, Chiang CC. Assembly and release of human immunodeficiency virus type 1 Gag proteins containing tandem repeats of the matrix protein coding sequences in the matrix domain. Virology 2000; 278:289-98. [PMID: 11112503 DOI: 10.1006/viro.2000.0655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have constructed human immunodeficiency virus (HIV) gag mutants by increasing the matrix protein (MA) sequences via tandemly repeated duplication of the central 107-MA codons. Instead of a total of 132 amino acid residues for the wild-type MA, the resultant mutants designated as MA2, MA3, and MA4 contained a total of 242, 352, and 462 codons in the MA domains, respectively. Analysis indicated that the addition of 110 or 220 amino acid residues to the MA did not significantly affect the assembly, release, and processing of particles; however, particle production was markedly reduced when another copy of 110 residues was added to the MA. Subcellular fractionation analysis suggested that the MA tandem repeat mutations enhanced the Gag membrane affinity, in a manner which correlated with the copy number of MA sequences. The effects of enhanced membrane affinity were substantially reduced when sequences downstream of the capsid (CA) domain were deleted. Sucrose density gradient fractionation analysis showed that particles produced by the large insertion mutants possessed wild-type (wt) HIV particle density. Truncation of sequences downstream of the nucleocapsid (NC) domains of the mutants did not influence the budding of particles. In contrast, particle budding was severely impaired when sequences downstream of the CA domain were truncated. Particle densities for the large Gag proteins, which were truncated at the C-terminus of CA, were about 1.12-1.14 g/ml lower than that for wt. Our results suggest that the HIV MA domain could adopt insertions of large protein sequences, and strongly support the proposal that the NC and p2 domains play a crucial role in the process of correct Gag protein packing.
Collapse
Affiliation(s)
- C T Wang
- Department of Medical Research and Education, Institute of Clinical Medicine, Taipei, Taiwan
| | | | | |
Collapse
|
49
|
Rumlova-Klikova M, Hunter E, Nermut MV, Pichova I, Ruml T. Analysis of Mason-Pfizer monkey virus Gag domains required for capsid assembly in bacteria: role of the N-terminal proline residue of CA in directing particle shape. J Virol 2000; 74:8452-9. [PMID: 10954545 PMCID: PMC116356 DOI: 10.1128/jvi.74.18.8452-8459.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mason-Pfizer monkey virus (M-PMV) preassembles immature capsids in the cytoplasm prior to transporting them to the plasma membrane. Expression of the M-PMV Gag precursor in bacteria results in the assembly of capsids indistinguishable from those assembled in mammalian cells. We have used this system to investigate the structural requirements for the assembly of Gag precursors into procapsids. A series of C- and N-terminal deletion mutants progressively lacking each of the mature Gag domains (matrix protein [MA]-pp24/16-p12-capsid protein [CA]-nucleocapsid protein [NC]-p4) were constructed and expressed in bacteria. The results demonstrate that both the CA and the NC domains are necessary for the assembly of macromolecular arrays (sheets) but that amino acid residues at the N terminus of CA define the assembly of spherical capsids. The role of these N-terminal domains is not based on a specific amino acid sequence, since both MA-CA-NC and p12-CA-NC polyproteins efficiently assemble into capsids. Residues N terminal of CA appear to prevent a conformational change in which the N-terminal proline plays a key role, since the expression of a CA-NC protein lacking this proline results in the assembly of spherical capsids in place of the sheets assembled by the CA-NC protein.
Collapse
Affiliation(s)
- M Rumlova-Klikova
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Academy of Sciences, 166 10 Prague, Czech Republic
| | | | | | | | | |
Collapse
|
50
|
Wang CT, Yang AH, Chiang CC. Analysis of a human immunodeficiency virus type 1 gag mutant with an engineered 110-amino-acid insertion in the matrix protein domain. J Med Virol 2000; 61:423-32. [PMID: 10897059 DOI: 10.1002/1096-9071(200008)61:4<423::aid-jmv3>3.0.co;2-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A human immunodeficiency virus (HIV) matrix (MA) protein mutant was constructed by duplication of 107 codons of the HIV-1 MA domain. This MA protein duplication mutant (MAII) still could assemble and process particles, had a wild-type (wt) HIV particle density, and possessed reverse transcriptase activity of about 80% of the wild type virus level. The incorporation of HIV Env and viral RNA genome was not greatly affected. The MAII was noninfectious or poorly infectious, however, when pseudotyped with an amphotropic murine leukemia virus envelope protein or with the HIV envelope protein. Although the MAII mutant displayed an immunofluorescence staining pattern similar to that of the wild type virus, subcellular fractionation studies indicated that the membrane association of MAII Gag precursors was unstable under high-salt conditions. Electron microscopic studies showed that the mutant had a decreased density of particle cores compared with that of the wild type virus, suggesting an altered arrangement of the packed proteins. As this insertion in the MA gene caused no major effects on virus assembly implies that the HIV-1 gag has the potential to adapt large insertions of extra coding sequences without loss of the ability to direct particle assembly and release.
Collapse
Affiliation(s)
- C T Wang
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taiwan, Republic of China.
| | | | | |
Collapse
|