1
|
Lerma L, Muñoz AL, García Utrilla R, Sainz B, Lim F, Tabarés E, Gómez-Sebastián S. Partial complementation between the immediate early proteins ICP4 of herpes simplex virus type 1 and IE180 of pseudorabies virus. Virus Res 2020; 279:197896. [PMID: 32045631 DOI: 10.1016/j.virusres.2020.197896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/17/2022]
Abstract
We previously described that the immediate early (IE) IE180 protein of PRV can down-regulate the transactivation of the ICP4 promoter of HSV-1, and that the d120 virus (an ICP4-deficient HSV-1 strain) can partially replicate its viral DNA in the presence of the IE180 protein. Herein, we demonstrate that this partial complementation of d120 by IE180 is sufficient for transcription of β, γ1 and γ2 products such as DNA pol, VP16 and gC, respectively. However, expression levels are low for VP16 and even lower for the gC, such that IE180 is unable to fully substitute for ICP4 functionally. Viral progeny was not detected in PK15 cells expressing PRV IE180.
Collapse
Affiliation(s)
- L Lerma
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - A L Muñoz
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - R García Utrilla
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - B Sainz
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029, Madrid, Spain; Instituto Ramón y Cajal de de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - F Lim
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - E Tabarés
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - S Gómez-Sebastián
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Boldogkői Z, Tombácz D, Balázs Z. Interactions between the transcription and replication machineries regulate the RNA and DNA synthesis in the herpesviruses. Virus Genes 2019; 55:274-279. [PMID: 30767118 PMCID: PMC6536478 DOI: 10.1007/s11262-019-01643-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/24/2019] [Indexed: 12/04/2022]
Abstract
The temporal coordination of viral gene expression is imperative for the regulation of the herpesvirus replication cycle. While the main factors of this transcriptional coordination are known, the subtler control mechanisms of gene expression remain elusive. Recent long read sequencing-based approached have revealed an intricate meshwork of overlaps between the herpesvirus transcripts and the overlap of the replication origins with noncoding RNAs. It has been shown that the transcriptional apparatuses can physically interfere with one another while transcribing overlapping regions. We hypothesize that transcriptional interference regulates the global gene expression across the herpesvirus genome. Additionally, an overall decrease in transcriptional activity in individual viral genes has been observed following the onset of DNA replication. An overlap of the replication origins with specific transcripts has also been described in several herpesviruses. The genome-wide interactions between the transcriptional apparatuses and between the replication and transcriptional machineries suggest the existence of novel layers of genetic regulation.
Collapse
Affiliation(s)
- Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary.
| | - Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Zsolt Balázs
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| |
Collapse
|
3
|
Wang L, Chen X, Zhou X, Roizman B, Zhou GG. miRNAs Targeting ICP4 and Delivered to Susceptible Cells in Exosomes Block HSV-1 Replication in a Dose-Dependent Manner. Mol Ther 2018. [PMID: 29526650 DOI: 10.1016/j.ymthe.2018.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
miRNAs are potent tools that in principle can be used to control the replication of infectious agents. The objectives of the studies reported here were to design miRNAs that can block the replication of herpes simplex virus 1 and which could be delivered to infected cells via exosomes. We report the following: (1) We designed three miRNAs targeting the mRNA encoding ICP4, an essential viral regulatory protein. Of the three miRNAs, one miRNA401 effectively blocked ICP4 accumulation and viral replication on transfection into susceptible cells. (2) To facilitate packaging of the miRNA into exosomes, we incorporated into the sequence of miRNA401 an exosome-packaging motif. miRNA401 was shown to be packaged into exosomes and successfully delivered by exosomes to susceptible cells, where it remained stable for at least 72 hr. Finally, the results show that miRNA401 delivered to cells via exosomes effectively reduced virus yields in a miRNA401 dose-dependent fashion. The protocol described in this report can be applied to study viral gene functions without actually deleting or mutagenizing the gene.
Collapse
Affiliation(s)
- Lei Wang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xiaoqing Chen
- Shenzhen International Institute for Biomedical Research, Dapeng New District, Shenzhen, Guangdong 518116, China
| | - Xusha Zhou
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Bernard Roizman
- Shenzhen International Institute for Biomedical Research, Dapeng New District, Shenzhen, Guangdong 518116, China; Cummings Life Sciences Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Grace Guoying Zhou
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; Shenzhen International Institute for Biomedical Research, Dapeng New District, Shenzhen, Guangdong 518116, China.
| |
Collapse
|
4
|
Lerma L, Alcalá S, Piñero C, Torres M, Martin B, Lim F, Sainz B, Tabarés E. Expression of the immediate early IE180 protein under the control of the hTERT and CEA tumor-specific promoters in recombinant pseudorabies viruses: Effects of IE180 protein on promoter activity and apoptosis induction. Virology 2015; 488:9-19. [PMID: 26590793 DOI: 10.1016/j.virol.2015.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
Abstract
Since the pseudorabies virus (PRV) genome encodes for a single immediate-early protein, IE180, we reasoned that this strong transactivating protein could represent a key regulatory switch that could be genetically manipulated in order to alter its tropism towards cancer cells. We therefore initiated studies to test whether the human telomerase reverse transcriptase (hTERT) and carcinoembryonic antigen (CEA) tumor promoters could functionally replace the IE180 promoter. We show that both promoters can functionally substitute the IE180 promoter in plasmid constructs and recombinant viruses, and observed that IE180 differentially auto-regulated each promoter tested, with PRV IE180 negatively regulating the hTERT promoter but positively hyper-activating the CEA promoter. Interestingly, we also observed that the recombinant PRV-TER and PRV-CEA viruses preferentially replicated in diverse cancer cell lines compared to control non-cancer cells, and the PRV-CEA was capable of additionally inducing a profound apoptotic phenotype which we correlated to the overexpression of IE180.
Collapse
Affiliation(s)
- L Lerma
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - S Alcalá
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - C Piñero
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - M Torres
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - B Martin
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - F Lim
- Centro de Biología Molecular, CSIC-UAM, Cantoblanco, Madrid 28049, Spain
| | - B Sainz
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - E Tabarés
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain.
| |
Collapse
|
5
|
Selective degradation of mRNAs by the HSV host shutoff RNase is regulated by the UL47 tegument protein. Proc Natl Acad Sci U S A 2013; 110:E1669-75. [PMID: 23589852 DOI: 10.1073/pnas.1305475110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) encodes an endoribonuclease that is responsible for the shutoff of host protein synthesis [virion host shutoff (VHS)-RNase]. The VHS-RNase released into cells during infection targets differentially four classes of mRNAs. Thus, (a) VHS-RNase degrades stable cellular mRNAs and α (immediate early) viral mRNAs; (b) it stabilizes host stress response mRNAs after deadenylation and subsequent cleavage near the adenylate-uridylate (AU)-rich elements; (c) it does not effectively degrade viral β or γ mRNAs; and (d) it selectively spares from degradation a small number of cellular mRNAs. Current evidence suggests that several viral and at least one host protein (tristetraprolin) regulate its activity. Thus, virion protein (VP) 16 and VP22 neutralize the RNase activity at late times after infection. By binding to AU-rich elements via its interaction with tristetraprolin, the RNase deadenylates and cleaves the mRNAs in proximity to the AU-rich elements. In this report we show that another virion protein, UL47, brought into the cell during infection, attenuates the VHS-RNase activity with respect to stable host and viral α mRNAs and effectively blocks the degradation of β and γ mRNAs, but it has no effect on the processing of AU-rich mRNAs. The properties of UL47 suggest that it, along with the α protein infected cell protein 27, attenuates degradation of mRNAs by the VHS-RNase through interaction with the enzyme in polyribosomes. Mutants lacking both VHS-RNase and UL47 overexpress α genes and delay the expression of β and γ genes, suggesting that overexpression of α genes inhibits the downstream expression of early and late genes.
Collapse
|
6
|
Characterization of cis-acting elements required for autorepression of the equine herpesvirus 1 IE gene. Virus Res 2012; 165:52-60. [PMID: 22265772 DOI: 10.1016/j.virusres.2012.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 11/21/2022]
Abstract
The immediate-early protein (IEP), the major regulatory protein encoded by the IE gene of equine herpesvirus 1 (EHV-1), plays a crucial role as both transcription activator and repressor during a productive lytic infection. To investigate the mechanism by which the EHV-1 IEP inhibits its own promoter, IE promoter-luciferase reporter plasmids containing wild-type and mutant IEP-binding site (IEBS) were constructed and used for luciferase reporter assays. The IEP inhibited transcription from its own promoter in the presence of a consensus IEBS (5'-ATCGT-3') located near the transcription initiation site but did not inhibit when the consensus sequence was deleted. To determine whether the distance between the TATA box and the IEBS affects transcriptional repression, the IEBS was displaced from the original site by the insertion of synthetic DNA sequences. Luciferase reporter assays revealed that the IEP is able to repress its own promoter when the IEBS is located within 26-bp from the TATA box. We also found that the proper orientation and position of the IEBS were required for the repression by the IEP. Interestingly, the level of repression was significantly reduced when a consensus TATA sequence was deleted from the promoter region, indicating that the IEP efficiently inhibits its own promoter in a TATA box-dependent manner. Taken together, these results suggest that the EHV-1 IEP delicately modulates autoregulation of its gene through the consensus IEBS that is near the transcription initiation site and the TATA box.
Collapse
|
7
|
The checkpoints of viral gene expression in productive and latent infection: the role of the HDAC/CoREST/LSD1/REST repressor complex. J Virol 2011; 85:7474-82. [PMID: 21450817 DOI: 10.1128/jvi.00180-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
At the portal of entry into the body, herpes simplex viruses (HSV) vigorously multiply and spread until curtailed by the adaptive immune response. At the same time, HSV invades nerve ending-abutting infected cells and is transported in a retrograde manner to the neuronal nucleus, where it establishes a latent (silent) infection. At intervals, as a consequence of physical or metabolic stress, the virus is activated and transported in an anterograde manner to the body surface. The progression of infection is regulated at four checkpoints. In cell culture or at the portal of entry into the body, HSV uses components of the HDAC1- or HDAC2/CoREST/LSD1/REST repressor complex to activate α genes (checkpoint 1) and then uses an α protein, ICP0, to suppress the same repressor complex from silencing post-α gene expression (checkpoint 2). In neurons destined to harbor latent virus (checkpoint 3), HSV hijacks the same repressor complex to silence itself as a first step in the establishment of the latent state. Suppression of histone deacetylases (HDACs) plays a key role in the reactivation from latency (checkpoint 4). HSV has evolved a strategy of using the same host repressor complex to meet its diverse lifestyle needs.
Collapse
|
8
|
Analysis of the cellular localization of herpes simplex virus 1 immediate-early protein ICP22. Virol Sin 2010; 25:158-67. [PMID: 20960289 DOI: 10.1007/s12250-010-3118-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 03/08/2010] [Indexed: 12/26/2022] Open
Abstract
Nuclear proteins often form punctiform structures, but the precise mechanism for this process is unknown. As a preliminary study, we investigated the aggregation of an HSV-1 immediate-early protein, infected-cell protein 22 (ICP22), in the nucleus by observing the localization of ICP22-EGFP fusion protein. Results showed that, in high-level expression conditions, ICP22-EGFP gradually concentrates in the nucleus, persists throughout the cell cycle without disaggregation even in the cell division phase, and is finally distributed to daughter cells. We subsequently constructed a mammalian cell expression system, which had tetracycline-dependent transcriptional regulators. Consequently, the location of ICP22-EGFP in the nucleus changed with distinct induction conditions. This suggests that the cellular location of ICP22 is also influenced by promoter regulation, in addition to its own structure. Our findings provide new clues for the investigation of transcriptional regulation of viral genes. In addition, the non-protease reporter system we constructed could be utilized to evaluate the role of internal ribosome entry sites (IRES) on transcriptional regulation.
Collapse
|
9
|
Negative autoregulation of Epstein-Barr virus (EBV) replicative gene expression by EBV SM protein. J Virol 2009; 83:8041-50. [PMID: 19515786 DOI: 10.1128/jvi.00382-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Epstein-Barr virus (EBV) SM protein is essential for lytic EBV DNA replication and virion production. When EBV replication is induced in cells infected with an SM-deleted recombinant EBV, approximately 50% of EBV genes are expressed inefficiently. When EBV replication is rescued by transfection of SM, SM enhances expression of these genes by direct and indirect mechanisms. While expression of most EBV genes is either unaffected or enhanced by SM, expression of several genes is decreased in the presence of SM. Expression of BHRF1, a homolog of cellular bcl-2, is particularly decreased in the presence of SM. Investigation of the mechanism of BHRF1 downregulation revealed that SM downregulates expression of the immediate-early EBV transactivator R. In EBV-infected cells, R-responsive promoters, including the BHRF1 and SM promoters, were less active in the presence of SM, consistent with SM inhibition of R expression. SM decreased spliced R mRNA levels, supporting a posttranscriptional mechanism of R inhibition. R and BHRF1 expression were also found to decrease during later stages of EBV lytic replication in EBV-infected lymphoma cells. These data indicate that feedback regulation of immediate-early and early genes occurs during the lytic cycle of EBV regulation.
Collapse
|
10
|
Saffert RT, Kalejta RF. Promyelocytic leukemia-nuclear body proteins: herpesvirus enemies, accomplices, or both? Future Virol 2008; 3:265-277. [PMID: 19763230 DOI: 10.2217/17460794.3.3.265] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The promyelocytic leukemia (PML) protein gathers other cellular proteins, such as Daxx and Sp100, to form subnuclear structures termed PML-nuclear bodies (PML-NBs) or ND10 domains. Many infecting viral genomes localize to PML-NBs, leading to speculation that these structures may represent the most efficient subnuclear location for viral replication. Conversely, many viral proteins modify or disrupt PML-NBs, suggesting that viral replication may be more efficient in the absence of these structures. Thus, a debate remains as to whether PML-NBs inhibit or enhance viral replication. Here we review and discuss recent data indicating that for herpesviruses, PML-NB proteins inhibit viral replication in cell types where productive, lytic replication occurs, while at the same time may enhance the establishment of lifelong latent infections in other cell types.
Collapse
Affiliation(s)
- Ryan T Saffert
- University of Wisconsin-Madison, Institute for Molecular Virology & McArdle Laboratory for Cancer Research, Madison, WI, USA Tel.: +1 608 265 5546; ;
| | | |
Collapse
|
11
|
Gómez-Sebastián S, Tabarés E. Negative regulation of herpes simplex virus type 1 ICP4 promoter by IE180 protein of pseudorabies virus. J Gen Virol 2004; 85:2125-2130. [PMID: 15269350 DOI: 10.1099/vir.0.80119-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombinant pseudorabies viruses (PRVs) gIS8 and N1aHTK were constructed by the insertion of a chimeric gene (alpha4-TK) from herpes simplex virus type 1 (HSV-1) into wild-type PRV. HSV-1 TK expression by these recombinant viruses resulted in enhanced sensitivity to ganciclovir, compared to that of the wild-type PRV, and was similar to the sensitivity shown by HSV-1. Infection with gIS8 or N1aHTK recombinant viruses led to expression of HSV-1 TK mRNA as an immediate-early (IE) gene, observed by downregulation of the HSV-1 alpha4 promoter. This negative regulation was due to a PRV IE protein, IE180. IE180, however, does not have all the regulatory functions of the infected-cell protein ICP4, as it does not restore the growth of ICP4-deficient HSV-1 mutants.
Collapse
Affiliation(s)
- S Gómez-Sebastián
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - E Tabarés
- Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, E-28029 Madrid, Spain
| |
Collapse
|
12
|
Advani SJ, Durand LO, Weichselbaum RR, Roizman B. Oct-1 is posttranslationally modified and exhibits reduced capacity to bind cognate sites at late times after infection with herpes simplex virus 1. J Virol 2003; 77:11927-32. [PMID: 14581529 PMCID: PMC254286 DOI: 10.1128/jvi.77.22.11927-11932.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In herpes simplex virus 1-infected cells, a high level of alpha gene expression requires the transactivation of the genes by a complex containing the viral alpha transinducing factor (alphaTIF) and two cellular proteins. The latter two, HCF-1 and octamer binding protein Oct-1, are transcriptional factors regulated in a cell cycle-dependent manner. alphaTIF is a protein made late in infection but packaged with the virion to transactivate viral genes in newly infected cells. In light of the accumulation of large amounts of alphaTIF, the absence of alpha gene expression late in infection suggested the possibility that one or more transcriptional factors required for alpha gene expression is modified late in infection. Here we report that Oct-1 is posttranscriptionally modified late in infection, that the modification is mediated by the virus but does not involve viral protein kinases or cdc2 kinase activated by the virus late in infection, and that the modified Oct-1 has a reduced affinity for its cognate DNA site. These results are consistent with the hypothesis that modification of Oct-1 transcriptional factor could account at least in part for the shutoff of alpha gene expression late in infection.
Collapse
Affiliation(s)
- Sunil J Advani
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
13
|
Bruce JW, Wilcox KW. Identification of a motif in the C terminus of herpes simplex virus regulatory protein ICP4 that contributes to activation of transcription. J Virol 2002; 76:195-207. [PMID: 11739685 PMCID: PMC135686 DOI: 10.1128/jvi.76.1.195-207.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of most viral genes during productive infection by herpes simplex virus is regulated by the viral protein ICP4 (also called IE175 or Vmw175). The N-terminal portion of ICP4 contains well-defined transactivation, DNA binding, and dimerization domains that contribute to promoter regulation. The C-terminal half of ICP4 contributes to the activity of ICP4, but the functional motifs have not been well mapped. To localize functional motifs in the C-terminal half of ICP4, we have compared the relative specific activities of ICP4 variants in transient-transfection assays. Deletion of the C-terminal 56 residues reduces the specific activity more than 10-fold. Mutational analysis identified three consecutive residues (1252 to 1254) that are conserved in ICP4 orthologs and are essential for full activity, especially in the context of ICP4 variants with a deletion in the N-terminal transactivation domain. Recombinant viruses that encode variants of ICP4 with mutations in the N-terminal transactivation domain and/or the extreme C terminus were constructed. The phenotypes of these recombinant viruses support the hypothesis that efficient promoter activation by ICP4 requires motifs at both the N and C termini. The data suggest that the C terminus of ICP4 functions not as an independent transactivation domain but as an enhancer of the ICP4 N-terminal transactivation domain. The data provide further support for the hypothesis that some ICP4 motifs required for promoter activation are not required for promoter repression and suggest that ICP4 utilizes different cellular factors for activation or repression of viral promoters.
Collapse
Affiliation(s)
- James W Bruce
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
14
|
Advani SJ, Hagglund R, Weichselbaum RR, Roizman B. Posttranslational processing of infected cell proteins 0 and 4 of herpes simplex virus 1 is sequential and reflects the subcellular compartment in which the proteins localize. J Virol 2001; 75:7904-12. [PMID: 11483735 PMCID: PMC115034 DOI: 10.1128/jvi.75.17.7904-7912.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The herpes simplex virus 1 (HSV-1) infected cell proteins 0 and 4 (ICP0 and ICP4) are multifunctional proteins extensively posttranscriptionally processed by both cellular and viral enzymes. We examined by two-dimensional separations the posttranslational forms of ICP0 and ICP4 in HEp-2 cells and in human embryonic lung (HEL) fibroblasts infected with wild-type virus, mutant R325, lacking the sequences encoding the U(S)1.5 protein and the overlapping carboxyl-terminal domain of ICP22, or R7914, in which the aspartic acid 199 of ICP0 was replaced by alanine. We report the following (i) Both ICP0 and ICP4 were sequentially posttranslationally modified at least until 12 h after infection. In HEL fibroblasts, the processing of ICP0 shifted from A+B forms at 4 h to D+G forms at 8 h and finally to G, E, and F forms at 12 h. The ICP4 progression was from the A' form noted at 2 h to B' and C' forms noted at 4 h to the additional D' and E' forms noted at 12 h. The progression tended to be toward more highly charged forms of the proteins. (ii) Although the overall patterns were similar, the mobility of proteins made in HEp-2 cells differed from those made in HEL fibroblasts. (iii) The processing of ICP0 forms E and F was blocked in HEL fibroblasts infected with R325 or with wild-type virus and treated with roscovitine, a specific inhibitor of cell cycle-dependent kinases cdc2, cdk2, and cdk5. R325-infected HEp-2 cells lacked the D' form of ICP4, and roscovitine blocked the appearance of the most highly charged E' form of ICP4. (iv) A characteristic of ICP0 is that it is translocated into the cytoplasm of HEL fibroblasts between 5 and 9 h after infection. Addition of MG132 to the cultures late in infection resulted in rapid relocation of cytoplasmic ICP0 back into the nucleus. Exposure of HEL fibroblasts to MG132 late in infection resulted in the disappearance of the highly charged ICP0 G isoform. The G form of ICP0 was also absent in cells infected with R7914 mutant. In cells infected with this mutant, ICP0 is not translocated to the cytoplasm. (v) Last, cdc2 was active in infected cells, and this activity was inhibited by roscovitine. In contrast, the activity of cdk2 exhibited by immunoprecipitated protein was reduced and resistant to roscovitine and may represent a contaminating kinase activity. We conclude from these results that the ICP0 G isoform is the cytoplasmic form, that it may be phosphorylated by cdc2, consistent with evidence published earlier (S. J., Advani, R. R. Weichselbaum, and B. Roizman, Proc. Natl. Acad. Sci. USA 96:10996-11001, 2000), and that the processing is reversed upon relocation of the G isoform from the cytoplasm into the nucleus. The processing of ICP4 is also affected by R325 and roscovitine. The latter result suggests that ICP4 may also be a substrate of cdc2 late in infection. Last, additional modifications are superimposed by cell-type-specific enzymes.
Collapse
Affiliation(s)
- S J Advani
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
15
|
LaPierre LA, Biegalke BJ. Identification of a novel transcriptional repressor encoded by human cytomegalovirus. J Virol 2001; 75:6062-9. [PMID: 11390608 PMCID: PMC114322 DOI: 10.1128/jvi.75.13.6062-6069.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The expression of human cytomegalovirus (HCMV) genes during viral replication is precisely regulated, with the interactions of both transcriptional activators and repressors determining the level of gene expression. One gene of HCMV, the US3 gene, is transcriptionally repressed early in infection. Repression of US3 expression requires viral infection and protein synthesis and is mediated through a DNA sequence, the transcriptional repressive element. In this report, we identify the protein that represses US3 transcription as the product of the HCMV UL34 open reading frame. The protein encoded by UL34 (pUL34) binds to the US3 transcriptional repressive element in yeast and in vitro. pUL34 localizes to the nucleus and alone is sufficient for repression of US3 expression. The data presented here, along with earlier data (B. J. Biegalke, J. Virol. 72:5457-5463, 1998), suggests that pUL34 binding of the transcriptional repressive element prevents transcription initiation complex formation.
Collapse
Affiliation(s)
- L A LaPierre
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|
16
|
Affiliation(s)
- L D Bacon
- USDA Agricultural Research Service, Avian Disease and Oncology Laboratory, 3606 East Mount Hope Road, East Lansing, MI 48823, USA
| | | | | |
Collapse
|
17
|
Randall G, Lagunoff M, Roizman B. Herpes simplex virus 1 open reading frames O and P are not necessary for establishment of latent infection in mice. J Virol 2000; 74:9019-27. [PMID: 10982346 PMCID: PMC102098 DOI: 10.1128/jvi.74.19.9019-9027.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Open reading frame (ORF) O and ORF P partially overlap and are located antisense to the gamma(1)34.5 gene within the domain transcribed during latency. In wild-type virus-infected cells, ORF O and ORF P are completely repressed during productive infection by ICP4, the major viral transcriptional activator/repressor. In cells infected with a mutant in which ORF P was derepressed there was a significant delay in the appearance of the viral alpha-regulatory proteins ICP0 and ICP22. The ORF O protein binds to and inhibits ICP4 binding to its cognate DNA site in vitro. These characteristics suggested a role for ORF O and ORF P in the establishment of latency. To test this hypothesis, two recombinant viruses were constructed. In the first, R7538(P-/O-), the ORF P initiator methionine codon, which also serves as the initiator methionine codon for ORF O, was replaced and a diagnostic restriction endonuclease was introduced upstream. In the second, R7543(P-/O-)R, the mutations were repaired to restore the wild-type virus sequences. We report the following. (i) The R7538(P-/O-) mutant failed to express ORF O and ORF P proteins but expressed a wild-type gamma(1)34.5 protein. (ii) R7538(P-/O-) yields were similar to that of the wild type following infection of cell culture or following infection of mice by intracerebral or ocular routes. (iii) R7538(P-/O-) virus reactivated from latency following explanation and cocultivation of murine trigeminal ganglia with Vero cells at a frequency similar to that of the wild type, herpes simplex virus 1(F). (iv) The amount of latent R7538(P-/O-) virus as assayed by quantitative PCR is eightfold less than that of the repair virus. The repaired virus could not be differentiated from the wild-type parent in any of the assays done in this study. We conclude that ORF O and ORF P are not essential for the establishment of latency in mice but may play a role in determining the quantity of latent virus maintained in sensory neurons.
Collapse
Affiliation(s)
- G Randall
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
18
|
Lium EK, Panagiotidis CA, Wen X, Silverstein SJ. The NH2 terminus of the herpes simplex virus type 1 regulatory protein ICP0 contains a promoter-specific transcription activation domain. J Virol 1998; 72:7785-95. [PMID: 9733814 PMCID: PMC110090 DOI: 10.1128/jvi.72.10.7785-7795.1998] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional program of herpes simplex virus is regulated by the concerted action of three immediate-early (alpha) proteins, ICP4, ICP27, and ICP0. The experiments described in this study examine the role of the acidic amino terminus (amino acids 1 to 103) of ICP0 in gene activation. When tethered to a DNA binding domain, this sequence activates transcription in the yeast Saccharomyces cerevisiae. Deletion of these amino acids affects the ability of ICP0 to activate alpha-gene promoter reporters in transient expression assays, while it has little or no effect on a beta- and a gamma-gene reporter in the same assay. Viruses that express the deleted form of ICP0 (ICP0-NX) have a small-plaque phenotype on both Vero cells and the complementing cell line L7. Transient expression and immunofluorescence analyses demonstrate that ICP0-NX is a dominant negative form of ICP0. Immunoprecipitation of ICP0 from cells coinfected with viruses expressing ICP0-NX and ICP0 revealed that ICP0 oligomerizes in infected cells. These data, in conjunction with the finding that ICP0-N/X is dominant negative, provide both biochemical and genetic evidence that ICP0 functions as a multimer in infected cells.
Collapse
Affiliation(s)
- E K Lium
- Department of Microbiology and College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
19
|
Biegalke BJ. Characterization of the transcriptional repressive element of the human cytomegalovirus immediate-early US3 gene. J Virol 1998; 72:5457-63. [PMID: 9621001 PMCID: PMC110182 DOI: 10.1128/jvi.72.7.5457-5463.1998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transcriptional repression is utilized by human cytomegalovirus to regulate expression of the immediate-early US3 gene. Sequences located 3' of the US3 TATA box are required for down regulation of expression. Mutagenesis of US3 sequences identified a 10-nucleotide region that is essential for transcriptional repression. In addition to the 10-nucleotide element, an additional region, which includes the US3 initiator element, was needed to confer repression on a heterologous promoter. Thus, a 19-nucleotide element (-18 to +1 relative to the transcription start site) functioned as a transcriptional repressive element (tre). The tre repressed transcription in a position-dependent but orientation-independent manner. In vivo footprinting experiments demonstrated that transcriptional repression is associated with a decrease in protein interactions with the US3 promoter and surrounding sequences. The data presented here suggest that the association of an as yet unidentified repressor protein with the tre represses transcription by inhibiting assembly of the transcription initiation complex on the US3 promoter.
Collapse
Affiliation(s)
- B J Biegalke
- Department of Biological Sciences, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA.
| |
Collapse
|
20
|
Abstract
To identify promoter regions that impart differential temporal regulation of channel catfish virus (CCV) genes, the transcriptional kinetics of an immediate-early gene and prospective early and late genes were characterized. A cDNA clone, designated IE3C, representing a third immediate-early transcript was identified. The 5' end of the IE3C transcript was mapped to nucleotides 15,368 and 131,043 in the terminal repeat regions of the CCV genome. The full length of the transcript represented by the IE3C clone is 1,412 bp, and it most likely codes for the protein specified by open reading frame (ORF) 12. The putative product of ORF12 contains a consensus RING finger metal binding motif (C3HC4 structure). Temporal expression studies, in conjunction with protein synthesis and DNA replication inhibition, demonstrated that the IE3C transcript belongs to an immediate-early kinetic class, the ORF5 transcript is a member of the early kinetic class, and ORF39 and ORF46 are true late-kinetic-class genes. Additionally, we demonstrated that ORF38 transcription overlaps ORF39 and the products presumably share the same poly(A) signal. The 5' ends of the transcripts encoding ORF38, ORF39, and ORF46 were mapped to nucleotides 44,862, 45,254, and 59,644, respectively, and potential transcriptional control elements were located.
Collapse
Affiliation(s)
- S Huang
- College of Veterinary Medicine, Mississippi State University, Mississippi 39762, USA
| | | |
Collapse
|
21
|
Abstract
Many viruses utilize the cellular transcription apparatus to express their genomes, and they encode transcriptional regulatory proteins that modulate the process. Here we review the current understanding of three viral regulatory proteins. The adenovirus E1A protein acts within the nucleus to regulate transcription through its ability to bind to other proteins. The herpes simplex type 1 virus VP16 protein acts within the nucleus to control transcription by binding to DNA in conjunction with cellular proteins. The human T-cell leukemia virus Tax protein influences transcription through interactions with cellular proteins in the nucleus as well as the cytoplasm.
Collapse
Affiliation(s)
- J Flint
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | |
Collapse
|
22
|
Lium EK, Silverstein S. Mutational analysis of the herpes simplex virus type 1 ICP0 C3HC4 zinc ring finger reveals a requirement for ICP0 in the expression of the essential alpha27 gene. J Virol 1997; 71:8602-14. [PMID: 9343218 PMCID: PMC192324 DOI: 10.1128/jvi.71.11.8602-8614.1997] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) immediate-early (IE) protein ICP0 has been implicated in the regulation of viral gene expression and the reactivation of latent HSV-1. Evidence demonstrates that ICP0 is an activator of viral gene expression yet does not distinguish between a direct or indirect role in this process. To further our understanding of the function of ICP0 in the context of the virus life cycle, site-directed mutagenesis of the consensus C3HC4 zinc finger domain was performed, and the effects of these mutations on the growth and replication of HSV-1 were assessed. We demonstrate that alteration of any of the consensus C3HC4 cysteine or histidine residues within this domain abolishes ICP0-mediated transactivation, alters the intranuclear localization of ICP0, and significantly increases its stability. These mutations result in severe defects in the growth and DNA replication of recombinant herpesviruses and in their ability to initiate lytic infections at low multiplicities of infection. These viruses, at low multiplicities of infection, synthesize wild-type levels of the IE proteins ICP0 and ICP4 at early times postinfection yet exhibit significant decreases in the synthesis of the essential IE protein ICP27. These findings reveal a role for ICP0 in the expression of ICP27 and suggest that the multiplicity-dependent growth of alpha0 mutant viruses results partially from reduced levels of ICP27.
Collapse
Affiliation(s)
- E K Lium
- Integrated Program in Cellular, Molecular and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
23
|
Randall G, Roizman B. Transcription of the derepressed open reading frame P of herpes simplex virus 1 precludes the expression of the antisense gamma(1)34.5 gene and may account for the attenuation of the mutant virus. J Virol 1997; 71:7750-7. [PMID: 9311860 PMCID: PMC192127 DOI: 10.1128/jvi.71.10.7750-7757.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Open reading frame P (ORF P), located at the 3' terminus of the 8.5-kb DNA sequence transcribed during latency and almost completely antisense to the gamma(1)34.5 gene, is naturally repressed by infected cell protein 4 (ICP4), the major herpes simplex virus 1 regulatory protein. Earlier studies on cells infected with a mutant in which the expression of ORF P is derepressed have shown that (i) the accumulation of the alpha infected cell proteins 0 (ICP0) and 22 (ICP22), the products of spliced mRNAs, is reduced congruent with the binding of ORF P protein to p32, a component of the ASF/SF2 splicing factors, (ii) ORF P protein colocalizes with spliceosomes, (iii) both gamma(1)34.5 mRNA and protein are virtually undetectable, and (iv) the virus is attenuated on intracerebral inoculation in mice. We report the construction and characterization of two recombinant viruses: R7546, in which ORF P transcription was derepressed and the initiator methionine codon was replaced; and R7547, in which both mutations were repaired to the wild-type genotype. The mutations in R7546 do not alter the amino acid sequence of the gamma(1)34.5 gene. We report that (i) the reduction in the accumulation of gamma(1)34.5 mRNA and protein in cells infected with mutant viruses expressing derepressed ORF P genes reflects the effects of antisense transcription of ORF P rather than a function of ORF P protein, (ii) the attenuated phenotype of the viruses carrying derepressed ORF P genes is due largely to the absence of the gamma(1)34.5 protein, and (iii) the reduction in accumulation of ICP0 and ICP22 requires the expression of ORF P protein.
Collapse
Affiliation(s)
- G Randall
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
24
|
Randall G, Lagunoff M, Roizman B. The product of ORF O located within the domain of herpes simplex virus 1 genome transcribed during latent infection binds to and inhibits in vitro binding of infected cell protein 4 to its cognate DNA site. Proc Natl Acad Sci U S A 1997; 94:10379-84. [PMID: 9294219 PMCID: PMC23371 DOI: 10.1073/pnas.94.19.10379] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The partially overlapping ORF P and ORF O are located within the domains of the herpes simplex virus 1 genome transcribed during latency. Earlier studies have shown that ORF P is repressed by infected cell protein 4 (ICP4), the major viral regulatory protein, binding to its cognate site at the transcription initiation site of ORF P. The ORF P protein binds to p32, a component of the ASF/SF2 alternate splicing factors; in cells infected with a recombinant virus in which ORF P was derepressed there was a significant decrease in the expression of products of key regulatory genes containing introns. We report that (i) the expression of ORF O is repressed during productive infection by the same mechanism as that determining the expression of ORF P; (ii) in cells infected at the nonpermissive temperature for ICP4, ORF O protein is made in significantly lower amounts than the ORF P protein; (iii) the results of insertion of a sequence encoding 20 amino acids between the putative initiator methionine codons of ORF O and ORF P suggest that ORF O initiates at the methionine codon of ORF P and that the synthesis of ORF O results from frameshift or editing of its RNA; and (iv) glutathione S-transferase-ORF O fusion protein bound specifically ICP4 and precluded its binding to its cognate site on DNA in vitro. These and earlier results indicate that ORF P and ORF O together have the capacity to reduce the synthesis or block the expression of regulatory proteins essential for viral replication in productive infection.
Collapse
Affiliation(s)
- G Randall
- The Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, 910 East 58th Street, Chicago IL 60637, USA
| | | | | |
Collapse
|
25
|
Leopardi R, Van Sant C, Roizman B. The herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus. Proc Natl Acad Sci U S A 1997; 94:7891-6. [PMID: 9223283 PMCID: PMC21525 DOI: 10.1073/pnas.94.15.7891] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An earlier report showed that a disabled mutant lacking both copies of the major regulatory gene (alpha4) of herpes simplex virus 1 induced DNA degradation characteristic of apoptosis in infected cells, whereas the wild-type virus protected cells from apoptosis induced by thermal shock. More extensive analyses of the disabled mutant revealed a second mutation which disabled US3, a viral gene encoding a protein kinase known to phosphorylate serine/threonine within a specific arginine-rich consensus sequence. Analyses of cells infected with a viral mutant carrying a wild-type alpha4 gene but from which the US3 gene had been deleted showed that it induced fragmentation of cellular DNA, whereas a recombinant virus in which the deleted sequences of the US3 gene had been restored did not cause the cellular DNA to fragment. These results point to the protein kinase encoded by the US3 gene as the principal viral product required to block apoptosis.
Collapse
Affiliation(s)
- R Leopardi
- The Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, 910 East 58th Street, Chicago IL 60637, USA
| | | | | |
Collapse
|
26
|
Cheung P, Panning B, Smiley JR. Herpes simplex virus immediate-early proteins ICP0 and ICP4 activate the endogenous human alpha-globin gene in nonerythroid cells. J Virol 1997; 71:1784-93. [PMID: 9032307 PMCID: PMC191247 DOI: 10.1128/jvi.71.3.1784-1793.1997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Globin genes are normally expressed only in erythroid cell lineages. However, we found that the endogenous alpha-globin gene is activated following infection of human fibroblasts and HeLa cells with herpes simplex virus (HSV), leading to accumulation of correctly initiated transcripts driven by the alpha-globin promoter. The alpha1- and alpha2-globin genes were both induced, but expression of beta- or zeta-globin genes could not be detected. Experiments using HSV mutants showed that null mutations in the genes encoding the viral immediate-early proteins ICP4 and ICP22 reduced induction approximately 10-fold, while loss of ICP0 function had a smaller inhibitory effect. Transient transfection experiments showed that ICP0 and ICP4 are each sufficient to trigger detectable expression of the endogenous gene, while ICP22 had no detectable effect in this assay. ICP4 also strongly enhanced expression of transfected copies of the alpha2-globin gene. In contrast, the adenovirus E1a protein did not activate the endogenous gene and inhibited expression of the plasmid-borne alpha2-globin gene. Previous studies have led to the hypothesis that chromosomal alpha-globin genes are subject to chromatin-dependent repression mechanism that prevents expression in nonerythroid cells. Our data suggest that HSV ICP0 and ICP4 either break or bypass this cellular gene silencing mechanism.
Collapse
Affiliation(s)
- P Cheung
- Institute for Molecular Biology and Biotechnology, Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
27
|
Leopardi R, Ward PL, Ogle WO, Roizman B. Association of herpes simplex virus regulatory protein ICP22 with transcriptional complexes containing EAP, ICP4, RNA polymerase II, and viral DNA requires posttranslational modification by the U(L)13 proteinkinase. J Virol 1997; 71:1133-9. [PMID: 8995634 PMCID: PMC191165 DOI: 10.1128/jvi.71.2.1133-1139.1997] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The expression of herpes simplex virus 1 gamma (late) genes requires functional alpha proteins (gamma1 genes) and the onset of viral DNA synthesis (gamma2 genes). We report that late in infection after the onset of viral DNA synthesis, cell nuclei exhibit defined structures which contain two viral regulatory proteins (infected cell proteins 4 and 22) required for gamma gene expression, RNA polymerase II, a host nucleolar protein (EAP or L22) known to be associated with ribosomes and to bind small RNAs, including the Epstein-Barr virus small nuclear RNAs, and newly synthesized progeny DNA. The formation of these complexes required the onset of viral DNA synthesis. The association of infected cell protein 22, a highly posttranslationally processed protein, with these structures did not occur in cells infected with a viral mutant deleted in the genes U(L)13 and U(S)3, each of which specifies a protein kinase known to phosphorylate the protein.
Collapse
Affiliation(s)
- R Leopardi
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
28
|
Leopardi R, Roizman B. The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia. Proc Natl Acad Sci U S A 1996; 93:9583-7. [PMID: 8790373 PMCID: PMC38471 DOI: 10.1073/pnas.93.18.9583] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cells infected with herpes simplex virus 1 (HSV-1) undergo productive or latent infection without exhibiting features characteristic of apoptosis. In this report, we show that HSV-1 induces apoptosis but has evolved a function that blocks apoptosis induced by infection as well as by other means. Specifically, (i) Vero cells infected with a HSV-1 mutant deleted in the regulatory gene alpha 4 (that encodes repressor and transactivating functions), but not those infected with wild-type HSV-1(F), exhibit cytoplasmic blebbing, chromatin condensation, and fragmented DNA detected as a ladder in agarose gels or by labeling free DNA ends with terminal transferase; (ii) Vero cells infected with wild-type HSV-1(F) or cells expressing the alpha 4 gene and infected with the alpha 4- virus did not exhibit apoptosis; (iii) fragmentation of cellular DNA was observed in Vero cells that were mock-infected or infected with the alpha 4- virus and maintained at 39.5 degrees C, but not in cells infected with wild-type virus and maintained at the same temperature. Wild-type strains of HSV-1 with limited extrahuman passages, such as HSV-1 (F), carry a temperature-sensitive lesion in the alpha 4 gene and at 39.5 degrees C only alpha genes are expressed. These results indicate that the product of the alpha 4 gene is able to suppress apoptosis induced by the virus as well by other means.
Collapse
Affiliation(s)
- R Leopardi
- Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, IL 60637
| | | |
Collapse
|
29
|
Lium EK, Panagiotidis CA, Wen X, Silverstein S. Repression of the alpha0 gene by ICP4 during a productive herpes simplex virus infection. J Virol 1996; 70:3488-96. [PMID: 8648681 PMCID: PMC190222 DOI: 10.1128/jvi.70.6.3488-3496.1996] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During a productive infection by herpes simplex virus type 1 (HSV-1), ICP4, the major regulatory protein encoded by the alpha4 gene, binds to its transcription initiation site and represses the accumulation of alpha4 RNA. Evidence suggests that the degree of repression by ICP4 is a function of the absolute distance of an ICP4 binding site 3' from a TATA box. However, repression of HSV-1 gene expression by ICP4 through binding sites located 5' of TATA boxes, as in the case of the alpha0 gene, has not been adequately addressed. To this end, recombinant alpha0 promoters with various arrays of ICP4 binding sites flanking the alpha0 TATA box were constructed and recombined into the HSV-1 genome. Our results demonstrate the following. (i) Destruction of the endogenous alphaO ICP4 binding site, located 5' of the TATA box, results in derepression of alpha0 protein and RNA accumulation in infected Vero cells. (ii) The degree of alpha0 derepression is equivalent to that reported for the alpha4 gene following destruction of the ICP4 binding site at the alpha4 mRNA cap site in HSV-1. (iii) Introduction of an ICP4 binding site at the alpha0 mRNA cap site represses the accumulation of alpha0 RNA greater than threefold relative to the wild type. (iv) Changes in the abundance of alpha0 protein and RNA in infected cells do not affect replication or growth of HSV-1 in tissue culture. Our findings are consistent with the conclusion that alpha0 transcription is repressed by ICP4. These results demonstrate that repression by ICP4 can occur through binding sites located 5' of virus gene TATA boxes in HSV-1. Thus, models addressing repression of HSV-1 gene expression by ICP4 should incorporate the role of binding sites located 5', as well as 3', of virus gene TATA boxes.
Collapse
Affiliation(s)
- E K Lium
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York 10032, USA
| | | | | | | |
Collapse
|
30
|
Carter KL, Roizman B. The promoter and transcriptional unit of a novel herpes simplex virus 1 alpha gene are contained in, and encode a protein in frame with, the open reading frame of the alpha 22 gene. J Virol 1996; 70:172-8. [PMID: 8523523 PMCID: PMC189802 DOI: 10.1128/jvi.70.1.172-178.1996] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The herpes simplex virus type 1 genome encodes a set of genes (alpha genes) expressed in the absence of de novo viral protein synthesis. Earlier studies have shown that the product of the alpha 22 gene, a member of this set, is nucleotidylylated by casein kinase II and phosphorylated by viral protein kinases encoded by UL13 and US3. Mutants lacking the carboxyl-terminal domain starting with amino acid 200 exhibit reduced capacity to replicate in primary human cell strains or in cells of rodent derivation and also exhibit reduced expression of a subset of gamma or late genes. We report that the domain of the alpha 22 gene is transcribed by two 3'-coterminal mRNAs. The longer transcript reported encodes the 420-amino-acid alpha 22 protein, whereas the shorter transcript reported here encodes a protein containing the carboxyl-terminal 273 amino acids of the alpha 22 protein. The shorter gene is designated US1.5. The US1.5 mRNA is synthesized in cells infected and maintained in the presence of cycloheximide and under other conditions which restrict viral gene expression to alpha genes. In-frame insertion of linkers encoding 18, 21, or 22 amino acids after codon 200 or 240 of the alpha 22 protein did not affect the known functions or phenotype associated with the wild-type alpha 22 gene or its product. Earlier studies have placed the nucleotidylylated sequences in the amino-terminal portion of the protein. The results of these studies indicate that the US1.5 gene encodes the functions associated with replication in human primary or rodent cells and optimal expression of alpha 0 and gamma genes. This finding brings the number of genes known to map in the unique short region of the herpes simplex virus type 1 DNA to 14 and the total number of different genes to 78.
Collapse
Affiliation(s)
- K L Carter
- Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|