1
|
Conserved G-Quadruplexes Regulate the Immediate Early Promoters of Human Alphaherpesviruses. Molecules 2019; 24:molecules24132375. [PMID: 31252527 PMCID: PMC6651000 DOI: 10.3390/molecules24132375] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023] Open
Abstract
Human Alphaherpesviruses comprise three members, herpes simplex virus (HSV) 1 and 2 and varicella zoster virus (VZV). These viruses are characterized by a lytic cycle in epithelial cells and latency in the nervous system, with lifelong infections that may periodically reactivate and lead to serious complications, especially in immunocompromised patients. The mechanisms that regulate viral transcription have not been fully elucidated, but the master role of the immediate early (IE) genes has been established. G-quadruplexes are non-canonical nucleic-acid structures that control transcription, replication, and recombination in many organisms including viruses and that represent attractive antiviral targets. In this work, we investigate the presence, conservation, folding and activity of G-quadruplexes in the IE promoters of the Alphaherpesviruses. Our analysis shows that all IE promoters in the genome of HSV-1, HSV-2 and VZV contain fully conserved G-quadruplex forming sequences. These comprise sequences with long loops and bulges, and thus deviating from the classic G-quadruplex motifs. Moreover, their location is both on the leading and lagging strand and in some instances they contain exuberant G-tracts. Biophysical and biological analysis proved that all sequences actually fold into G-quadruplex under physiological conditions and can be further stabilized by the G-quadruplex ligand BRACO-19, with subsequent impairment of viral IE gene transcription in cells. These results help shed light on the control of viral transcription and indicate new viral targets to design drugs that impair the early steps of Alphaherpesviruses. In addition, they validate the significance of G-quadruplexes in the general regulation of viral cycles.
Collapse
|
2
|
Long-read sequencing uncovers a complex transcriptome topology in varicella zoster virus. BMC Genomics 2018; 19:873. [PMID: 30514211 DOI: 10.1186/s12864-018-5267-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Varicella zoster virus (VZV) is a human pathogenic alphaherpesvirus harboring a relatively large DNA molecule. The VZV transcriptome has already been analyzed by microarray and short-read sequencing analyses. However, both approaches have substantial limitations when used for structural characterization of transcript isoforms, even if supplemented with primer extension or other techniques. Among others, they are inefficient in distinguishing between embedded RNA molecules, transcript isoforms, including splice and length variants, as well as between alternative polycistronic transcripts. It has been demonstrated in several studies that long-read sequencing is able to circumvent these problems. RESULTS In this work, we report the analysis of the VZV lytic transcriptome using the Oxford Nanopore Technologies sequencing platform. These investigations have led to the identification of 114 novel transcripts, including mRNAs, non-coding RNAs, polycistronic RNAs and complex transcripts, as well as 10 novel spliced transcripts and 25 novel transcription start site isoforms and transcription end site isoforms. A novel class of transcripts, the nroRNAs are described in this study. These transcripts are encoded by the genomic region located in close vicinity to the viral replication origin. We also show that the ORF63 exhibits a complex structural variation encompassing the splice sites of VZV latency transcripts. Additionally, we have detected RNA editing in a novel non-coding RNA molecule. CONCLUSIONS Our investigations disclosed a composite transcriptomic architecture of VZV, including the discovery of novel RNA molecules and transcript isoforms, as well as a complex meshwork of transcriptional read-throughs and overlaps. The results represent a substantial advance in the annotation of the VZV transcriptome and in understanding the molecular biology of the herpesviruses in general.
Collapse
|
3
|
Three newly identified Immediate Early Genes of Bovine herpesvirus 1 lack the characteristic Octamer binding motif- 1. Sci Rep 2018; 8:11441. [PMID: 30061689 PMCID: PMC6065388 DOI: 10.1038/s41598-018-29490-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/11/2018] [Indexed: 02/06/2023] Open
Abstract
Only three immediate early genes (IE) BICP0, BICP4 and BICP22 of Bovine herpesvirus 1 (BoHV-1) are known. These genes are expressed coordinately and their promoters are well characterized. We provide evidence for expression of three additional IE genes of BoHV-1 i.e. UL21, UL33 and UL34. These genes are expressed in the presence of cycloheximide (CH) at the same time as known IE genes. Surprisingly, the promoters of newly identified IE genes (UL21, UL33, UL34) lack the OCT-1 binding site, a considered site of transactivation of the BoHV-1 IE genes. The other difference in the promoters of the newly identified IE genes is the presence of TATA box at near optimal site. However, all the IE genes have similar spatial placements of C/EBPα, DPE and INR elements.
Collapse
|
4
|
Khalil MI, Che X, Sung P, Sommer MH, Hay J, Arvin AM. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication. Virology 2016; 492:82-91. [PMID: 26914506 DOI: 10.1016/j.virol.2016.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/30/2016] [Accepted: 02/14/2016] [Indexed: 12/29/2022]
Abstract
VZV IE62 is an essential, immediate-early, tegument protein and consists of five domains. We generated recombinant viruses carrying mutations in the first three IE62 domains and tested their influence on VZV replication kinetics. The mutations in domain I did not affect replication kinetics while domain II mutations, disrupting the DNA binding and dimerization domain (DBD), were lethal for VZV replication. Mutations in domain III of the nuclear localization signal (NLS) and the two phosphorylation sites S686A/S722A resulted in slower growth in early and late infection respectively and were associated with IE62 accumulation in the cytoplasm and nucleus respectively. This study mapped the functional domains of IE62 in context of viral infection, indicating that DNA binding and dimerization domain is essential for VZV replication. In addition, the correct localization of IE62, whether nuclear or cytoplasmic, at different points in the viral life cycle, is important for normal progression of VZV replication.
Collapse
Affiliation(s)
- Mohamed I Khalil
- Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA, United States; Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt.
| | - Xibing Che
- Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA, United States
| | - Phillip Sung
- Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA, United States
| | - Marvin H Sommer
- Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA, United States
| | - John Hay
- Department of Microbiology and Immunology, School of Medicine and Biomedical Science, University at Buffalo, Buffalo, NY, United States
| | - Ann M Arvin
- Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Wang W, Cheng T, Zhu H, Xia N. Insights into the function of tegument proteins from the varicella zoster virus. SCIENCE CHINA-LIFE SCIENCES 2015. [PMID: 26208824 DOI: 10.1007/s11427-015-4887-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chickenpox (varicella) is caused by primary infection with varicella zoster virus (VZV), which can establish long-term latency in the host ganglion. Once reactivated, the virus can cause shingles (zoster) in the host. VZV has a typical herpesvirus virion structure consisting of an inner DNA core, a capsid, a tegument, and an outer envelope. The tegument is an amorphous layer enclosed between the nucleocapsid and the envelope, which contains a variety of proteins. However, the types and functions of VZV tegument proteins have not yet been completely determined. In this review, we describe the current knowledge on the multiple roles played by VZV tegument proteins during viral infection. Moreover, we discuss the VZV tegument protein-protein interactions and their impact on viral tissue tropism in SCID-hu mice. This will help us develop a better understanding of how the tegument proteins aid viral DNA replication, evasion of host immune response, and pathogenesis.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, 361102, China
| | | | | | | |
Collapse
|
6
|
Khalil MI, Sommer M, Arvin A, Hay J, Ruyechan WT. Regulation of the varicella-zoster virus ORF3 promoter by cellular and viral factors. Virology 2013; 440:171-81. [PMID: 23523134 DOI: 10.1016/j.virol.2013.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/20/2013] [Accepted: 02/24/2013] [Indexed: 11/18/2022]
Abstract
The varicella zoster virus (VZV) immediate early 62 protein (IE62) activates most if not all identified promoters of VZV genes and also some minimum model promoters that contain only a TATA box element. Analysis of the DNA elements that function in IE62 activation of the VZV ORF3 promoter revealed that the 100 nucleotides before the translation start site of the ORF3 gene contains the promoter elements. This promoter lacks any functional TATA box element. Cellular transcription factors Sp1, Sp3 and YY1 bind to the promoter, and mutation of their binding sites inhibited ORF3 gene expression. VZV regulatory proteins, IE63 and ORF29, ORF61 and ORF10 proteins inhibited IE62-mediated activation of this promoter. Mutation of the Sp1/Sp3 binding site in the VZV genome did not alter VZV replication kinetics. This work suggests that Sp family proteins contribute to the activation of VZV promoters by IE62 in the absence of functional TATA box.
Collapse
Affiliation(s)
- Mohamed I Khalil
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | | | | | | | | |
Collapse
|
7
|
Cai M, Wang S, Long J, Zheng C. Probing of the nuclear import and export signals and subcellular transport mechanism of varicella-zoster virus tegument protein open reading frame 10. Med Microbiol Immunol 2012; 201:103-11. [PMID: 21755366 DOI: 10.1007/s00430-011-0211-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Indexed: 01/27/2023]
Abstract
Varicella-zoster virus open reading frame 10 (ORF10), a tegument protein present in the virion, is a member of the alphaherpesvirus UL48 gene family that shares considerable amino acid sequence homology with the UL48 prototype, herpes simplex virus type 1 VP16. VP16 serves multiple functions, including transcriptional activation of viral immediate-early genes. Furthermore, VP16 has been shown to be involved in some aspects of virus assembly and/or maturation. However, little is known concerning the function of ORF10. Here, we found that transient expression of ORF10 fused to enhanced yellow fluorescent protein (EYFP) in COS-7 cells showed the predominantly nuclear localization in the absence of other viral proteins. By constructing a series of ORF10 variants fused to EYFP, a bona fide bipartite nuclear localization signal of ORF10 was, for the first time, determined and mapped to amino acids (aa) 302-347. Additionally, the nuclear export signal (NES) was identified and found to be in a leucine-rich region at aa 226-236. Finally, ORF10 was demonstrated to be targeted to the cytoplasm through the functional NES by chromosomal region maintenance 1-dependent pathway, and to the nucleus via Ran and importin β1-dependent pathway that does not require importin α5.
Collapse
Affiliation(s)
- Mingsheng Cai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuchang, Wuhan, China
| | | | | | | |
Collapse
|
8
|
Gray WL, Zhou F, Noffke J, Tischer BK. Cloning the simian varicella virus genome in E. coli as an infectious bacterial artificial chromosome. Arch Virol 2011; 156:739-46. [PMID: 21487663 DOI: 10.1007/s00705-010-0889-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
Simian varicella virus (SVV) is closely related to human varicella-zoster virus and causes varicella and zoster-like disease in nonhuman primates. In this study, a mini-F replicon was inserted into a SVV cosmid, and infectious SVV was generated by co-transfection of Vero cells with overlapping SVV cosmids. The entire SVV genome, cloned as a bacterial artificial chromosome (BAC), was stably propagated upon serial passage in E. coli. Transfection of pSVV-BAC DNA into Vero cells yielded infectious SVV (rSVV-BAC). The mini-F vector sequences flanked by loxP sites were removed by co-infection of Vero cells with rSVV-BAC and adenovirus expressing Cre-recombinase. Recombinant SVV generated using the SVV-BAC genetic system has similar molecular and in vitro replication properties as wild-type SVV. To demonstrate the utility of this approach, a SVV ORF 10 deletion mutant was created using two-step Red-mediated recombination. The results indicate that SVV ORF 10, which encodes a homolog of the HSV-1 virion VP-16 transactivator protein, is not essential for in vitro replication but is required for optimal replication in cell culture.
Collapse
Affiliation(s)
- Wayne L Gray
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA.
| | | | | | | |
Collapse
|
9
|
Penkert RR, Kalejta RF. Tegument protein control of latent herpesvirus establishment and animation. HERPESVIRIDAE 2011; 2:3. [PMID: 21429246 PMCID: PMC3063196 DOI: 10.1186/2042-4280-2-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/08/2011] [Indexed: 12/18/2022]
Abstract
Herpesviruses are successful pathogens that infect most vertebrates as well as at least one invertebrate species. Six of the eight human herpesviruses are widely distributed in the population. Herpesviral infections persist for the life of the infected host due in large part to the ability of these viruses to enter a non-productive, latent state in which viral gene expression is limited and immune detection and clearance is avoided. Periodically, the virus will reactivate and enter the lytic cycle, producing progeny virus that can spread within or to new hosts. Latency has been classically divided into establishment, maintenance, and reactivation phases. Here we focus on demonstrated and postulated molecular mechanisms leading to the establishment of latency for representative members of each human herpesvirus family. Maintenance and reactivation are also briefly discussed. In particular, the roles that tegument proteins may play during latency are highlighted. Finally, we introduce the term animation to describe the initiation of lytic phase gene expression from a latent herpesvirus genome, and discuss why this step should be separated, both molecularly and theoretically, from reactivation.
Collapse
Affiliation(s)
- Rhiannon R Penkert
- Institute for Molecular Virology, McArdle Laboratory for Cancer Research, and Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | | |
Collapse
|
10
|
Abstract
The varicella-zoster virus (VZV) genome contains at least 70 genes, and all but six have homologs in herpes simplex virus (HSV). Cosmids and BACs corresponding to the VZV parental Oka and vaccine Oka viruses have been used to "knockout" 34 VZV genes. Seven VZV genes (ORF4, 5, 9, 21, 29, 62, and 68) have been shown to be required for growth in vitro. Recombinant viruses expressing several markers (e.g., beta-galactosidase, green fluorescence protein, luciferase) and several foreign viral genes (from herpes simplex, Epstein-Barr virus, hepatitis B, mumps, HIV, and simian immunodeficiency virus) have been constructed. Further studies of the VZV genome, using recombinant viruses, may facilitate the development of safer and more effective VZV vaccines. Furthermore, VZV might be useful as a vaccine vector to immunize against both VZV and other viruses.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
The insulin degrading enzyme binding domain of varicella-zoster virus (VZV) glycoprotein E is important for cell-to-cell spread and VZV infectivity, while a glycoprotein I binding domain is essential for infection. Virology 2009; 386:270-9. [PMID: 19233447 DOI: 10.1016/j.virol.2009.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 01/06/2009] [Accepted: 01/09/2009] [Indexed: 11/20/2022]
Abstract
Varicella-zoster virus (VZV) glycoprotein E (gE) interacts with glycoprotein I and with insulin degrading enzyme (IDE), which is a receptor for the virus. We found that a VZV gE deletion mutant could only be grown in cells expressing gE. Expression of VZV gE on the surface of cells did not interfere with VZV infection. HSV deleted for gE is impaired for cell-to-cell spread; VZV gE could not complement this activity in an HSV gE null mutant. VZV lacking the IDE binding domain of gE grew to peak titers nearly equivalent to parental virus; however, it was impaired for cell-to-cell spread and for infectivity with cell-free virus. VZV deleted for a region of gE that binds glycoprotein I could not replicate in cell culture unless grown in cells expressing gE. We conclude that the IDE binding domain is important for efficient cell-to-cell spread and infectivity of cell-free virus.
Collapse
|
12
|
Functions of the ORF9-to-ORF12 gene cluster in varicella-zoster virus replication and in the pathogenesis of skin infection. J Virol 2008; 82:5825-34. [PMID: 18400847 PMCID: PMC2395146 DOI: 10.1128/jvi.00303-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene cluster composed of varicella-zoster virus (VZV) open reading frame 9 (ORF9) to ORF12 encodes four putative tegument proteins and is highly conserved in most alphaherpesviruses. In these experiments, the genes within this cluster were deleted from the VZV parent Oka (POKA) individually or in combination, and the consequences for VZV replication were evaluated with cultured cells in vitro and with human skin xenografts in SCID mice in vivo. As has been reported for ORF10, ORF11 and ORF12 were dispensable for VZV replication in melanoma and human embryonic fibroblast cells. In contrast, deletion of ORF9 was incompatible with the recovery of infectious virus. ORF9 localized to the virion tegument and formed complexes with glycoprotein E, which is an essential protein, in VZV-infected cells. Recombinants lacking ORF10 and ORF11 (POKADelta10/11), ORF11 and ORF12 (POKADelta11/12), or ORF10, ORF11 and ORF12 (POKADelta10/11/12) were viable in cultured cells. Their growth kinetics did not differ from those of POKA, and nucleocapsid formation and virion assembly were not disrupted. In addition, these deletion mutants showed no differences compared to POKA in infectivity levels for primary human tonsil T cells. Deletion of ORF12 had no effect on skin infection, whereas replication of POKADelta11, POKADelta10/11, and POKADelta11/12 was severely reduced, and no virus was recovered from skin xenografts inoculated with POKADelta10/11/12. These results indicate that with the exception of ORF9, the individual genes within the ORF9-to-ORF12 gene cluster are dispensable and can be deleted simultaneously without any apparent effect on VZV replication in vitro but that the ORF10-to-ORF12 cluster is essential for VZV virulence in skin in vivo.
Collapse
|
13
|
Helferich D, Veits J, Mettenleiter TC, Fuchs W. Identification of transcripts and protein products of the UL31, UL37, UL46, UL47, UL48, UL49 and US4 gene homologues of avian infectious laryngotracheitis virus. J Gen Virol 2007; 88:719-731. [PMID: 17325344 DOI: 10.1099/vir.0.82532-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the present study, the transcription and protein expression of seven genes of infectious laryngotracheitis virus (ILTV) were investigated: UL31 and UL37 possess homologues in all known avian and mammalian herpesviruses, whereas UL46–UL49 and US4 are only conserved in most alphaherpesviruses. A peculiarity of the ILTV genome is the translocation of UL47 from the unique long region to a position upstream of US4 within the unique short region. Northern blot analyses revealed that all of the analysed genes were transcribed most abundantly during the late (γ) phase of replication, but the only true late (γ2) gene was UL47. Using monospecific rabbit antisera, the protein products of all of the genes could be detected and localized in ILTV-infected cells. Considerable amounts of the UL31, UL47 and UL48 gene products were found in the cell nuclei, whereas the other proteins were restricted largely to the cytoplasm. Like the respective tegument proteins of other herpesviruses, the UL37 and UL46–UL49 gene products of ILTV were incorporated into virus particles, whereas the UL31 protein and the glycoprotein encoded by US4 (gG) were not detectable in purified virions. It was also demonstrated that the UL48 protein of ILTV is able to activate an alphaherpesvirus immediate-early gene promoter, which is also a typical feature of other UL48 homologues. Taken together, these results indicate that the functions of all of the investigated ILTV proteins are related to those of their homologues in other alphaherpesviruses.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cell Line
- Cell Nucleus/chemistry
- Chick Embryo
- Cytoplasm/chemistry
- Fluorescent Antibody Technique, Indirect
- Gene Expression
- Gene Expression Profiling
- Genes, Viral
- Genome, Viral
- Herpesvirus 1, Gallid/chemistry
- Herpesvirus 1, Gallid/genetics
- Microscopy, Fluorescence
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Synteny
- Transcription, Genetic
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
- Viral Proteins/isolation & purification
- Virion/chemistry
Collapse
Affiliation(s)
- Dorothee Helferich
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Jutta Veits
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
14
|
Finnen RL, Mizokami KR, Banfield BW, Cai GY, Simpson SA, Pizer LI, Levin MJ. Postentry events are responsible for restriction of productive varicella-zoster virus infection in Chinese hamster ovary cells. J Virol 2006; 80:10325-34. [PMID: 17041213 PMCID: PMC1641800 DOI: 10.1128/jvi.00939-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 08/07/2006] [Indexed: 12/18/2022] Open
Abstract
Productive infection of varicella-zoster virus (VZV) in vitro is restricted almost exclusively to cells derived from humans and other primates. We demonstrate that the restriction of productive VZV infection in CHO-K1 cells occurs downstream of virus entry. Entry of VZV into CHO-K1 cells was characterized by utilizing an ICP4/beta-galactosidase reporter gene that has been used previously to study herpes simplex virus type 1 entry. Entry of VZV into CHO-K1 cells involved cell surface interactions with heparan sulfate glycosaminoglycans and a cation-independent mannose-6-phosphate receptor. Lysosomotropic agents inhibited the entry of VZV into CHO-K1 cells, consistent with a low-pH-dependent endocytic mechanism of entry. Infection of CHO-K1 cells by VZV resulted in the production of both immediate early and late gene products, indicating that a block to progeny virus production occurs after the initiation of virus gene expression.
Collapse
Affiliation(s)
- Renée L Finnen
- Department of Pediatrics, Infectious Diseases Section, Biomedical Research Building 851, C227, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Che X, Zerboni L, Sommer MH, Arvin AM. Varicella-zoster virus open reading frame 10 is a virulence determinant in skin cells but not in T cells in vivo. J Virol 2006; 80:3238-48. [PMID: 16537591 PMCID: PMC1440391 DOI: 10.1128/jvi.80.7.3238-3248.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The open reading frame 10 (ORF10) of varicella-zoster virus (VZV) encodes a tegument protein that enhances transactivation of VZV genes and has homology to herpes simplex virus type 1 (HSV-1) VP16. While VP16 is essential for HSV replication, ORF10 is dispensable for vaccine OKA (VOKA) growth in vitro. We used parent OKA (POKA) cosmids to delete ORF10, producing POKA delta10; point mutations that disrupted the acidic activation domain and the putative motif for binding human cellular factor 1 (HCF-1) in ORF10 protein yielded POKA10-Phe28Ala, POKA10-Phe28Ser, and POKA10-mHCF viruses. Deleting ORF10 or mutating these two functional domains had no effect on VZV replication, immediate-early gene transcription, or virion assembly in vitro. However, deleting ORF10 reduced viral titers and the extent of cutaneous lesions significantly in SCIDhu skin xenografts in vivo compared to POKA. Epidermal cells infected with POKA delta10 had significantly fewer DNA-containing nucleocapsids and complete virions compared to POKA; extensive aggregates of intracytoplasmic viral particles were also observed. Altering the activation or the putative HCF-1 domains of ORF10 protein had no consequences for VZV replication in vivo. Thus, the decreased pathogenic potential of POKA delta10 in skin could not be attributed to absence of these ORF10 protein functions. In contrast to skin cells, deleting ORF10 did not impair VZV T-cell tropism in vivo, as assessed by infectious virus yields. We conclude that ORF10 protein is required for efficient VZV virion assembly and is a specific determinant of VZV virulence in epidermal and dermal cells in vivo.
Collapse
Affiliation(s)
- Xibing Che
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5208, USA.
| | | | | | | |
Collapse
|
16
|
von Einem J, Schumacher D, O'Callaghan DJ, Osterrieder N. The alpha-TIF (VP16) homologue (ETIF) of equine herpesvirus 1 is essential for secondary envelopment and virus egress. J Virol 2006; 80:2609-20. [PMID: 16501071 PMCID: PMC1395446 DOI: 10.1128/jvi.80.6.2609-2620.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The equine herpesvirus 1 (EHV-1) alpha-trans-inducing factor homologue (ETIF; VP16-E) is a 60-kDa virion component encoded by gene 12 (ORF12) that transactivates the immediate-early gene promoter. Here we report on the function of EHV-1 ETIF in the context of viral infection. An ETIF-null mutant from EHV-1 strain RacL11 (vL11deltaETIF) was constructed and analyzed. After transfection of vL11deltaETIF DNA into RK13 cells, no infectious virus could be reconstituted, and only single infected cells or small foci containing up to eight infected cells were detected. In contrast, after transfection of vL11deltaETIF DNA into a complementing cell line, infectious virus could be recovered, indicating the requirement of ETIF for productive virus infection. The growth defect of vL11deltaETIF could largely be restored by propagation on the complementing cell line, and growth on the complementing cell line resulted in incorporation of ETIF in mature and secreted virions. Low- and high-multiplicity infections of RK13 cells with phenotypically complemented vL11deltaETIF virus resulted in titers of virus progeny similar to those used for infection, suggesting that input ETIF from infection was recycled. Ultrastructural studies of vL11deltaETIF-infected cells demonstrated a marked defect in secondary envelopment at cytoplasmic membranes, resulting in very few enveloped virions in transport vesicles or extracellular space. Taken together, our results demonstrate that ETIF has an essential function in the replication cycle of EHV-1, and its main role appears to be in secondary envelopment.
Collapse
Affiliation(s)
- Jens von Einem
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130
| | - Daniel Schumacher
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130
| | - Dennis J. O'Callaghan
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130
| | - Nikolaus Osterrieder
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130
- Corresponding author. Mailing address: Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853. Phone: (607) 253-4045. Fax: (607) 253-3384. E-mail:
| |
Collapse
|
17
|
Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 2005; 69:462-500. [PMID: 16148307 PMCID: PMC1197806 DOI: 10.1128/mmbr.69.3.462-500.2005] [Citation(s) in RCA: 599] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pseudorabies virus (PRV) is a herpesvirus of swine, a member of the Alphaherpesvirinae subfamily, and the etiological agent of Aujeszky's disease. This review describes the contributions of PRV research to herpesvirus biology, neurobiology, and viral pathogenesis by focusing on (i) the molecular biology of PRV, (ii) model systems to study PRV pathogenesis and neurovirulence, (iii) PRV transsynaptic tracing of neuronal circuits, and (iv) veterinary aspects of pseudorabies disease. The structure of the enveloped infectious particle, the content of the viral DNA genome, and a step-by-step overview of the viral replication cycle are presented. PRV infection is initiated by binding to cellular receptors to allow penetration into the cell. After reaching the nucleus, the viral genome directs a regulated gene expression cascade that culminates with viral DNA replication and production of new virion constituents. Finally, progeny virions self-assemble and exit the host cells. Animal models and neuronal culture systems developed for the study of PRV pathogenesis and neurovirulence are discussed. PRV serves asa self-perpetuating transsynaptic tracer of neuronal circuitry, and we detail the original studies of PRV circuitry mapping, the biology underlying this application, and the development of the next generation of tracer viruses. The basic veterinary aspects of pseudorabies management and disease in swine are discussed. PRV infection progresses from acute infection of the respiratory epithelium to latent infection in the peripheral nervous system. Sporadic reactivation from latency can transmit PRV to new hosts. The successful management of PRV disease has relied on vaccination, prevention, and testing.
Collapse
Affiliation(s)
- Lisa E Pomeranz
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA.
| | | | | |
Collapse
|
18
|
Desloges N, Rahaus M, Wolff MH. The varicella-zoster virus-mediated delayed host shutoff: open reading frame 17 has no major function, whereas immediate-early 63 protein represses heterologous gene expression. Microbes Infect 2005; 7:1519-29. [PMID: 16039898 DOI: 10.1016/j.micinf.2005.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 05/13/2005] [Accepted: 05/15/2005] [Indexed: 11/22/2022]
Abstract
We reported that varicella-zoster virus (VZV) causes a delayed host shutoff during its replicative cycle. VZV open reading frame 17 (ORF17) is the homologue of the herpes simplex virus (HSV) UL41 gene encoding the virion host shutoff (vhs) protein which is responsible for the shutoff effect observed in HSV-infected cells. In the present study, we demonstrated that ORF17 is expressed as a late protein during the VZV replicative cycle in different infected permissive cell lines which showed a delayed shutoff of cellular RNA. A cell line with stable expression of VZV ORF17 was infected with VZV. In these cells, VZV replication and delayed host shutoff remained unchanged when compared to normal infected cells. ORF17 was not capable of repressing the expression of the beta-gal reporter gene under the control of the human cytomegalovirus immediate-early gene promoter or to inhibit the expression of a CAT reporter gene under the control of the human GAPDH promoter, indicating that ORF17 has no major function in the VZV-mediated delayed host shutoff. To determine whether other viral factors are involved in the host shutoff, a series of cotransfection assays was performed. We found that the immediate-early 63 protein (IE63) was able to downregulate the expression of reporter genes under the control of the two heterologous promoters, indicating that this viral factor can be involved in the VZV-mediated delayed host shutoff. Other factors can be also implicated to modulate the repressing action of IE63 to achieve a precise balance between the viral and cellular gene expression.
Collapse
Affiliation(s)
- Nathalie Desloges
- Institute of Microbiology and Virology, Private University of Witten/Herdecke, Stockumer Street 10, D-58448, Germany
| | | | | |
Collapse
|
19
|
Fuchs W, Granzow H, Mettenleiter TC. A pseudorabies virus recombinant simultaneously lacking the major tegument proteins encoded by the UL46, UL47, UL48, and UL49 genes is viable in cultured cells. J Virol 2004; 77:12891-900. [PMID: 14610211 PMCID: PMC262591 DOI: 10.1128/jvi.77.23.12891-12900.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The UL46, UL47, UL48, and UL49 genes, which encode major tegument proteins, are conserved in most alphaherpesvirus genomes. However, the relative importance of each of these proteins for replication of individual alphaherpesviruses appears to be different. Recently, we demonstrated that single deletions of UL47 or UL48 impair maturation and egress of pseudorabies virus (PrV) particles to different extents, whereas deletions of UL46 or UL49 have no significant effects on virus replication in cell culture (W. Fuchs, H. Granzow, B. G. Klupp, M. Kopp, and T. C. Mettenleiter, J. Virol. 76:6729-6742, 2002; M. Kopp, B. G. Klupp, H. Granzow, W. Fuchs, and T. C. Mettenleiter, J. Virol. 76:8820-8833, 2002). To test for possible functional redundancy between the four tegument proteins, a quadruple gene deletion mutant (PrV-DeltaUL46-49) was generated and characterized in vitro. Although plaque formation by this mutant was almost abolished and maximum titers were reduced more than 100-fold compared to those of parental wild-type virus, PrV-DeltaUL46-49 could be propagated and serially passaged in noncomplementing porcine and rabbit kidney cells. Electron-microscopic studies revealed that nucleocapsid formation and egress of PrV-DeltaUL46-49 from the host cell nucleus were not affected, but secondary envelopment of nucleocapsids in the cytoplasm was only rarely observed. The replication defect of PrV-DeltaUL46-49 could be fully corrected by reinsertion of the UL46-to-UL49 gene cluster. Plaque sizes and virus titers were only slightly increased after restoration of only UL47 expression, whereas repair of only UL48 resulted in a significant increase in replication capacity to the level of a UL47 deletion mutant. In conclusion, we show that none of the UL46 to UL49 tegument proteins is absolutely required for productive replication of PrV. Moreover, our data indicate that the UL47 and UL48 proteins function independently during cell-to-cell spread and virus egress.
Collapse
Affiliation(s)
- Walter Fuchs
- Institutes of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17493 Greifswald-Insel Riems, Germany
| | | | | |
Collapse
|
20
|
Peng H, He H, Hay J, Ruyechan WT. Interaction between the varicella zoster virus IE62 major transactivator and cellular transcription factor Sp1. J Biol Chem 2003; 278:38068-75. [PMID: 12855699 DOI: 10.1074/jbc.m302259200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The varicella zoster virus (VZV) IE62 protein is involved in the activation of expression of all three kinetic classes of VZV proteins. Analysis of the viral promoter for VZV glycoprotein I has shown that the cellular factor Sp1 is involved in or required for the observed IE62 mediated activation. Co-immunoprecipitation experiments show that the two proteins are present in a complex in VZV-infected cells. Protein affinity pull-down assays using recombinant proteins showed that IE62 and Sp1 interact in the absence of any other viral and cellular proteins. Mapping studies using GST-fusion proteins containing truncations of IE62 and Sp1 have delimited the interacting regions to amino acids 612-778 in Sp1 and amino acids 226-299 in IE62. The region identified in Sp1 is involved in DNA-binding, synergistic Sp1 activation, and Sp1 interaction with cellular transcription factors. The interacting region identified in IE62 overlaps with or borders on sites involved in interactions with the VZV IE4 protein and the cellular factors TBP and TFIIB. Assays using wild-type and mutant promoter elements indicate that Sp1 is involved in recruitment of IE62 to the gI promoter and IE62 enhances Sp1 and TBP binding.
Collapse
Affiliation(s)
- Hua Peng
- Department of Microbiology, University at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
21
|
Sato B, Ito H, Hinchliffe S, Sommer MH, Zerboni L, Arvin AM. Mutational analysis of open reading frames 62 and 71, encoding the varicella-zoster virus immediate-early transactivating protein, IE62, and effects on replication in vitro and in skin xenografts in the SCID-hu mouse in vivo. J Virol 2003; 77:5607-20. [PMID: 12719553 PMCID: PMC154054 DOI: 10.1128/jvi.77.10.5607-5620.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The varicella-zoster virus (VZV) genome has unique long (U(L)) and unique short (U(S)) segments which are flanked by internal repeat (IR) and terminal repeat (TR) sequences. The immediate-early 62 (IE62) protein, encoded by open reading frame 62 (ORF62) and ORF71 in these repeats, is the major VZV transactivating protein. Mutational analyses were done with VZV cosmids generated from parent Oka (pOka), a low-passage clinical isolate, and repair experiments were done with ORF62 from pOka and vaccine Oka (vOka), which is derived from pOka. Transfections using VZV cosmids from which ORF62, ORF71, or the ORF62/71 gene pair was deleted showed that VZV replication required at least one copy of ORF62. The insertion of ORF62 from pOka or vOka into a nonnative site in U(S) allowed VZV replication in cell culture in vitro, although the plaque size and yields of infectious virus were decreased. Targeted mutations in binding sites reported to affect interaction with IE4 protein and a putative ORF9 protein binding site were not lethal. Single deletions of ORF62 or ORF71 from cosmids permitted recovery of infectious virus, but recombination events repaired the defective repeat region in some progeny viruses, as verified by PCR and Southern hybridization. VZV infectivity in skin xenografts in the SCID-hu model required ORF62 expression; mixtures of single-copy recombinant Oka Delta 62 (rOka Delta 62) or rOka Delta 71 and repaired rOka generated by recombination of the single-copy deletion mutants were detected in some skin implants. Although insertion of ORF62 into the nonnative site permitted replication in cell culture, ORF62 expression from its native site was necessary for cell-cell spread in differentiated human skin tissues in vivo.
Collapse
Affiliation(s)
- Bunji Sato
- Departments of Pediatrics and Microbiology, Stanford University School of Medicine, Stanford, California
| | - Hideki Ito
- Departments of Pediatrics and Microbiology, Stanford University School of Medicine, Stanford, California
| | - Stewart Hinchliffe
- Departments of Pediatrics and Microbiology, Stanford University School of Medicine, Stanford, California
| | - Marvin H. Sommer
- Departments of Pediatrics and Microbiology, Stanford University School of Medicine, Stanford, California
| | - Leigh Zerboni
- Departments of Pediatrics and Microbiology, Stanford University School of Medicine, Stanford, California
| | - Ann M. Arvin
- Departments of Pediatrics and Microbiology, Stanford University School of Medicine, Stanford, California
- Corresponding author. Mailing address: 300 Pasteur Dr., Rm. G312, Stanford University School of Medicine, Stanford, CA 94305-5208. Phone: (650) 723-5682. Fax: (650) 725-8040. E-mail:
| |
Collapse
|
22
|
Gomi Y, Sunamachi H, Mori Y, Nagaike K, Takahashi M, Yamanishi K. Comparison of the complete DNA sequences of the Oka varicella vaccine and its parental virus. J Virol 2002; 76:11447-59. [PMID: 12388706 PMCID: PMC136748 DOI: 10.1128/jvi.76.22.11447-11459.2002] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA sequences of the Oka varicella vaccine virus (V-Oka) and its parental virus (P-Oka) were completed. Comparison of the sequences revealed 42 base substitutions, which led to 20 amino acid conversions and length differences in tandem repeat regions (R1, R3, and R4) and in an origin of DNA replication. Amino acid substitutions existed in open reading frames (ORFs) 6, 9A, 10, 21, 31, 39, 50, 52, 55, 59, 62, and 64. Of these, 15 base substitutions, leading to eight amino acid substitutions, were in the gene 62 region alone. Further DNA sequence analysis showed that these substitutions were specific for V-Oka and were not present in nine clinical isolates. The immediate-early gene 62 product (IE62) of P-Oka had stronger transactivational activity than the mutant IE62 contained in V-Oka in 293 and CV-1 cells. An infectious center assay of a plaque-purified clone (S7-01) from the V-Oka with 8 amino acid substitutions in ORF 62 showed smaller plaque formation and less-efficient virus-spreading activity than did P-Oka in human embryonic lung cells. Another clone (S-13) with only five substitutions in ORF 62 spread slightly faster than S7-01 but not as effectively as P-Oka. Moreover, transient luciferase assay in 293 cells showed that transactivational activities of IE62s of S7-01 and S7-13 were lower than that of P-Oka. Based on these results, it appears that amino acid substitutions in ORF 62 are responsible for virus growth and spreading from infected to uninfected cells. Furthermore, the Oka vaccine virus was completely distinguishable from P-Oka and 54 clinical isolates by seven restriction-enzyme fragment length polymorphisms that detected differences in the DNA sequence.
Collapse
Affiliation(s)
- Yasuyuki Gomi
- Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Fuchs W, Granzow H, Klupp BG, Kopp M, Mettenleiter TC. The UL48 tegument protein of pseudorabies virus is critical for intracytoplasmic assembly of infectious virions. J Virol 2002; 76:6729-42. [PMID: 12050386 PMCID: PMC136261 DOI: 10.1128/jvi.76.13.6729-6742.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pseudorabies virus (PrV) homolog of the tegument protein encoded by the UL48 gene of herpes simplex virus type 1 (HSV-1) was identified by using a monospecific rabbit antiserum against a bacterial fusion protein. UL48-related polypeptides of 53, 55, and 57 kDa were detected in Western blots of infected cells and purified virions. Immunofluorescence studies demonstrated that the PrV UL48 protein is predominantly localized in the cytoplasm but is also found in the nuclei of infected cells. Moreover, it is a constituent of extracellular virus particles but is absent from primary enveloped perinuclear virions. In noncomplementing cells, a UL48-negative PrV mutant (PrV-DeltaUL48) exhibited delayed growth and significantly reduced plaque sizes and virus titers, deficiencies which were corrected in UL48-expressing cells. RNA analyses indicated that, like its HSV-1 homolog, the PrV UL48 protein is involved in regulation of immediate-early gene expression. However, the most salient effect of the UL48 gene deletion was a severe defect in virion morphogenesis. Late after infection, electron microscopy of cells infected with PrV-DeltaUL48 revealed retention of newly formed nucleocapsids in the cytoplasm, whereas enveloped intracytoplasmic or extracellular complete virions were only rarely observed. In contrast, capsidless particles were produced and released in great amounts. Remarkably, the intracytoplasmic capsids were labeled with antibodies against the UL36 and UL37 tegument proteins, whereas the capsidless particles were labeled with antisera directed against the UL46, UL47, and UL49 tegument proteins. These findings suggested that the UL48 protein is involved in linking capsid and future envelope-associated tegument proteins during virion formation. Thus, like its HSV-1 homolog, the UL48 protein of PrV functions in at least two different steps of the viral life cycle. The drastic inhibition of virion formation in the absence of the PrV UL48 protein indicates that it plays an important role in virion morphogenesis prior to secondary envelopment of intracytoplasmic nucleocapsids. However, the UL48 gene of PrV is not absolutely essential, and concomitant deletion of the adjacent tegument protein gene UL49 also did not abolish virus replication in cell culture.
Collapse
Affiliation(s)
- Walter Fuchs
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5A, D-17498 Insel Riems, Germany
| | | | | | | | | |
Collapse
|
24
|
Bontems S, Di Valentin E, Baudoux L, Rentier B, Sadzot-Delvaux C, Piette J. Phosphorylation of varicella-zoster virus IE63 protein by casein kinases influences its cellular localization and gene regulation activity. J Biol Chem 2002; 277:21050-60. [PMID: 11912195 DOI: 10.1074/jbc.m111872200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the early phase of varicella-zoster virus (VZV) infection, Immediate Early protein 63 (IE63) is expressed rapidly and abundantly in the nucleus, while during latency, this protein is confined mostly to the cytoplasm. Because phosphorylation is known to regulate many cellular events, we investigated the importance of this modification on the cellular localization of IE63 and on its regulatory properties. We demonstrate here that cellular casein kinases I and II are implicated in the in vitro and in vivo phosphorylation of IE63. A mutational approach also indicated that phosphorylation of the protein is important for its correct cellular localization in a cell type-dependent fashion. Using an activity test, we demonstrated that IE63 was able to repress the gene expression driven by two VZV promoters and that phosphorylation of the protein was required for its full repressive properties. Finally, we showed that IE63 was capable of exerting its repressive activity in the cytoplasm, as well as in the nucleus, suggesting a regulation at the transcriptional and/or post-transcriptional level.
Collapse
Affiliation(s)
- Sébastien Bontems
- Laboratory of Virology and Immunology, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Kinchington PR, Fite K, Seman A, Turse SE. Virion association of IE62, the varicella-zoster virus (VZV) major transcriptional regulatory protein, requires expression of the VZV open reading frame 66 protein kinase. J Virol 2001; 75:9106-13. [PMID: 11533174 PMCID: PMC114479 DOI: 10.1128/jvi.75.19.9106-9113.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IE62, the major transcriptional regulatory protein encoded by varicella-zoster virus (VZV), is associated with the tegument of gradient-purified virions. Here, we show that most, if not all, of the association requires the expression of open reading frame 66 (ORF66), a protein kinase. The association of IE62 with wild-type VZV virions was confirmed using immunoelectron microscopy with IE62-specific antibodies, which reacted with virions in ultrathin sections of VZV-infected cells. Fractionated purified virions from cells infected with recombinant VZV ROka contained substantial levels of the 175-kDa virion IE62 protein and also contained the ORF66 protein. However, virions from cells infected with recombinant VZV ROka66S, in which ORF66 is disrupted, lacked not only the ORF66 protein but also most of the virion 175-kDa IE62 polypeptide. The virion-associated protein kinase activity was still present in ROka66S virions, although the 175-kDa protein substrate for the virion kinase was absent, implying that the virion protein kinase is encoded by genes other than ORF66. The very low levels of IE62 in ROka66S virions indicate that ORF66 protein mediates the redistribution of IE62 to sites of tegument assembly. IE62 was resolved into several species from VZV-infected cells which showed mobility differences between ROka and ROka66S, and a specific form of IE62 was detected in ROka virions. These results are consistent with a role for the ORF66-mediated phosphorylation of IE62 that results in cytoplasmic distribution of the regulatory protein for tegument inclusion. They support a model in which VZV tegument acquisition occurs in the cytoplasm. As such, two unusual features of VZV IE62, namely, its virion inclusion and its phosphorylation and nuclear exclusion by the ORF66 protein kinase, are functionally linked.
Collapse
Affiliation(s)
- P R Kinchington
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
26
|
Kim SK, O'Callaghan DJ. Molecular characterizations of the equine herpesvirus 1 ETIF promoter region and translation initiation site. Virology 2001; 286:237-47. [PMID: 11448176 DOI: 10.1006/viro.2001.0988] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The equine herpesvirus 1 (EHV-1) homolog of the herpes simplex virus type 1 (HSV-1) tegument phosphoprotein, alphaTIF (Vmw65; VP16), was identified previously as the product of open reading frame 12 (ORF12), was shown to trans-activate immediate-early (IE) gene promoters, and was described as a 60-kDa virion component designated ETIF. However, the ETIF promoter region and transcription initiation site were not identified. The poly(A) signal of the gene 11 (UL49 homolog) lies just upstream of the first ETIF translation initiation codon, indicating that the first ATG may not be used for initiating ETIF translation. Another in-frame translation initiation codon (ATG2) is located 88 bp downstream of the first ETIF initiation codon (ATG1). Western blot analysis showed that the expressed ETIF protein migrated in SDS-PAGE with an apparent molecular mass of approximately 56 kDa, the same molecular weight identified in SDS-PAGE analysis of the KyD EHV-1 virion preparations. The ETIF expression vector pCETIF, which contains ATG2, trans-activated the IE promoter more efficiently than the pC12 containing both ATG1 and ATG2. S1 nuclease analyses mapped the 5' initiation site of the 1.4-kb transcript approximately 17 to 21 nt downstream of the ATG1. The nucleotide sequence upstream of the ATG1 did not have any promoter activity, while the nucleotide sequence upstream of the ATG2 had promoter activity. In transient transfection assays, the pETIFM2 vector, which was mutated in the ATG2, did not trans-activate the IE promoter; however, the pETIFM1 vector, which was mutated in the ATG1, trans-activated the IE promoter. These results demonstrated that the ATG2 of the ETIF ORF is the ETIF translation initiation codon. ETIF trans-activated only the IE promoter, not early (EICP0, EICP22, EICP27, and thymidine kinase) or late (IR5) promoters, confirming that EICP0, EICP22, and EICP27 are early genes.
Collapse
Affiliation(s)
- S K Kim
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | |
Collapse
|
27
|
Cohen JI. Mutagenesis of the varicella-zoster virus genome: lessons learned. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 2001:91-7. [PMID: 11339555 DOI: 10.1007/978-3-7091-6259-0_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The varicella-zoster virus (VZV) genome encodes at least 70 genes. We have developed a cosmid based system to inactivate individual viral genes or to insert foreign genes into the genome. We have shown that many VZV genes are not required for replication of the virus in cell culture. Several of these genes, including VZV ORF61, ORF47, and ORF10, have unexpected phenotypes in cell culture and differ from their homologs in the better studied herpes simplex virus (HSV). We have also used the Oka strain of VZV as a live virus vaccine vector. Guinea pigs vaccinated with recombinant VZV expressing HSV-2 glycoprotein D and challenged with HSV-2 have reduced severity of primary genital herpes and reduced mortality compared to animals receiving parental VZV. Recently we have inserted the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) glycoprotein 160 genes into the Oka strain of VZV and have shown that these proteins are expressed in recombinant virus-infected cells. Thus, directed mutagenesis of the VZV genome is providing new insights into viral pathogenesis and may provide new candidate vaccines.
Collapse
Affiliation(s)
- J I Cohen
- Medical Virology Section, Laboratory of Clinical Investigation, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Lupiani B, Lee LF, Reddy SM. Protein-coding content of the sequence of Marek's disease virus serotype 1. Curr Top Microbiol Immunol 2001; 255:159-90. [PMID: 11217422 DOI: 10.1007/978-3-642-56863-3_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- B Lupiani
- Avian Disease and Oncology Laboratory, Agricultural Research Service, 3606 East Mount Hope Road, East Lansing, MI 48823, USA
| | | | | |
Collapse
|
29
|
Tasaki T, Taharaguchi S, Kobayashi T, Yoshino S, Ono E. Inhibition of pseudorabies virus replication by a dominant-negative mutant of early protein 0 expressed in a tetracycline-regulated system. Vet Microbiol 2001; 78:195-203. [PMID: 11165064 DOI: 10.1016/s0378-1135(00)00301-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pseudorabies virus (PRV) early protein 0 (EP0) consisting of 410 amino acids is a transactivator of viral genes. A mutant consisting of amino acids 1-113 exhibits dominant-negative properties. In order to assess the antiviral potential of the EP0 mutant, Vero cells were transformed with the EP0 mutant gene expressed in a tetracycline-regulated system. The transformed cell lines showed marked resistance to PRV infection when expression of the EP0 mutant gene was induced. In the transformed cell line infected with PRV, synthesis of the immediate-early protein (IE180) and of EP0 was inhibited, whereas the levels of IE and EP0 messenger RNA (mRNA) were not decreased, as compared with those of the control cell line. The present results suggest that the EP0 mutant may not alter the efficiency of the viral gene transcription but rather translation efficiency of the viral mRNA.
Collapse
Affiliation(s)
- T Tasaki
- Laboratory of Animal Experiment for Disease Model, Institute for Genetic Medicine, Hokkaido University, 060-0815, Sapporo, Japan
| | | | | | | | | |
Collapse
|
30
|
He H, Boucaud D, Hay J, Ruyechan WT. Cis and trans elements regulating expression of the varicella zoster virus gI gene. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 2001:57-70. [PMID: 11339551 DOI: 10.1007/978-3-7091-6259-0_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
We have identified cis- and trans-acting elements involved in the VZV IE62 protein-activated expression of the varicella zoster virus (VZV) gene which encodes the viral gI glycoprotein. The cis-acting elements include a non-canonical TATA box and a novel 19 base pair sequence located just upstream of the TATA element designated the "activating upstream sequence" or AUS. The AUS is a movable element and its presence results in IE62 activation of a chimeric promoter consisting of the VZV gC TATA box and the gI AUS. We have also determined that the VZV ORF 29 protein modulates the regulatory activity of the IE62 protein at the gI promoter. In combination with the IE62 transactivator, it yields a 10 to 15-fold increase in expression over the levels seen with the IE62 protein alone in T lymphocytes. The upmodulatory activity requires the presence of a 40 base pair sequence, designated the 29RE, which maps between positions -220 and -180 in the gI promoter. In this paper we review these and earlier findings from our laboratories concerning the regulation of the gI promoter.
Collapse
Affiliation(s)
- H He
- Department of Microbiology and Markey Center for Microbial Pathogenesis State University of New York at Buffalo, 14214, USA
| | | | | | | |
Collapse
|
31
|
Grapes M, O'Hare P. Differences in determinants required for complex formation and transactivation in related VP16 proteins. J Virol 2000; 74:10112-21. [PMID: 11024140 PMCID: PMC102050 DOI: 10.1128/jvi.74.21.10112-10121.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VP16-H is an essential structural protein of herpes simplex virus type 1 (HSV-1) and is also a potent activator of virus immediate-early (IE) gene expression. Current models of functional determinants within VP16-H indicate that it consists of two domains, an N-terminal domain involved in recruiting VP16-H to a multicomponent DNA binding complex with two host proteins, Oct-1 and host cell factor (HCF), and an acidic C-terminal domain exclusively involved in transactivation. VP16-E, from equine herpesvirus 1 (EHV-1), exhibits strong conservation with the N-terminal domain of VP16-H but, with the exception of a short segment at the extreme C terminus, lacks almost the entire acidic C-terminal domain. Studies of key activation determinants within the C terminus of VP16-H would predict that VP16-E may activate poorly, if at all. However, VP16-E is a potent activator of both EHV-1 and HSV-1 IE gene transcription. We show that VP16-E does not follow the simple two-domain model of VP16-H. Thus, despite the conservation in the N-terminal domains, this region in VP16-E is not sufficient for assembly into the DNA binding complex with Oct-1 and HCF. The short conserved determinant close to the C terminus is completely dispensable in VP16-H but is absolutely required in VP16-E. In activation studies, the potency of intact VP16-E was not recapitulated in chimeric proteins in which it was fused with a GAL4 DNA binding domain. Furthermore, a chimeric protein consisting of the C-terminal region of VP16-E fused to the N-terminal domain of VP16-H, while able to promote complex formation, nevertheless exhibited very weak activation. These results indicate that the mode of recruitment of the activation domain, i.e., through complex formation with Oct-1 and HCF, may be crucial for activation and that key determinants required for activation in VP16-E, and possibly VP16-H, may involve interactions between regions of the C terminus and the N terminus rather than discrete domains with independent functions.
Collapse
Affiliation(s)
- M Grapes
- Marie Curie Research Institute, Oxted, Surrey RH8 OTL, United Kingdom
| | | |
Collapse
|
32
|
Baudoux L, Defechereux P, Rentier B, Piette J. Gene activation by Varicella-zoster virus IE4 protein requires its dimerization and involves both the arginine-rich sequence, the central part, and the carboxyl-terminal cysteine-rich region. J Biol Chem 2000; 275:32822-31. [PMID: 10889190 DOI: 10.1074/jbc.m001444200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 4-encoded protein (IE4) possesses transactivating properties for VZV genes as well as for those of heterologous viruses. Since most transcription factors act as dimers, IE4 dimerization was studied using the mammalian two-hybrid system. Introduction of mutations in the IE4 open reading frame demonstrated that both the central region and the carboxyl-terminal cysteine-rich domain were important for efficient dimerization. Within the carboxyl-terminal domain, substitution of amino acids encompassing residues 443-447 totally abolished dimerization. Gene activation by IE4 was studied by transient transfection with an IE4 expression plasmid and a reporter gene under the control of either the human immunodeficiency virus, type 1, long terminal repeat or the VZV thymidine kinase promoter. Regions of IE4 important for dimerization were also shown to be crucial for transactivation. In addition, the arginine-rich domains Rb and Rc of the amino-terminal region were also demonstrated to be important for transactivation, whereas the Ra domain as well as an acidic and bZIP-containing regions were shown to be dispensable for gene transactivation. A nucleocytoplasmic shuttling of IE4 has also been characterized, involving a nuclear localization signal identified within the Rb domain and a nuclear export mechanism partially depending on Crm-1.
Collapse
Affiliation(s)
- L Baudoux
- Laboratory of Fundamental Virology and Immunology, Institute of Pathology B23, University of Liege, B-4000 Liege, Belgium
| | | | | | | |
Collapse
|
33
|
Kinchington PR, Fite K, Turse SE. Nuclear accumulation of IE62, the varicella-zoster virus (VZV) major transcriptional regulatory protein, is inhibited by phosphorylation mediated by the VZV open reading frame 66 protein kinase. J Virol 2000; 74:2265-77. [PMID: 10666257 PMCID: PMC111708 DOI: 10.1128/jvi.74.5.2265-2277.2000] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IE62, the major transcriptional activator protein encoded by varicella-zoster virus (VZV), locates to the nucleus when expressed in transfected cells. We show here that cytoplasmic forms of IE62 accumulate in transfected and VZV-infected cells as the result of the protein kinase activity associated with VZV open reading frame 66 (ORF66). Expression of the ORF66 protein kinase but not the VZV ORF47 protein kinase impaired the ability of coexpressed IE62 to transactivate promoter-reporter constructs. IE62 that was coexpressed with the ORF66 protein accumulated predominantly in the cytoplasm, whereas the normal nuclear localization of other proteins was not affected by the ORF66 protein. In cells infected with VZV, IE62 accumulated in the cytoplasm at late times of infection, whereas in cells infected with a VZV recombinant unable to express ORF66 protein (ROka66S), IE62 was completely nuclear. Point mutations introduced into the predicted serine/threonine catalytic domain and ATP binding domain of ORF66 abrogated its ability to influence IE62 nuclear localization, indicating that the protein kinase activity was required. The region of IE62 that was targeted by ORF66 was mapped to amino acids 602 to 733. IE62 peptides containing this region were specifically phosphorylated in cells coexpressing the ORF66 protein kinase and in cells infected with wild-type VZV but were not phosphorylated in cells infected with ROka66S. We conclude that the ORF66 protein kinase phosphorylates IE62 to induce its cytoplasmic accumulation, most likely by inhibiting IE62 nuclear import.
Collapse
Affiliation(s)
- P R Kinchington
- Departments of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | |
Collapse
|
34
|
Abstract
CD4+ and CD8+ T cells play dual roles in varicella-zoster virus (VZV) pathogenesis. The first role is to deliver the virus to cutaneous sites during primary VZV infection, permitting replication at these sites and the successful transmission of the virus to other susceptible individuals. The second contribution of T cells is to provide the critical antigen-specific adaptive immunity needed to stop viral replication and maintain VZV latency in sensory ganglia. The equilibrium between VZV and the host can be predicted to be served by immune evasion mechanisms in at least two important ways, including the facilitation of cell-associated viremia during primary VZV infection and silent persistence in dorsal root ganglia. Interference with antigen presentation by MHC class I downregulation may be expected to play a role in both circumstances. Transient interference with MHC class II expression in varicella skin lesions should facilitate local replication and transmission. In addition, when VZV reactivates, the capacity of viral gene products to block the upregulation of MHC class II expression triggered by interferon-gamma should permit a sufficient period of viral replication to cause the lesions of herpes zoster, despite the presence of VZV-specific T cells, and to allow transmission of the virus to susceptible individuals. Although the effort is at an early stage compared to studies of other viral pathogens, identifying the VZV gene products that exert these effects and their mechanisms of interference has the potential to reveal novel aspects of MHC class I and class II antigen processing and presentation.
Collapse
Affiliation(s)
- A Abendroth
- Stanford University School of Medicine, California 94305-5208, USA
| | | |
Collapse
|
35
|
Lungu O, Panagiotidis CA, Annunziato PW, Gershon AA, Silverstein SJ. Aberrant intracellular localization of Varicella-Zoster virus regulatory proteins during latency. Proc Natl Acad Sci U S A 1998; 95:7080-5. [PMID: 9618542 PMCID: PMC22745 DOI: 10.1073/pnas.95.12.7080] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Varicella-Zoster virus (VZV) is a herpesvirus that becomes latent in sensory neurons after primary infection (chickenpox) and subsequently may reactivate to cause zoster. The mechanism by which this virus maintains latency, and the factors involved, are poorly understood. Here we demonstrate, by immunohistochemical analysis of ganglia obtained at autopsy from seropositive patients without clinical symptoms of VZV infection that viral regulatory proteins are present in latently infected neurons. These proteins, which localize to the nucleus of cells during lytic infection, predominantly are detected in the cytoplasm of latently infected neurons. The restriction of regulatory proteins from the nucleus of latently infected neurons might interrupt the cascade of virus gene expression that leads to a productive infection. Our findings raise the possibility that VZV has developed a novel mechanism for maintenance of latency that contrasts with the transcriptional repression that is associated with latency of herpes simplex virus, the prototypic alpha herpesvirus.
Collapse
Affiliation(s)
- O Lungu
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
36
|
de Maisieres PD, Baudoux-Tebache L, Merville MP, Rentier B, Bours V, Piette J. Activation of the human immunodeficiency virus long terminal repeat by varicella-zoster virus IE4 protein requires nuclear factor-kappaB and involves both the amino-terminal and the carboxyl-terminal cysteine-rich region. J Biol Chem 1998; 273:13636-44. [PMID: 9593702 DOI: 10.1074/jbc.273.22.13636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Varicella-zoster virus open reading frame 4-encoded protein (IE4) possesses transactivating properties for varicella-zoster virus genes as well as for those of heterologous viruses such as the human immunodeficiency virus type 1 (HIV-1). Mechanisms of HIV-1 LTR (long terminal repeat) transactivation were investigated in HeLa cells transiently transfected with an IE4 expression plasmid and a CAT reporter gene under the control of the HIV-1 LTR. These results demonstrated that IE4-mediated transactivation of the HIV-1 LTR in HeLa cells required transcription factor kappaB (NF-kappaB). Using the gel retardation assay, it was shown that transfection of the IE4 expression vector in HeLa cells was not associated with induction of NF-kappaB under the p50.p65 heterodimeric form and that no direct binding of IE4 to the kappaB sites could be detected. Both Western blot and immunofluorescence analyses suggested that the ability of IE4 to activate transcription through kappaB motives was not connected with its capacity to override the inhibitory activities of IkappaB-alpha or p105. Finally, in vitro protein-protein interactions involving IE4 and basal transcription factors such as TATA-binding protein and transcription factor IIB were carried out. A direct interaction between IE4 and TATA-binding protein or transcription factor IIB components of the basal complex of transcription was evidenced, as well as binding to the p50 and p65 NF-kappaB subunits. Mutagenesis analysis of IE4 indicated that the COOH-terminal cysteine-rich and arginine-rich regions (residues 82-182) were critical for transactivation, whereas the first 81 amino acids appeared dispensable. Moreover, the arginine-rich region is required for the in vitro binding activity, whereas the COOH-terminal end did not appear essential.
Collapse
Affiliation(s)
- P D de Maisieres
- Laboratory of Fundamental Virology and Immunology, Institute of Pathology, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
37
|
Ono E, Taharaguchi S, Watanabe S, Nikami H, Shimizu Y, Kida H. Suppression of pseudorabies virus replication by a mutant form of immediate-early protein IE180 repressing the viral gene transcription. Vet Microbiol 1998; 60:107-17. [PMID: 9646443 DOI: 10.1016/s0378-1135(97)00153-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A mutant form of the immediate-early (IE) protein IE180 of pseudorabies virus (PRV), dIN454-C1081 is a strong repressor of the PRV IE gene promoter. In order to assess the antiviral potential of the IE180 mutant, HeLa cells were transformed with the mutant gene and then infected with PRV and herpes simplex virus type 1 (HSV-1). The transformed cell lines showed marked resistance to PRV infection, but were susceptible to infection with HSV-1, indicating that the IE180 mutant expressed in the stable cell line specifically inhibited PRV growth. In those cells infected with PRV, transcription of the PRV IE gene was repressed. In addition, the IE180 mutant exhibited a dominant-negative property in transient expression assay. The present results indicate that the resistance of the cells to PRV infection was due to repression of the IE gene transcription by the IE 180 mutant.
Collapse
Affiliation(s)
- E Ono
- Institute of Immunological Science, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Kopácek J, Zelník V, Brasseur R, Koptidesová D, Rejholcová O, Pastoreková S, Pastorek J. Herpesvirus of turkeys homologue of HSV VP16 is structurally related to varicella zoster virus trans-inducing protein encoded by ORF 10. Virus Genes 1997; 15:45-52. [PMID: 9354269 DOI: 10.1023/a:1007911115049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of the immediate-early genes of alpha-herpesviruses is stimulated by a family of trans-inducing factors represented by VP16 of HSV-1 and ORF10 gene product of VZV. We have identified and determined the nucleotide sequence of the UL48 gene encoding the herpesvirus of turkeys (HVT) homologue of HSV VP16. The gene maps to the BamHI-J fragment and appears to be expressed in a form of bicistronic transcript together with UL49. The deduced amino acid sequence of the protein encoded by HVT UL48 gene shows 55% identity with MDV UL48 gene product. Like the majority of related proteins in other alpha-herpesviruses, the protein encoded by HVT UL48 gene lacks the acidic C-terminal tail, known to possess the transactivation capacity of HSV VP16. Hydrophobic cluster analysis has revealed that its predicted domain composition is closely related to the transactivator protein encoded by ORF10 of VZV. However, the putative amino-terminal activation domain of the HVT homologue of HSV VP16 does not contain a typical horseshoe-like hydrophobic cluster found in other alpha-herpesvirus homologues, suggesting either that it acts as a transactivator via a different activation domain or that its transactivation potential is diminished.
Collapse
Affiliation(s)
- J Kopácek
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
39
|
Defechereux P, Debrus S, Baudoux L, Rentier B, Piette J. Varicella-zoster virus open reading frame 4 encodes an immediate-early protein with posttranscriptional regulatory properties. J Virol 1997; 71:7073-9. [PMID: 9261438 PMCID: PMC191997 DOI: 10.1128/jvi.71.9.7073-7079.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Varicella-zoster virus (VZV) encodes four putative immediate-early proteins based on sequence homology with herpes simplex virus type 1: the products of ORF4, -61, -62, and -63. Until now, only two VZV proteins have been described as being truly expressed with immediate-early kinetics (IE62 and IE63). The ORF4-encoded protein can stimulate gene expression either alone or in synergy with the major regulatory protein IE62. Making use of a sequential combination of transcription and protein synthesis inhibitors (actinomycin D and cycloheximide, respectively), we demonstrated the immediate-early nature of the ORF4 gene product, which can thus be named IE4. The fact that IE4 is expressed with kinetics similar to that of IE62 further underlines the possible cooperation between these two VZV proteins in gene expression. Analysis of the IE4-mediated autologous or heterologous viral gene expression at the mRNA levels clearly indicated that IE4 may have several mechanisms of action. Activation of the two VZV genes tested could occur partly by a posttranscriptional mechanism, since increases in chloramphenicol acetyltransferase (CAT) mRNA levels do not account for the stimulation of CAT activity. On the other hand, stimulation of the human immunodeficiency virus type 1 long terminal repeat- or the cytomegalovirus promoter-associated CAT activity is correlated with an increase in the corresponding CAT mRNA.
Collapse
Affiliation(s)
- P Defechereux
- Laboratory of Fundamental Virology and Immunology, University of Liège, Belgium
| | | | | | | | | |
Collapse
|
40
|
Baldick CJ, Marchini A, Patterson CE, Shenk T. Human cytomegalovirus tegument protein pp71 (ppUL82) enhances the infectivity of viral DNA and accelerates the infectious cycle. J Virol 1997; 71:4400-8. [PMID: 9151830 PMCID: PMC191658 DOI: 10.1128/jvi.71.6.4400-4408.1997] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Three tegument proteins of human cytomegalovirus (HCMV), ppUL82 (pp71), pUL69, and ppUL83 (pp65), were examined for the ability to stimulate the production of infectious virus from human diploid fibroblasts transfected with viral DNA. Although viral DNA alone had a low intrinsic infectivity of 3 to 8 plaques/microg of viral DNA, cotransfection of a plasmid expressing pp71 increased the infectivity of HCMV DNA 30- to 80-fold. The increase in infectivity produced by pp71 was reflected in an increased number of nuclei observed to express high levels of the major immediate-early proteins IE1 and IE2. Cotransfection of viral DNA with plasmids directing expression of IE1 and IE2 also resulted in extensive IE1 and IE2 expression in the transfected cells; however, the infectivity of viral DNA was only marginally increased. pp71 also facilitated late gene expression, virus transmission to adjacent cells, and plaque formation. In contrast, expression of pUL69 reduced the pp71- and IE1/IE2-mediated enhancement of HCMV DNA infectivity and also failed to produce any increase in the number of cells expressing IE1 and IE2 over that seen with viral DNA alone. Expression of pp65 did not alter the infectivity of HCMV DNA, nor did it modify the effects of pp71 or pUL69. These results imply that pp71 plays a critical role in the initiation of infection apart from its function as a transactivator of IE1 and IE2.
Collapse
Affiliation(s)
- C J Baldick
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA.
| | | | | | | |
Collapse
|
41
|
Lewis JB, Thompson YG, Feng X, Holden VR, O'Callaghan D, Caughman GB. Structural and antigenic identification of the ORF12 protein (alpha TIF) of equine herpesvirus 1. Virology 1997; 230:369-75. [PMID: 9143293 DOI: 10.1006/viro.1997.8477] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The equine herpesvirus 1 (EHV-1) homolog of the herpes simplex virus type 1 (HSV-1) tegument phosphoprotein, alpha TIF (Vmw65; VP16), was identified previously as the product of open reading frame 12 (ORF12) and shown to transactivate immediate early (IE) gene promoters. However, a specific virion protein corresponding to the ORF12 product has not been identified definitively. In the present study the ORF12 protein, designated ETIF, was identified as a 60-kDa virion component on the basis of protein fingerprint analyses in which the limited proteolysis profiles of the major 60-kDa in vitro transcription/ translation product of an ORF12 expression vector (pT7-12) were compared to those of purified virion proteins of similar size. ETIF was localized to the viral tegument in Western blot assays of EHV-1 virions and subvirion fractions using polyclonal antiserum and monoclonal antibodies generated against a glutathione-S-transferase-ETIF fusion protein. Northern and Western blot analyses of EHV-1-infected cell lysates prepared under various metabolic blocks indicated that ORF12 is expressed as a late gene, and cross reaction of polyclonal anti-GST-ETIF with a 63.5-kDa HSV-1 protein species suggested that ETIF and HSV-1 alpha TIF are antigenically related. Last, DNA band shift assays used to assess ETIF-specific complex formation indicated that ETIF participates in an infected cell protein complex with the EHV-1 IE promoter TAATGARAT motif.
Collapse
Affiliation(s)
- J B Lewis
- Department of Oral Biology/Microbiology, Medical College of Georgia, Augusta 30912-1126, USA
| | | | | | | | | | | |
Collapse
|
42
|
Winkler M, Stamminger T. A specific subform of the human cytomegalovirus transactivator protein pUL69 is contained within the tegument of virus particles. J Virol 1996; 70:8984-7. [PMID: 8971028 PMCID: PMC190996 DOI: 10.1128/jvi.70.12.8984-8987.1996] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The polypeptide encoded by the open reading frame UL69 of human cytomegalovirus (HCMV), which is homologous to the immediate-early regulator ICP27 of herpes simplex virus, has recently been identified as a transactivator protein that exerts a broad stimulatory effect on gene expression (M. Winkler, S. A. Rice, and T. Stamminger, J. Virol. 68:3943-3954, 1994). Here, we provide evidence that pUL69 is a phosphorylated tegument protein of HCMV. This finding could be demonstrated by Western blot (immunoblot) analyses with purified virions and a specific antiserum against pUL69. These experiments revealed that one phosphorylated subform of the three pUL69 polypeptides that are synthesized in infected fibroblast cells is contained within the HCMV virion. After the treatment of purified virions with detergents, pUL69 could not be detected within the membrane fraction, suggesting that it is either a capsid or a tegument protein. Its presence within dense bodies, however, shows that pUL69 is a constituent of the viral tegument.
Collapse
Affiliation(s)
- M Winkler
- Institut für Klinische und Molekulare Virologie der Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
43
|
Rentier B, Piette J, Baudoux L, Debrus S, Defechereux P, Merville MP, Sadzot-Delvaux C, Schoonbroodt S. Lessons to be learned from varicella-zoster virus. Vet Microbiol 1996; 53:55-66. [PMID: 9010998 DOI: 10.1016/s0378-1135(96)01234-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Varicella-zoster virus (VZV) is an alphaherpesvirus responsible for two human diseases: chicken pox and shingles. The virus has a respiratory port of entry. After two successive viremias, it reaches the skin where it causes typical lesions. There, it penetrates the peripheral nervous system and it remains latent in dorsal root ganglia. It is still debatable whether VZV persists in neurons or in satellite cells. During latency, VZV expresses a limited set of transcripts of its immediate early (IE) and early (E) genes but no protein has been detected. Mechanisms of reactivation from ganglia have not been identified. However, dysfunction of the cellular immune system appears to be involved in this process. The cell-associated nature of VZV has made it difficult to identify a temporal order of gene expression, but there appears to be a cascade mechanism as for HSV-1. The lack of high titre cell-free virions or recombination mutants has hindered so far the understanding of VZV gene functions. Five genes, ORFs 4, 10, 61, 62, and 63 that encode regulatory proteins could be involved in VZV latency. ORF4p activates gene promoters with basal activities. ORF10p seems to activate the ORF 62 promoter. ORF61p has trans-activating and trans-repressing activities. The major IE protein ORF62p, a virion component, has DNA-binding and regulatory functions, transactivates many VZV promoters and even regulates its own expression. ORF63p is a nuclear IE protein of yet unclear regulatory functions, abundantly expressed very early in infection. We have established an animal model of VZV latency in the rat nervous system, enabling us to study the expression of viral mRNA and protein expression during latency, and yielding results similar to those found in humans. This model is beginning to shed light on the molecular events in VZV persistent infection and on the regulatory mechanisms that maintain the virus in a latent stage in nerve cells.
Collapse
Affiliation(s)
- B Rentier
- Department of Microbiology, University of Liège, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mitchell TM. Okadaic acid-like toxin in systemic lupus erythematosus patients: hypothesis for toxin-induced pathology, immune dysregulation, and transactivation of herpesviruses. Med Hypotheses 1996; 47:217-25. [PMID: 8898323 DOI: 10.1016/s0306-9877(96)90084-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Preliminary evidence suggests there is a toxin in the sera of systemic lupus erythematosus patients which reacts with a commercial enzyme-linked immunosorbent assay kit for the detection of the marine toxin, okadaic acid. Data is presented which supports the hypothesis that an okadaic acid-like toxin may be the principle agent of lymphocyte dysregulation in systemic lupus erythematosus and other immune-dysregulated states. The okadaic acid-like toxin can produce the specific abnormalities in T-lymphocyte phenotype and function typical of systemic lupus erythematosus, principally through its ability to inhibit serine/threonine phosphatases necessary for secondary signalling processes and through its ability to inhibit calcium which is crucial to protein kinase C-mediated signalling of T-lymphocytes. The disruption probably occurs through the protein tyrosine kinase p56lck pathway crucial for IL-2. Additionally, the toxin's ability to disrupt voltage-sensitive ion channels in cell membranes may be responsible for the multi-organ pathology observed in systemic lupus erythematosus patients, particularly neurological, cardiac and nephritic. Data from a different study conducted by the author suggests that latent and persistent viruses are reactivated in active lupus. This activation could be the result of the toxin's ability to act as an immune modulator, or its ability to act as a transactivating factor.
Collapse
Affiliation(s)
- T M Mitchell
- University of Southern California, Los Angeles 90089, USA
| |
Collapse
|
45
|
Abstract
Varicella-zoster virus (VZV) causes chickenpox and herpes zoster. After acute infection the virus becomes latent in dorsal root and trigeminal ganglia for the lifetime of the individual. The viral genome encodes about 70 proteins, at least three of which are thought to be expressed during latency in humans. VZV grows in cell culture, but is very cell-associated; it is relatively difficult to obtain high titers of cell-free virus.
Collapse
Affiliation(s)
- J I Cohen
- National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
46
|
Huang CC, Herr W. Differential control of transcription by homologous homeodomain coregulators. Mol Cell Biol 1996; 16:2967-76. [PMID: 8649408 PMCID: PMC231291 DOI: 10.1128/mcb.16.6.2967] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human herpes simplex virus type 1 (HSV-1) transactivator VP16 and its homolog from bovine herpes-virus 1 (BHV-1) can each recruit the human homeodomain protein Oct-1 into a transcriptional regulatory complex. Here, we show that these two Oct-1 coregulators possess similar, if not identical, homeodomain recognition properties but possess different virus-specific cis-regulatory specificities: the HSV-1 VP-16 protein activates transcription from the HSV-1 VP16 response element, and the BHV-1 VP16 protein activates transcription from the BHV-1 VP16 response element. A distinct 3-bp segment, the D segment, lying 3' of the canonical TAATGARAT motif (where R is a purine) in the VP16 response element is responsible for the differential cis element recognition and transcriptional activation by these two homeodomain coregulators. These results demonstrate how a single homeodomain protein can direct differential transcriptional regulation by selective association with homologous homeodomain coregulators.
Collapse
Affiliation(s)
- C C Huang
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
47
|
Cohrs RJ, Barbour M, Gilden DH. Varicella-zoster virus (VZV) transcription during latency in human ganglia: detection of transcripts mapping to genes 21, 29, 62, and 63 in a cDNA library enriched for VZV RNA. J Virol 1996; 70:2789-96. [PMID: 8627753 PMCID: PMC190136 DOI: 10.1128/jvi.70.5.2789-2796.1996] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Information on the extent of virus DNA transcription and translation in infected tissue is crucial to an understanding of herpesvirus latency. To detect low-abundance latent varicella-zoster virus (VZV) transcripts, poly(A)+ RNA extracted from latently infected human trigeminal ganglia was enriched for VZV transcripts by hybridization to biotinylated VZV DNA. After hybridization, the RNA-DNA hybrid was isolated by binding to avidin-coated beads and extensively washed, and the RNA was released by heat denaturation. A lambda-based cDNA library was then constructed from the enriched RNA. PCR and DNA sequencing of DNA extracted from the cDNA library revealed the presence of VZV genes 21, 29, 62, and 63, but not VZV genes 4, 10, 40, 51, and 61, in the enriched cDNA library. These findings confirm the detection of VZV gene 29 and 62 transcripts on Northern (RNA) blots prepared from latently infected human ganglia (J.L. Meier, R.P. Holman, K.D. Croen, J.E. Smialek, and S.E. Straus, Virology 193:193-200, 1993) and the presence of VZV gene 21 transcripts in a cDNA library from mRNA of latently infected ganglia (R.J. Cohrs, K. Srock, M.B. Barbour, G. Owens, R. Mahalingam, M.E. Devlin, M. Wellish and D.H. Gilden, J. Virol. 68:7900-7908,1994) and also reveal, for the first time, the presence of VZV gene 63 RNA in latently infected human ganglia.
Collapse
Affiliation(s)
- R J Cohrs
- Department of Neurology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
48
|
Moriuchi H, Moriuchi M, Pichyangkura R, Triezenberg SJ, Straus SE, Cohen JI. Hydrophobic cluster analysis predicts an amino-terminal domain of varicella-zoster virus open reading frame 10 required for transcriptional activation. Proc Natl Acad Sci U S A 1995; 92:9333-7. [PMID: 7568128 PMCID: PMC40979 DOI: 10.1073/pnas.92.20.9333] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Varicella-zoster virus open reading frame 10 (ORF10) protein, the homolog of the herpes simplex virus protein VP16, can transactivate immediate-early promoters from both viruses. A protein sequence comparison procedure termed hydrophobic cluster analysis was used to identify a motif centered at Phe-28, near the amino terminus of ORF10, that strongly resembles the sequence of the activating domain surrounding Phe-442 of VP16. With a series of GAL4-ORF10 fusion proteins, we mapped the ORF10 transcriptional-activation domain to the amino-terminal region (aa 5-79). Extensive mutagenesis of Phe-28 in GAL4-ORF10 fusion proteins demonstrated the importance of an aromatic or bulky hydrophobic amino acid at this position, as shown previously for Phe-442 of VP16. Transactivation by the native ORF10 protein was abolished when Phe-28 was replaced by Ala. Similar amino-terminal domains were identified in the VP16 homologs of other alphaherpesviruses. Hydrophobic cluster analysis correctly predicted activation domains of ORF10 and VP16 that share critical characteristics of a distinctive subclass of acidic activation domains.
Collapse
Affiliation(s)
- H Moriuchi
- Medical Virology Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
49
|
Misra V, Walker S, Hayes S, O'Hare P. The bovine herpesvirus alpha gene trans-inducing factor activates transcription by mechanisms different from those of its herpes simplex virus type 1 counterpart VP16. J Virol 1995; 69:5209-16. [PMID: 7636962 PMCID: PMC189350 DOI: 10.1128/jvi.69.9.5209-5216.1995] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In herpes simplex virus (HSV)-infected cells, viral gene expression is initiated when the immediate-early, or alpha, genes are transactivated by the alpha gene trans-inducing factor (alpha TIF), a component of the infecting virion. The protein binds to one or more recognition elements (TAATGARAT) in the promoters of alpha genes via interaction with the cellular proteins Oct-1 and CFF. The alpha TIF of HSV (HSV-alpha TIF) is believed to subsequently accelerate the assembly of the transcription complex by direct contact between its carboxyl-terminal acidic activation domain and at least two components of the transcription apparatus, TAFII40 and TFIIB. Like its HSV counterpart, the alpha TIF of bovine herpesvirus (BHV) (designated BHV-alpha TIF) also transactivates alpha gene promoters and for full activity exhibits a requirement for its extended carboxyl-terminal region. Despite this requirement, there is a notable lack of homology to the carboxyl-terminal acidic activation domain of HSV-alpha TIF. We swapped the amino- and carboxyl-terminal domains of HSV-alpha TIF and BHV-alpha TIF to make chimeric proteins. Using these chimeras, we show that the carboxyl terminus of BHV-alpha TIF is insufficient for transactivation, which requires cooperative determinants in both the amino-terminal and carboxyl-terminal regions of the protein. We have previously shown that the amino-terminal determinant in BHV-alpha TIF displays reduced but significant independent transactivation potential. Interestingly, this amino-terminal determinant appears not to reside in the HSV-alpha TIF, which displays no independent amino-terminal activity. Furthermore, we show that the amino-terminal activation domain of BHV-alpha TIF may be able to act synergistically with the carboxyl-terminal activation domain of HSV-alpha TIF, since a chimeric protein containing both domains appeared to be more efficient at activating transcription than either alpha TIF. In addition, the amino terminus of HSV-alpha TIF could not restore activity when linked to the carboxyl terminus of BHV-alpha TIF, while the amino terminus of BHV-alpha TIF reconstituted an intact protein with potent activation potential. We also show that in fusions with the DNA binding domain of GAL4, full activity requires the entire BHV-alpha TIF, although both amino and carboxyl termini display some activity on their own. In contrast, for HSV-alpha TIF, the carboxyl terminus is sufficient and possibly even more potent than the entire protein, while the amino-terminus is devoid of activity.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- V Misra
- Department of Veterinary Microbiology, W.C.V.M. University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
50
|
Moriuchi H, Moriuchi M, Cohen JI. Proteins and cis-acting elements associated with transactivation of the varicella-zoster virus (VZV) immediate-early gene 62 promoter by VZV open reading frame 10 protein. J Virol 1995; 69:4693-701. [PMID: 7609034 PMCID: PMC189274 DOI: 10.1128/jvi.69.8.4693-4701.1995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 10 (ORF10) protein, the homolog of herpes simplex virus type 1 (HSV-1) VP16, is a virion-associated transactivator of the VZV immediate-early (IE) gene 62 (IE62) promoter. VP16 forms a complex with cellular factors (Oct1 and host cell factor [HCF]) and TAATGARAT elements (found in all HSV-1 IE promoter/enhancer sequences) to mediate stimulation of IE transcription. The VZV IE62 promoter also contains three TAATGARAT-like elements. Mutagenesis studies of the VZV IE62 promoter indicated that TAATGARAT-like elements contribute to transactivation of the VZV IE62 promoter by ORF10 protein. Other cis-acting elements such as GA-rich and cyclic AMP-responsive elements were also needed for full transactivation by ORF10 protein. In mobility shift assays, ORF10 protein formed a complex with either of two TAATGARAT-like elements that lack an overlapping octamer-binding motif (octa-/TAATGARAT) but not with a TAATGARAT element with an overlapping octamer-binding motif (octa+/TAATGARAT). In contrast, VP16 formed a high-affinity ternary complex with an octa+/TAATGARAT element and a low-affinity complex with octa-/TAATGARAT elements. Addition of antibodies to ORF10 protein, Oct1, or HCF disrupted the complexes, demonstrating that ORF10 protein interacts with Oct1 and HCF. These results suggest that transactivation of the VZV IE62 gene by ORF10 protein and HSV IE genes by VP16 require similar cellular proteins but distinct cis-acting elements.
Collapse
Affiliation(s)
- H Moriuchi
- Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|