1
|
SGK1, a Serine/Threonine Kinase, Inhibits Prototype Foamy Virus Replication. Microbiol Spectr 2022; 10:e0199521. [PMID: 35438526 PMCID: PMC9241813 DOI: 10.1128/spectrum.01995-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Foamy viruses (FVs) are complex retroviruses belonging to the Spumaretrovirinae subfamily of the Retroviridae family. In contrast to human immunodeficiency virus (HIV), another member of the Retroviridae family, FVs are nonpathogenic in their natural hosts or in experimentally infected animals. Prototype foamy virus (PFV) is the only foamy virus that can infect humans through cross-species transmission and does not show any pathogenicity after infection. Consequently, PFV is considered a safe and efficient gene transfer vector. Understanding the host proteins involved in the replication of PFV and the mechanism of interaction between the host and the virus might lead to studies to improve the efficiency of gene transfer. To date, only a few host factors have been identified that affect PFV replication. In the present study, we report that PFV infection enhances the promoter activity of SGK1 (encoding serum/glucocorticoid regulated kinase 1) via the Tas protein signaling pathway, and then upregulates the mRNA and protein levels of SGK1. Overexpression of SGK1 reduced PFV replication, whereas its depletion using small interfering RNA increased PFV replication. SGK1 inhibits PFV replication by impairing the function of the PFV Tas activation domain in a kinase-independent manner and reducing the stability of the Gag protein in a kinase-dependent manner. In addition, both human and bovine SGK1 proteins inhibit the replication of bovine foamy virus (BFV) and PFV. These findings not only improved our understanding of the function of SGK1 and its relationship with foamy viruses, but also contributed to determining the antiviral mechanism of the host. IMPORTANCE Foamy viruses can integrate into the host chromosome and are nonpathogenic in natural hosts or in experimentally infected animals. Therefore, foamy viruses are considered to be safe and efficient gene transfer vectors. Persistent infection of foamy viruses is partly caused by the restrictive effect of host factors on the virus. However, only a few cellular proteins are known to influence the replication of foamy viruses. In this study, we report that SGK1 inhibits the replication of prototype foamy virus by affecting the function of the transcription activator, Tas, and reducing the stability of the structural protein, Gag. These results will increase our understanding of the interaction between the virus and host factors, deepening our perception of host antiviral defenses and the function of SGK1, and could improve the gene transfer efficiency of foamy viruses.
Collapse
|
2
|
Materniak-Kornas M, Tan J, Heit-Mondrzyk A, Hotz-Wagenblatt A, Löchelt M. Bovine Foamy Virus: Shared and Unique Molecular Features In Vitro and In Vivo. Viruses 2019; 11:E1084. [PMID: 31766538 PMCID: PMC6950176 DOI: 10.3390/v11121084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
The retroviral subfamily of Spumaretrovirinae consists of five genera of foamy (spuma) viruses (FVs) that are endemic in some mammalian hosts [1]. Closely related species may be susceptible to the same or highly related FVs. FVs are not known to induce overt disease and thus do not pose medical problems to humans and livestock or companion animals. A robust lab animal model is not available or is a lab animal a natural host of a FV. Due to this, research is limited and often focused on the simian FVs with their well-established zoonotic potential. The authors of this review and their groups have conducted several studies on bovine FV (BFV) in the past with the intention of (i) exploring the risk of zoonotic infection via beef and raw cattle products, (ii) studying a co-factorial role of BFV in different cattle diseases with unclear etiology, (iii) exploring unique features of FV molecular biology and replication strategies in non-simian FVs, and (iv) conducting animal studies and functional virology in BFV-infected calves as a model for corresponding studies in primates or small lab animals. These studies gained new insights into FV-host interactions, mechanisms of gene expression, and transcriptional regulation, including miRNA biology, host-directed restriction of FV replication, spread and distribution in the infected animal, and at the population level. The current review attempts to summarize these findings in BFV and tries to connect them to findings from other FVs.
Collapse
Affiliation(s)
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Anke Heit-Mondrzyk
- German Cancer Research Center DKFZ, Core Facility Omics IT and Data Management, 69120 Heidelberg, Germany; (A.H.-M.); (A.H.-W.)
| | - Agnes Hotz-Wagenblatt
- German Cancer Research Center DKFZ, Core Facility Omics IT and Data Management, 69120 Heidelberg, Germany; (A.H.-M.); (A.H.-W.)
| | - Martin Löchelt
- German Cancer Research Center DKFZ, Program Infection, Inflammation and Cancer, Div. Viral Transformation Mechanisms, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Lambert C, Rua R, Gessain A, Buseyne F. A new sensitive indicator cell line reveals cross-transactivation of the viral LTR by gorilla and chimpanzee simian foamy viruses. Virology 2016; 496:219-226. [PMID: 27348053 DOI: 10.1016/j.virol.2016.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022]
Abstract
The majority of currently identified simian foamy virus (SFV)-infected Cameroonian and Gabonese individuals harbor SFV from the gorilla lineage. We constructed an indicator cell line for the quantification of gorilla SFVs, in which the U3 sequence of a gorilla SFV directs the expression of the β-galactosidase protein. The gorilla foamy virus activated β-galactosidase (GFAB) cells efficiently quantified two zoonotic primary gorilla isolates and SFVs from three chimpanzee subspecies. Primary gorilla SFVs replicated more slowly and at lower levels than primary chimpanzee SFVs. Analysis of previously described motifs of Tas proteins and U3 LTRs involved in viral gene synthesis revealed conservation of such motifs in Tas proteins from gorilla and chimpanzee SFVs, but little sequence homology in the LTR regions previously shown to interact with viral and cellular factors.
Collapse
Affiliation(s)
- Caroline Lambert
- Unité d'épidémiologie et physiopathologie des virus oncogènes, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France; UMR CNRS 3569, Institut Pasteur, Paris 75015, France; Sorbonne Paris Cité, Cellule Pasteur, Université Paris Diderot, Institut Pasteur, 75015 Paris, France
| | - Réjane Rua
- Unité d'épidémiologie et physiopathologie des virus oncogènes, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Antoine Gessain
- Unité d'épidémiologie et physiopathologie des virus oncogènes, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France; UMR CNRS 3569, Institut Pasteur, Paris 75015, France
| | - Florence Buseyne
- Unité d'épidémiologie et physiopathologie des virus oncogènes, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France; UMR CNRS 3569, Institut Pasteur, Paris 75015, France.
| |
Collapse
|
4
|
Duan J, Tang Z, Mu H, Zhang G. Nuclear import of prototype foamy virus transactivator Bel1 is mediated by KPNA1, KPNA6 and KPNA7. Int J Mol Med 2016; 38:399-406. [PMID: 27277550 PMCID: PMC4935454 DOI: 10.3892/ijmm.2016.2635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/31/2016] [Indexed: 01/01/2023] Open
Abstract
Bel1, a transactivator of the prototype foamy virus (PFV), plays pivotal roles in the replication of PFV. Previous studies have demonstrated that Bel1 bears a nuclear localization signal (NLS); however, its amino acid sequence remains unclear and the corresponding adaptor importins have not yet been identified. In this study, we inserted various fragments of Bel1 into an EGFP-GST fusion protein and investigated their subcellular localization by fluorescence microscopy. We found that the 215PRQKRPR221 fragment, which accords with the consensus sequence K(K/R)X(K/R) of the monopartite NLS, directed the nuclear translocation of Bel1. Point mutation experiments revealed that K218, R219 and R221 were essential for the nuclear localization of Bel1. The results of GST pull-down assay revealed that the Bel1 peptide 215-221, which bears the NLS, interacted with the nucleocytoplasmic transport receptors, karyopherin alpha 1 (importin alpha 5) (KPNA1), karyopherin alpha 6 (importin alpha 7) (KPNA6) and karyopherin alpha 7 (importin alpha 8) (KPNA7). Finally, in vitro nuclear import assays demonstrated that KPNA1, KPNA6 or KPNA7, along with other necessary nuclear factors, caused Bel1 to localize to the nucleus. Thus, the findings of our study indicate that KPNA1, KPNA6 and KPNA7 are involved in Bel1 nuclear distribution.
Collapse
Affiliation(s)
- Jihui Duan
- Clinical Laboratory, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Zhiqin Tang
- Clinical Laboratory, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Hong Mu
- Clinical Laboratory, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Guojun Zhang
- Clinical Laboratory, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
5
|
N-Myc interactor inhibits prototype foamy virus by sequestering viral Tas protein in the cytoplasm. J Virol 2014; 88:7036-44. [PMID: 24719420 DOI: 10.1128/jvi.00799-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Foamy viruses (FVs) are complex retroviruses that establish lifelong persistent infection without evident pathology. However, the roles of cellular factors in FV latency are poorly understood. This study revealed that N-Myc interactor (Nmi) could inhibit the replication of prototype foamy virus (PFV). Overexpression of Nmi reduced PFV replication, whereas its depletion by small interfering RNA increased PFV replication. The Nmi-mediated impairment of PFV replication resulted from the diminished transactivation by PFV Tas of the viral long terminal repeat (LTR) and an internal promoter (IP). Nmi was determined to interact with Tas and abrogate its function by sequestration in the cytoplasm. In addition, human and bovine Nmi proteins were found to inhibit the replication of bovine foamy virus (BFV) and PFV. Together, these results indicate that Nmi inhibits both human and bovine FVs by interfering with the transactivation function of Tas and may have a role in the host defense against FV infection. IMPORTANCE From this study, we report that the N-Myc interactor (Nmi), an interferon-induced protein, can interact with the regulatory protein Tas of the prototype foamy virus and sequester it in the cytoplasm. The results of this study suggest that Nmi plays an important role in maintaining foamy virus latency and may reveal a new pathway in the interferon-mediated antiviral barrier against viruses. These findings are important for understanding virus-host relationships not only with FVs but potentially for other retroviruses as well.
Collapse
|
6
|
Ma Q, Tan J, Cui X, Luo D, Yu M, Liang C, Qiao W. Residues R(199)H(200) of prototype foamy virus transactivator Bel1 contribute to its binding with LTR and IP promoters but not its nuclear localization. Virology 2013; 449:215-23. [PMID: 24418555 DOI: 10.1016/j.virol.2013.11.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
Abstract
Prototype foamy virus encodes a transactivator called Bel1 that enhances viral gene transcription and is essential for PFV replication. Nuclear localization of Bel1 has been reported to rely on two proximal basic motifs R(199)H(200) and R(221)R(222)R(223) that likely function together as a bipartite nuclear localization signal. In this study, we report that mutating R(221)R(222)R(223), but not R(199)H(200), relocates Bel1 from the nucleus to the cytoplasm, suggesting an essential role for R(221)R(222)R(223) in the nuclear localization of Bel1. Although not affecting the nuclear localization of Bel1, mutating R(199)H(200) disables Bel1 from transactivating PFV promoters. Results of EMSA reveal that the R(199)H(200) residues are vital for the binding of Bel1 to viral promoter DNA. Moreover, mutating R(199)H(200) in Bel1 impairs PFV replication to a much greater extent than mutating R(221)R(222)R(223). Collectively, our findings suggest that R(199)H(200) directly participate in Bel1 binding to viral promoter DNA and are indispensible for Bel1 transactivation activity.
Collapse
Affiliation(s)
- Qinglin Ma
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoxu Cui
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China; Centre Laboratory, TianJin 4th Centre Hospital, Tianjin 300140, China
| | - Di Luo
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Miao Yu
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada H3T 1E2; Departments of Medicine McGill University, Montreal, QC, Canada; Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Kehl T, Tan J, Materniak M. Non-simian foamy viruses: molecular virology, tropism and prevalence and zoonotic/interspecies transmission. Viruses 2013; 5:2169-209. [PMID: 24064793 PMCID: PMC3798896 DOI: 10.3390/v5092169] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/27/2022] Open
Abstract
Within the field of retrovirus, our knowledge of foamy viruses (FV) is still limited. Their unique replication strategy and mechanism of viral persistency needs further research to gain understanding of the virus-host interactions, especially in the light of the recent findings suggesting their ancient origin and long co-evolution with their nonhuman hosts. Unquestionably, the most studied member is the primate/prototype foamy virus (PFV) which was originally isolated from a human (designated as human foamy virus, HFV), but later identified as chimpanzee origin; phylogenetic analysis clearly places it among other Old World primates. Additionally, the study of non-simian animal FVs can contribute to a deeper understanding of FV-host interactions and development of other animal models. The review aims at highlighting areas of special interest regarding the structure, biology, virus-host interactions and interspecies transmission potential of primate as well as non-primate foamy viruses for gaining new insights into FV biology.
Collapse
Affiliation(s)
- Timo Kehl
- German Cancer Research Center, INF242, Heidelberg 69120, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-6221-42-4935; Fax: +49-6221-42-4932
| | - Juan Tan
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; E-Mail:
| | - Magdalena Materniak
- Department of Biochemistry, National Veterinary Research Institute, Partyzantow Ave. 57, Pulawy 24-100, Poland; E-Mail:
| |
Collapse
|
8
|
Abstract
Simian foamy viruses (SFVs) are retroviruses that are widespread among nonhuman primates (NHPs). SFVs actively replicate in their oral cavity and can be transmitted to humans after NHP bites, giving rise to a persistent infection even decades after primary infection. Very few data on the genetic structure of such SFVs found in humans are available. In the framework of ongoing studies searching for SFV-infected humans in south Cameroon rainforest villages, we studied 38 SFV-infected hunters whose times of infection had presumably been determined. By long-term cocultures of peripheral blood mononuclear cells with BHK-21 cells, we isolated five new SFV strains and obtained complete genomes of SFV strains from chimpanzee (Pan troglodytes troglodytes; strains BAD327 and AG15), monkey (Cercopithecus nictitans; strain AG16), and gorilla (Gorilla gorilla; strains BAK74 and BAD468). These zoonotic strains share a very high degree of similarity with their NHP counterparts and have a high degree of conservation of the genetic elements important for viral replication. Interestingly, analysis of FV DNA sequences obtained before cultivation revealed variants with deletions in both the U3 region and tas that may correlate with in vivo chronicity in humans. Genomic changes in bet (a premature stop codon) and gag were also observed. To determine if such changes were specific to zoonotic strains, we studied local SFV-infected chimpanzees and found the same genomic changes. Our study reveals that natural polymorphism of SFV strains does exist at both the intersubspecies level (gag, bet) and the intrasubspecies (U3, tas) levels but does not seem to reflect a viral adaptation specific to zoonotic SFV strains.
Collapse
|
9
|
Abstract
Foamy viruses (FVs) are distinct members of the retrovirus (RV) family. In this chapter, the molecular regulation of foamy viral transcription, splicing, polyadenylation, and RNA export will be compared in detail to the orthoretroviruses. Foamy viral transcription is regulated in early and late phases, which are separated by the usage of two promoters. The viral transactivator protein Tas activates both promoters. The nature of this early-late switch and the molecular mechanism used by Tas are unique among RVs. RVs duplicate the long terminal repeats (LTRs) during reverse transcription. These LTRs carry both a promoter region and functional poly(A) sites. In order to express full-length transcripts, RVs have to silence the poly(A) signal in the 5' LTR and to activate it in the 3' LTR. FVs have a unique R-region within these LTRs with a major splice donor (MSD) at +51 followed by a poly(A) signal. FVs use a MSD-dependent mechanism to inactivate the polyadenylation. Most RVs express all their genes from a single primary transcript. In order to allow expression of more than one gene from this RNA, differential splicing is extensively used in complex RVs. The splicing pattern of FV is highly complex. In contrast to orthoretroviruses, FVs synthesize the Pol precursor protein from a specific and spliced transcript. The LTR and IP-derived primary transcripts are spliced into more than 15 different mRNA species. Since the RNA ratios have to be balanced, a tight regulation of splicing is required. Cellular quality control mechanisms retain and degrade unspliced or partially spliced RNAs in the nucleus. In this review, I compare the RNA export pathways used by orthoretroviruses with the distinct RNA export pathway used by FV. All these steps are highly regulated by host and viral factors and set FVs apart from all other RVs.
Collapse
Affiliation(s)
- Jochen Bodem
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Tan J, Qiao W, Xu F, Han H, Chen Q, Geng Y. Dimerization of BTas is required for the transactivational activity of bovine foamy virus. Virology 2008; 376:236-41. [PMID: 18448144 DOI: 10.1016/j.virol.2008.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 03/19/2008] [Accepted: 03/24/2008] [Indexed: 11/19/2022]
Abstract
The BTas protein of bovine foamy virus (BFV) is a 249-amino-acid nuclear regulatory protein which transactivates viral gene expression directed by the long terminal repeat promoter (LTR) and the internal promoter (IP). Here, we demonstrate the BTas protein forms a dimeric complex in mammalian cells by using mammalian two hybrid systems and cross-linking assay. Functional analyses with deletion mutants reveal that the region of 46-62aa is essential for dimer formation. Furthermore, our results show that deleting the dimerization region of BTas did not affect the localization of BTas, but that it did result in the loss of its transactivational activity on the LTR and IP. Furthermore, BTas (Delta46-62aa) retained binding ability to the LTR and IP similar to that of the wild-type BTas. These data suggest the dimerization region is necessary for the transactivational function of BTas and is crucial to the replication of BFV.
Collapse
Affiliation(s)
- Juan Tan
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
An overview of the pattern and mechanisms of spuma or foamy virus (FV) gene expression is presented. FVs are complex retroviruses with respect to their genetic outfit and the elements used to control and regulate expression of the viral genome. The increased insight into transcriptional and posttranscriptional mechanisms has revealed that the FVs are distinct, unconventional retroviruses clearly apart from the orthoretroviruses. Although less characterized than the orthoretroviruses, FVs have several unique features that are important for construction and assembly of FV-based vectors for targeted gene delivery and vaccination purposes. Some of these distinguishing features are directly related to the FV-specific mechanisms of gene expression and include (1) the presence of an internal, functional active second transcription unit for expression of the nonstructural genes, (2) the utilization of a subgenomic, spliced transcript for Pol protein expression, and (3) distinct but not yet understood mechanisms for the nuclear exit of defined transcripts and thus an additional level of posttranscriptional control of gene expression. Finally, the interactions of the viral transactivator not only with both viral promoters but also with regulatory elements controlling the expression of defined cellular genes are an important issue with respect to vector development and the apparent apathogenicity of FVs in their natural hosts.
Collapse
Affiliation(s)
- M Löchelt
- Abteilung Retrovirale Genexpression, Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69009 Heidelberg, Germany.
| |
Collapse
|
12
|
Kido K, Bannert H, Gronostajski RM, Flügel RM. Bel1-mediated transactivation of the spumaretroviral internal promoter is repressed by nuclear factor I. J Biol Chem 2003; 278:11836-42. [PMID: 12446690 DOI: 10.1074/jbc.m208963200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene expression of the internal and long terminal repeat promoters of the spuma retrovirus is specifically activated by the transactivator Bel1, the key regulator of viral gene expression. Bel1 directly binds to and activates DNA target sites of viral promoters and those of distinct cellular genes. To determine the contribution of cellular transcription factors to viral transactivation, the viral internal promoter (IP) was analyzed by transient expression, electrophoretic mobility shift assays), and supershifts. Here we report that Bel1-mediated transactivation of the full-length and shortened versions of the Bel1 response element (BRE) were repressed by nuclear factor I (NFI). Electrophoretic mobility shift assays using nuclear extracts from transfected 293T cells revealed that different DNA-protein complexes consisting of DNA target sites of NFI and Bel1 proteins were formed. The specificity of the repressor and transactivator DNA binding was shown by NFI- and Bel1-specific antibodies that led to supershifts of the different nuclear protein-oligodeoxynucleotide complexes. The specificity of the complexes was confirmed by using unlabeled, shortened, and mutated IP.BRE oligodeoxynucleotides in competition experiments with the authentic IP.BRE. Cotransfection of the infectious spumavirus DNA genome with a human NFI-X1 expression plasmid into cell cultures greatly reduced the expression of viral structural and Bel1 proteins. These data demonstrate the relevance of NFI-mediated repression of Bel1-driven transactivation in vivo.
Collapse
Affiliation(s)
- Kenji Kido
- Division of Retroviral Gene Expression, Research Program Applied Tumor Virology German Cancer Research Center, Im Neuenheimer Feld 242, 69009 Heidelberg, Germany
| | | | | | | |
Collapse
|
13
|
Chen SY, Kao CF, Chen CM, Shih CM, Hsu MJ, Chao CH, Wang SH, You LR, Lee YHW. Mechanisms for inhibition of hepatitis B virus gene expression and replication by hepatitis C virus core protein. J Biol Chem 2003; 278:591-607. [PMID: 12401801 DOI: 10.1074/jbc.m204241200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have demonstrated previously that the core protein of hepatitis C virus (HCV) exhibits suppression activity on gene expression and replication of hepatitis B virus (HBV). Here we further elucidated the suppression mechanism of HCV core protein. We demonstrated that HCV core protein retained the inhibitory effect on HBV gene expression and replication when expressed as part of the full length of HCV polyprotein. Based on the substitution mutational analysis, our results suggested that mutation introduced into the bipartite nuclear localization signal of the HCV core protein resulted in the cytoplasmic localization of core protein but did not affect its suppression ability on HBV gene expression. Mutational studies also indicated that almost all dibasic residue mutations within the N-terminal 101-amino acid segment of the HCV core protein (except Arg(39)-Arg(40)) impaired the suppression activity on HBV replication but not HBV gene expression. The integrity of Arg residues at positions 101, 113, 114, and 115 was found to be essential for both suppressive effects, whereas the Arg residue at position 104 was important only in the suppression of HBV gene expression. Moreover, our results indicated that the suppression on HBV gene expression was mediated through the direct interaction of HCV core protein with the trans-activator HBx protein, whereas the suppression of HBV replication involved the complex formation between HBV polymerase (pol) and the HCV core protein, resulting in the structural incompetence for the HBV pol to bind the package signal and consequently abolished the formation of the HBV virion. Altogether, this study suggests that these two suppression effects on HBV elicited by the HCV core protein likely depend on different structural context but not on nuclear localization of the core protein, and the two effects can be decoupled as revealed by its differential targets (HBx or HBV pol) on these two processes of the HBV life cycle.
Collapse
Affiliation(s)
- Shiow-Yi Chen
- Institute of Biochemistry and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- C H Lecellier
- CNRS UPR9051, Université Paris 7, Hôpital Saint-Louis, Paris Cedex 10, 75475, France
| | | |
Collapse
|
15
|
Bodem J, Zemba M, Flügel RM. Nuclear localization of the functional Bel 1 transactivator but not of the gag proteins of the feline foamy virus. Virology 1998; 251:22-7. [PMID: 9813199 DOI: 10.1006/viro.1998.9369] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions between host cells and foamy or spumaretroviruses are different from those of other known retroviruses. Previous work has suggested that the Gag and high-affinity DNA-binding Bel 1 transactivator of human foamy virus are localized in the nuclei of infected cells. Using two independent detection methods, we show here that the functionally active Bel 1 transactivator protein of feline foamy virus is of nuclear localization. In contrast to that reported for the human foamy virus Gag protein, the cat foamy virus Gag proteins exclusively localized in the cytoplasm close to perinuclear regions.
Collapse
Affiliation(s)
- J Bodem
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, 69009, Germany
| | | | | |
Collapse
|
16
|
Kang Y, Blair WS, Cullen BR. Identification and functional characterization of a high-affinity Bel-1 DNA binding site located in the human foamy virus internal promoter. J Virol 1998; 72:504-11. [PMID: 9420252 PMCID: PMC109401 DOI: 10.1128/jvi.72.1.504-511.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transcription of genes carried by primate foamy viruses is dependent on two distinct promoter elements. These are the long terminal repeat (LTR) promoter, which regulates expression of the viral structural proteins, and a second internal promoter, located towards the 3' end of the env gene, that directs expression of the viral auxiliary proteins. One of these auxiliary proteins is a potent transcriptional transactivator, termed Bel-1 in human foamy virus (HFV) and Tas or Taf in the related simian foamy viruses, that is critical for foamy virus replication. Previously, it has been demonstrated that the LTR promoter element of HFV contains a DNA binding site for Bel-1 that is critical for transcriptional activation (F. He, W. S. Blair, J. Fukushima, and B. R. Cullen, J. Virol. 70:3902-3908, 1996). Here, we extended this earlier work by using methylation interference analysis to identify and characterize the Bel-1 DNA binding sites located in the HFV LTR and internal promoter elements. Based on these data, we propose a minimal, 25-bp DNA binding site for Bel-1, derived from the HFV internal promoter element, and show that this short DNA sequence mediates efficient Bel-1 binding both in vitro and in vivo. We further demonstrate that, as determined by both in vitro and in vivo assays, the Bel-1 target site located within the HFV internal promoter binds Bel-1 with a significantly higher affinity than the cap-proximal Bel-1 target site located in the LTR promoter. This result may provide a mechanistic explanation for the observation that the internal promoter is activated significantly earlier than the LTR promoter during the foamy virus life cycle.
Collapse
Affiliation(s)
- Y Kang
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
17
|
Slack JM, Blissard GW. Identification of two independent transcriptional activation domains in the Autographa californica multicapsid nuclear polyhedrosis virus IE1 protein. J Virol 1997; 71:9579-87. [PMID: 9371622 PMCID: PMC230266 DOI: 10.1128/jvi.71.12.9579-9587.1997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Autographa californica multicapsid nuclear polyhedrosis virus immediate-early protein, IE1, is a 582-amino-acid phosphoprotein that regulates the transcription of early viral genes. Deletion of N-terminal regions of IE1 in previous studies (G. R. Kovacs, J. Choi, L. A. Guarino, and M. D. Summers, J. Virol. 66:7429-7437, 1992) resulted in the loss of transcriptional activation, suggesting that this region may contain an acidic activation domain. To identify independently functional transcriptional activation domains, we developed a heterologous system in which potential regulatory domains were fused with a modified Escherichia coli Lac repressor protein that contains a nuclear localization signal (NLacR). Transcriptional activation by the resulting NLacR-IE1 chimeras was measured with a basal baculovirus early promoter containing optimized Lac repressor binding sites (lac operators). Chimeras containing IE1 peptides dramatically activated transcription of the basal promoter only when lac operator sequences were present. In addition, transcriptional activation by NLacR-IE1 chimeras was allosterically regulated by the lactose analog, isopropyl-beta-D-thiogalactopyranoside (IPTG). For a more detailed analysis of IE1 regulatory domains, the M1 to T266 N-terminal portion of IE1 was subdivided (on the basis of average amino acid charge) into five smaller regions which were fused in various combinations to NLacR. Regions M1 to N125 and A168 to G222 were identified as independent transcriptional activation domains. Some NLacR-IE1 chimeras exhibited retarded migration in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. As with wild-type IE1, this aberrant gel mobility was associated with phosphorylation. Mapping studies with the NLacR-IE1 chimeras indicate that the M1 to A168 region of IE1 is necessary for this phosphorylation-associated effect.
Collapse
Affiliation(s)
- J M Slack
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
18
|
Yang P, Zemba M, Aboud M, Flügel RM, Löchelt M. Deletion analysis of both the long terminal repeat and the internal promoters of the human foamy virus. Virus Genes 1997; 15:17-23. [PMID: 9354264 DOI: 10.1023/a:1007994527345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Deletion analyses of the long terminal repeat (LTR) and internal promoters (IP) of human foamy virus (HFV) showed that a negative acting element resides in the U5 region of the 5' LTR reducing reporter gene expression tenfold. The basal activity of the IP was higher than that obtained with LTR promoter constructs and strongly elevated in permissive BHK-21 cells whereas semi-permissive COS-7 cells showed low basal activity. Since the basal activity of the IP is critical for initiating HFV gene expression by providing Bel 1 transactivator early after infection, the basal activity of the IP may be the crucial factor that contributes to whether cells are permissive for HFV infection or not. Deletion mutagenesis allowed to define the minimal IP region. A region strongly transactivated by Bel 1 extends from -136 to +58 relative to the cap site of the IP. The major Bel 1 response element of the IP required for transactivation is located upstream of the cap site between -136 and -88 relative to the internal cap site. A DNA fragment reported to be protected by recombinant Bel 1 was deleted with marginal reduction of Bel 1 transactivation. HFV gene expression directed by the IP and LTR promoters is thus multiply regulated by positive and negative acting response elements in cis and their binding partners in trans.
Collapse
Affiliation(s)
- P Yang
- Abteilung Retrovirale Genexpression, Forschungsschwerpunkt Angewandte Tumorvirologie, Deutches Krebsforschungszenturm, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
19
|
Winkler I, Bodem J, Haas L, Zemba M, Delius H, Flower R, Flügel RM, Löchelt M. Characterization of the genome of feline foamy virus and its proteins shows distinct features different from those of primate spumaviruses. J Virol 1997; 71:6727-41. [PMID: 9261397 PMCID: PMC191953 DOI: 10.1128/jvi.71.9.6727-6741.1997] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The genome of the feline foamy virus (FeFV) isolate FUV was characterized by molecular cloning and nucleotide sequence analysis of subgenomic proviral DNA. The overall genetic organization of FeFV and protein sequence comparisons of different FeFV genes with their counterparts from other known foamy viruses confirm that FeFV is a complex foamy virus. However, significant differences exist when FeFV is compared with primate foamy viruses. The FeFV Gag protein is smaller than that of the primate spumaviruses, mainly due to additional MA/CA sequences characteristic of the primate viruses only. Gag protein sequence motifs of the NC domain of primate foamy viruses assumed to be involved in genome encapsidation are not conserved in FeFV. FeFV Gag and Pol proteins were detected with monospecific antisera directed against Gag and Pol domains of the human foamy virus and with antisera from naturally infected cats. Proteolytic processing of the FeFV Gag precursor was incomplete, whereas more efficient proteolytic cleavage of the pre125Pro-Pol protein was observed. The active center of the FeFV protease contains a Gln that replaces an invariant Gly residue at this position in other retroviral proteases. Functional studies on FeFV gene expression directed by the promoter of the long terminal repeat showed that FeFV gene expression was strongly activated by the Bell/Tas transactivator protein. The FeFV Bell/Tas transactivator is about one-third smaller than its counterpart of primate spumaviruses. This difference is also reflected by a limited sequence similarity and only a moderate conservation of structural motifs of the different foamy virus transactivators analyzed.
Collapse
Affiliation(s)
- I Winkler
- Abteilung Retrovirale Genexpression, Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
de la Luna S, Burden MJ, Lee CW, La Thangue NB. Nuclear accumulation of the E2F heterodimer regulated by subunit composition and alternative splicing of a nuclear localization signal. J Cell Sci 1996; 109 ( Pt 10):2443-52. [PMID: 8923205 DOI: 10.1242/jcs.109.10.2443] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The cellular transcription factor E2F plays a critical role in integrating cell cycle progression with the transcription apparatus by virtue of a physical interaction and control by key regulators of the cell cycle, such as pRb, cyclins and cyclin-dependent kinases. Generic E2F DNA binding activity arises when a member of two families of proteins, E2F and DP, form heterodimeric complexes, an interaction which results in co-operative transcriptional and DNA binding activity. Here, we characterise a new and hitherto unexpected mechanism of control influencing the activity of E2F which is mediated at the level of intracellular location through a dependence on heterodimer formation for nuclear translocation. Nuclear accumulation is dramatically influenced by two distinct processes: alternative splicing of a nuclear localization signal and subunit composition of the E2F heterodimer. These data define a new level of control in the E2F transcription factor whereby interplay between subunits dictates the levels of nuclear DNA binding activity.
Collapse
Affiliation(s)
- S de la Luna
- Division of Biochemistry and Molecular Biology, University of Glasgow, UK
| | | | | | | |
Collapse
|
21
|
He F, Blair WS, Fukushima J, Cullen BR. The human foamy virus Bel-1 transcription factor is a sequence-specific DNA binding protein. J Virol 1996; 70:3902-8. [PMID: 8648727 PMCID: PMC190268 DOI: 10.1128/jvi.70.6.3902-3908.1996] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Bel-1 transcriptional transactivator encoded by human foamy virus (HFV) can efficiently activate gene expression directed by both the HFV long terminal repeat (LTR) and internal (Int) promoter elements. By DNA footprinting and gel retardation analysis, we demonstrate that Bel-1 can specifically bind to discrete sites in both the LTR and Int promoter elements in vitro. However, transactivation of the HFV LTR by Bel-1 was observed to require not only the promoter-proximal Bel-1 binding site identified in vitro but also additional promoter-distal sequences. These data suggest that Bel-1 binding is necessary but not sufficient for efficient transactivation of Bel-1-responsive promoters in mammalian cells and therefore raise the possibility that Bel-1 function may require the action of a cellular DNA binding protein(s). Importantly, these data demonstrate that Bel-1 is unique among retroviral regulatory proteins in being a sequence-specific DNA binding protein.
Collapse
Affiliation(s)
- F He
- Department of Microbiology, Duke Medical Center, Durham North Carolina 27710, USA
| | | | | | | |
Collapse
|
22
|
Zou JX, Luciw PA. The transcriptional transactivator of simian foamy virus 1 binds to a DNA target element in the viral internal promoter. Proc Natl Acad Sci U S A 1996; 93:326-30. [PMID: 8552631 PMCID: PMC40231 DOI: 10.1073/pnas.93.1.326] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The transcriptional transactivator (Tas) of simian foamy virus type 1 strongly augments gene expression directed by both the promoter in the viral long terminal repeat and the newly discovered internal promoter located within the env gene. A region of 121 bp, located immediately 5' to the TATA box in the internal promoter, is required for transactivation by Tas. The present study aimed to identify the precise Tas-responsive target(s) in this region and to determine the role of Tas in transcriptional regulation. By analysis of both clustered-site mutations and hybrid promoters in transient expression assays in murine and simian cells, two separate sequence elements within this 121-bp region were shown to be Tas-dependent transcriptional enhancers. These targets, each < 30 bp in length and displaying no apparent sequence homology one to the other, are designated the promoter-proximal and promoter-distal elements. By means of the gel electrophoresis mobility-shift assays, using purified glutathione S-transferase-Tas fusion protein expressed in Escherichia coli, the target proximal to the TATA box exhibited strong binding to glutathione S-transferase-Tas, whereas the distal element appears not to bind. In addition, footprint analysis revealed that 26 bp in the promoter proximal element was protected by glutathione S-transferase-Tas from DNase I. We propose a model for transactivation of the simian foamy virus type 1 internal promoter in which Tas interacts directly with the proximal target element positioned immediately 5' to the TATA box. In this model, Tas attached to this element is presumed to interact with a component(s) of the cellular RNA polymerase II initiation complex and thereby enhance transcription directed by the viral internal promoter.
Collapse
Affiliation(s)
- J X Zou
- Department of Medical Pathology, University of California, Davis 95616, USA
| | | |
Collapse
|
23
|
Saïb A, de Thé H. Molecular biology of the human foamy virus. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1996; 13 Suppl 1:S254-60. [PMID: 8797732 DOI: 10.1097/00042560-199600001-00038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Foamy viruses also known as spumaretroviruses are complex retroviruses infecting cell lines with no apparent specific cellular tropism and induce the formation of multinucleated cells with numerous vacuoles. Far less well characterized than oncoviruses and lentiviruses, this class of viruses is thought to be innocuous in vivo. However, several important discoveries on foamy viruses brought new insights in the field of retrovirology.
Collapse
Affiliation(s)
- A Saïb
- CNRS UPR9051, Hôpital Saint-Louis, Paris, France
| | | |
Collapse
|
24
|
Affiliation(s)
- A Rethwilm
- Institute of Virology and Immunobiology, University of Würzburg, Germany
| |
Collapse
|