1
|
Localization of the Interaction Site of Herpes Simplex Virus Glycoprotein D (gD) on the Membrane Fusion Regulator, gH/gL. J Virol 2020; 94:JVI.00983-20. [PMID: 32759318 DOI: 10.1128/jvi.00983-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
A cascade of protein-protein interactions between four herpes simplex virus (HSV) glycoproteins (gD, gH/gL, and gB) drive fusion between the HSV envelope and host membrane, thereby allowing for virus entry and infection. Specifically, binding of gD to one of its receptors induces a conformational change that allows gD to bind to the regulatory complex gH/gL, which then activates the fusogen gB, resulting in membrane fusion. Using surface plasmon resonance and a panel of anti-gD monoclonal antibodies (MAbs) that sterically blocked the interaction, we previously showed that gH/gL binds directly to gD at sites distinct from the gD receptor binding site. Here, using an analogous strategy, we first evaluated the ability of a panel of uncharacterized anti-gH/gL MAbs to block binding to gD and/or inhibit fusion. We found that the epitopes of four gD-gH/gL-blocking MAbs were located within flexible regions of the gH N terminus and the gL C terminus, while the fifth was placed around gL residue 77. Taken together, our data localized the gD binding region on gH/gL to a group of gH and gL residues at the membrane distal region of the heterodimer. Surprisingly, a second set of MAbs did not block gD-gH/gL binding but instead stabilized the complex by altering the kinetic binding. However, despite this prolonged gD-gH/gL interaction, "stabilizing" MAbs also inhibited cell-cell fusion, suggesting a unique mechanism by which the fusion process is halted. Our findings support targeting the gD-gH/gL interaction to prevent fusion in both therapeutic and vaccine strategies against HSV.IMPORTANCE Key to developing a human HSV vaccine is an understanding of the virion glycoproteins involved in entry. HSV employs multiple glycoproteins for attachment, receptor interaction, and membrane fusion. Determining how these proteins function was resolved, in part, by structural biology coupled with immunological and biologic evidence. After binding, virion gD interacts with a receptor to activate the regulator gH/gL complex, triggering gB to drive fusion. Multiple questions remain, one being the physical location of each glycoprotein interaction site. Using protective antibodies with known epitopes, we documented the long-sought interaction between gD and gH/gL, detailing the region on gD important to create the gD-gH/gL triplex. Now, we have identified the corresponding gD contact sites on gH/gL. Concurrently we discovered a novel mechanism whereby gH/gL antibodies stabilize the complex and inhibit fusion progression. Our model for the gD-gH/gL triplex provides a new framework for studying fusion, which identifies targets for vaccine development.
Collapse
|
2
|
Depledge DP, Srinivas KP, Sadaoka T, Bready D, Mori Y, Placantonakis DG, Mohr I, Wilson AC. Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nat Commun 2019; 10:754. [PMID: 30765700 PMCID: PMC6376126 DOI: 10.1038/s41467-019-08734-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Characterizing complex viral transcriptomes by conventional RNA sequencing approaches is complicated by high gene density, overlapping reading frames, and complex splicing patterns. Direct RNA sequencing (direct RNA-seq) using nanopore arrays offers an exciting alternative whereby individual polyadenylated RNAs are sequenced directly, without the recoding and amplification biases inherent to other sequencing methodologies. Here we use direct RNA-seq to profile the herpes simplex virus type 1 (HSV-1) transcriptome during productive infection of primary cells. We show how direct RNA-seq data can be used to define transcription initiation and RNA cleavage sites associated with all polyadenylated viral RNAs and demonstrate that low level read-through transcription produces a novel class of chimeric HSV-1 transcripts, including a functional mRNA encoding a fusion of the viral E3 ubiquitin ligase ICP0 and viral membrane glycoprotein L. Thus, direct RNA-seq offers a powerful method to characterize the changing transcriptional landscape of viruses with complex genomes.
Collapse
Affiliation(s)
- Daniel P Depledge
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA.
| | | | - Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Devin Bready
- Department of Neurosurgery, New York University School of Medicine, New York, NY, 10016, USA
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Dimitris G Placantonakis
- Department of Neurosurgery, New York University School of Medicine, New York, NY, 10016, USA
- Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
- Brain Tumor Center, New York University School of Medicine, New York, NY, 10016, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA.
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Pontejo SM, Murphy PM, Pease JE. Chemokine Subversion by Human Herpesviruses. J Innate Immun 2018; 10:465-478. [PMID: 30165356 DOI: 10.1159/000492161] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022] Open
Abstract
Viruses use diverse molecular mechanisms to exploit and evade the immune response. Herpesviruses, in particular, encode functional chemokine and chemokine receptor homologs pirated from the host, as well as secreted chemokine-binding proteins with unique structures. Multiple functions have been described for herpesvirus chemokine components, including attraction of target cells, blockade of leukocyte migration, and modulation of gene expression and cell entry by the virus. Here we review current concepts about how human herpesvirus chemokines, chemokine receptors, and chemokine-binding proteins may be used to shape a proviral state in the host.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James E Pease
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United
| |
Collapse
|
4
|
Pontejo SM, Murphy PM. Chemokines encoded by herpesviruses. J Leukoc Biol 2017; 102:1199-1217. [PMID: 28848041 DOI: 10.1189/jlb.4ru0417-145rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses use diverse strategies to elude the immune system, including copying and repurposing host cytokine and cytokine receptor genes. For herpesviruses, the chemokine system of chemotactic cytokines and receptors is a common source of copied genes. Here, we review the current state of knowledge about herpesvirus-encoded chemokines and discuss their possible roles in viral pathogenesis, as well as their clinical potential as novel anti-inflammatory agents or targets for new antiviral strategies.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
A Functional Interaction between Herpes Simplex Virus 1 Glycoprotein gH/gL Domains I and II and gD Is Defined by Using Alphaherpesvirus gH and gL Chimeras. J Virol 2015; 89:7159-69. [PMID: 25926636 DOI: 10.1128/jvi.00740-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Whereas most viruses require only a single protein to bind to and fuse with cells, herpesviruses use multiple glycoproteins to mediate virus entry, and thus communication among these proteins is required. For most alphaherpesviruses, the minimal set of viral proteins required for fusion with the host cell includes glycoproteins gD, gB, and a gH/gL heterodimer. In the current model of entry, gD binds to a cellular receptor and transmits a signal to gH/gL. This signal then triggers gB, the conserved fusion protein, to insert into the target membrane and refold to merge the viral and cellular membranes. We previously demonstrated that gB homologs from two alphaherpesviruses, herpes simplex virus 1 (HSV-1) and saimiriine herpesvirus 1 (SaHV-1), were interchangeable. In contrast, neither gD nor gH/gL functioned with heterotypic entry glycoproteins, indicating that gD and gH/gL exhibit an essential type-specific functional interaction. To map this homotypic interaction site on gH/gL, we generated HSV-1/SaHV-1 gH and gL chimeras. The functional interaction with HSV-1 gD mapped to the N-terminal domains I and II of the HSV-1 gH ectodomain. The core of HSV-1 gL that interacts with gH also was required for functional homotypic interaction. The N-terminal gH/gL domains I and II are the least conserved and may have evolved to support species-specific glycoprotein interactions. IMPORTANCE The first step of the herpesvirus life cycle is entry into a host cell. A coordinated interaction among multiple viral glycoproteins is required to mediate fusion of the viral envelope with the cell membrane. The details of how these glycoproteins interact to trigger fusion are unclear. By swapping the entry glycoproteins of two alphaherpesviruses (HSV-1 and SaHV-1), we previously demonstrated a functional homotypic interaction between gD and gH/gL. To define the gH and gL requirements for homotypic interaction, we evaluated the function of a panel of HSV-1/SaHV-1 gH and gL chimeras. We demonstrate that domains I and II of HSV-1 gH are sufficient to promote a functional, albeit reduced, interaction with HSV-1 gD. These findings contribute to our model of how the entry glycoproteins cooperate to mediate herpesvirus entry into the cell.
Collapse
|
6
|
Mutations in the amino terminus of herpes simplex virus type 1 gL can reduce cell-cell fusion without affecting gH/gL trafficking. J Virol 2013; 88:739-44. [PMID: 24155377 DOI: 10.1128/jvi.02383-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gH/gL heterodimer represents two of the four herpes simplex virus glycoproteins necessary and sufficient for membrane fusion. We generated deletions and point mutations covering gL residues 24 to 43 to investigate that region's role in gH/gL intracellular trafficking and in membrane fusion. Multiple mutants displayed a 40 to 60% reduction in cell fusion with no effect on gH/gL trafficking. The amino terminus of gL plays an important role in the gH/gL contribution to membrane fusion.
Collapse
|
7
|
Stampfer SD, Heldwein EE. Stuck in the middle: structural insights into the role of the gH/gL heterodimer in herpesvirus entry. Curr Opin Virol 2012; 3:13-9. [PMID: 23107819 DOI: 10.1016/j.coviro.2012.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 10/07/2012] [Indexed: 11/20/2022]
Abstract
Enveloped viruses enter cells by fusing the viral and cellular membranes, and most use a single viral envelope protein that combines receptor-binding and fusogenic functions. In herpesviruses, these functions are distributed among multiple proteins: the conserved fusion protein gB, various non-conserved receptor-binding proteins, and the conserved gH/gL heterodimer that curiously lacks an apparent counterpart in other enveloped viruses. Recent structural studies of gH/gL from HSV-2 and EBV revealed a unique complex with no structural or functional similarity to other viral proteins. Here we analyzed gH/gL structures and highlighted important functional regions. We propose that gH/gL functions as an adaptor that transmits the triggering signals from various non-conserved inputs to the highly conserved fusion protein gB.
Collapse
Affiliation(s)
- Samuel D Stampfer
- Department of Molecular Biology and Microbiology and Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, United States
| | | |
Collapse
|
8
|
Azab W, Zajic L, Osterrieder N. The role of glycoprotein H of equine herpesviruses 1 and 4 (EHV-1 and EHV-4) in cellular host range and integrin binding. Vet Res 2012; 43:61. [PMID: 22909178 PMCID: PMC3522555 DOI: 10.1186/1297-9716-43-61] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/19/2012] [Indexed: 11/25/2022] Open
Abstract
Equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) glycoprotein H (gH) has been hypothesized to play a role in direct fusion of the virus envelope with cellular membranes. To investigate gH’s role in infection, an EHV-1 mutant lacking gH was created and the gH genes were exchanged between EHV-1 and EHV-4 to determine if gH affects cellular entry and/or host range. In addition, a serine-aspartic acid-isoleucine (SDI) integrin-binding motif present in EHV-1 gH was mutated as it was presumed important in cell entry mediated by binding to α4β1 or α4β7 integrins. We here document that gH is essential for EHV-1 replication, plays a role in cell-to-cell spread and significantly affects plaque size and growth kinetics. Moreover, we could show that α4β1 and α4β7 integrins are not essential for viral entry of EHV-1 and EHV-4, and that viral entry is not affected in equine cells when the integrins are inaccessible.
Collapse
Affiliation(s)
- Walid Azab
- Institut für Virologie, Freie Universität Berlin, Philippstrasse 13, Haus 18, 10115, Berlin, Germany.
| | | | | |
Collapse
|
9
|
Herpes virus fusion and entry: a story with many characters. Viruses 2012; 4:800-32. [PMID: 22754650 PMCID: PMC3386629 DOI: 10.3390/v4050800] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/04/2012] [Accepted: 05/09/2012] [Indexed: 12/13/2022] Open
Abstract
Herpesviridae comprise a large family of enveloped DNA viruses all of whom employ orthologs of the same three glycoproteins, gB, gH and gL. Additionally, herpesviruses often employ accessory proteins to bind receptors and/or bind the heterodimer gH/gL or even to determine cell tropism. Sorting out how these proteins function has been resolved to a large extent by structural biology coupled with supporting biochemical and biologic evidence. Together with the G protein of vesicular stomatitis virus, gB is a charter member of the Class III fusion proteins. Unlike VSV G, gB only functions when partnered with gH/gL. However, gH/gL does not resemble any known viral fusion protein and there is evidence that its function is to upregulate the fusogenic activity of gB. In the case of herpes simplex virus, gH/gL itself is upregulated into an active state by the conformational change that occurs when gD, the receptor binding protein, binds one of its receptors. In this review we focus primarily on prototypes of the three subfamilies of herpesviruses. We will present our model for how herpes simplex virus (HSV) regulates fusion in series of highly regulated steps. Our model highlights what is known and also provides a framework to address mechanistic questions about fusion by HSV and herpesviruses in general.
Collapse
|
10
|
Capturing the herpes simplex virus core fusion complex (gB-gH/gL) in an acidic environment. J Virol 2011; 85:6175-84. [PMID: 21507973 DOI: 10.1128/jvi.00119-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Herpes simplex virus (HSV) entry requires the core fusion machinery of gH/gL and gB as well as gD and a gD receptor. When gD binds receptor, it undergoes conformational changes that presumably activate gH/gL, which then activates gB to carry out fusion. gB is a class III viral fusion protein, while gH/gL does not resemble any known viral fusion protein. One hallmark of fusion proteins is their ability to bind lipid membranes. We previously used a liposome coflotation assay to show that truncated soluble gB, but not gH/gL or gD, can associate with liposomes at neutral pH. Here, we show that gH/gL cofloats with liposomes but only when it is incubated with gB at pH 5. When gB mutants with single amino acid changes in the fusion loops (known to inhibit the binding of soluble gB to liposomes) were mixed with gH/gL and liposomes at pH 5, gH/gL failed to cofloat with liposomes. These data suggest that gH/gL does not directly associate with liposomes but instead binds to gB, which then binds to liposomes via its fusion loops. Using monoclonal antibodies, we found that many gH and gL epitopes were altered by low pH, whereas the effect on gB epitopes was more limited. Our liposome data support the concept that low pH triggers conformational changes to both proteins that allow gH/gL to physically interact with gB.
Collapse
|
11
|
Rhesus and human cytomegalovirus glycoprotein L are required for infection and cell-to-cell spread of virus but cannot complement each other. J Virol 2010; 85:2089-99. [PMID: 21191007 DOI: 10.1128/jvi.01970-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rhesus cytomegalovirus (RhCMV), the homolog of human cytomegalovirus (HCMV), serves as a model for understanding the pathogenesis of HCMV and for developing candidate vaccines. In order to develop a replication-defective virus as a vaccine candidate, we constructed RhCMV with glycoprotein L (gL) deleted. RhCMV gL was essential for viral replication, and virus with gL deleted could only replicate in cells expressing RhCMV gL. Noncomplementing cells infected with RhCMV with gL deleted released intact, noninfectious RhCMV particles that were indistinguishable from wild-type RhCMV by electron microscopy and could be rescued by treatment of cells with polyethylene glycol. In addition, noncomplementing cells infected with RhCMV with gL deleted produced levels of gB, the major target of neutralizing antibodies, at levels similar to those observed in cells infected with wild-type RhCMV. Since RhCMV and HCMV gL share 53% amino acid identity, we determined whether the two proteins could complement the heterologous virus. Cells transfected with an HCMV bacterial artificial chromosome with gL deleted yielded virus that could replicate in human cells expressing HCMV gL. This is the second HCMV mutant with an essential glycoprotein deleted that has been complemented in cell culture. Finally, we found that HCMV gL could not complement the replication of RhCMV with gL deleted and that RhCMV gL could not complement the replication of HCMV with gL deleted. These data indicate that RhCMV and HCMV gL are both essential for replication of their corresponding viruses and, although the two gLs are highly homologous, they are unable to complement each another.
Collapse
|
12
|
Zhu QC, Wang Y, Peng T. Herpes Simplex Virus (HSV) Immediate-Early (IE) Promoter-Directed Reporter System for the Screening of Antiherpetics Targeting the Early Stage of HSV Infection. ACTA ACUST UNITED AC 2010; 15:1016-20. [DOI: 10.1177/1087057110372804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most of the current antiherpetics target viral DNA polymerase, but with the emergence of drug-resistant viruses, antiherpetics with different targets have become necessary. Inhibition of herpes simplex virus (HSV) replication at the early stages of infection minimizes cytotoxicity and immune suppression induced by HSV infection. In this report, quantitative reporter systems that use recombinant HSV and a stably transfected cell line were developed for the screening of agents targeting the early stages of HSV infection. The reporter genes in both systems were directed by HSV immediate-early (IE) promoters, so considerably less time was required for the quantification of HSV infection than the traditional plaque reduction assay. The results show that both reporter assays were sensitive to antiherpetic screening. Both assays were quantitative, rapid, easy to perform, and highly adaptable for automatic high-throughput screening. Exploiting the flexibility of these 2 assays, modified assays were also proposed for the detailed analysis of antiherpetic mechanisms.
Collapse
Affiliation(s)
- Qin-Chang Zhu
- State Key Laboratory for Respiratory Disease, Laboratory of Viral Immunology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Science Park, Guangzhou, China
| | - Yi Wang
- State Key Laboratory for Respiratory Disease, Laboratory of Viral Immunology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Science Park, Guangzhou, China
| | - Tao Peng
- State Key Laboratory for Respiratory Disease, Laboratory of Viral Immunology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Science Park, Guangzhou, China
| |
Collapse
|
13
|
Insertional mutations in herpes simplex virus type 1 gL identify functional domains for association with gH and for membrane fusion. J Virol 2009; 83:11607-15. [PMID: 19726507 DOI: 10.1128/jvi.01369-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glycoprotein L (gL) is one of four glycoproteins required for the entry of herpes simplex virus (HSV) into cells and for virus-induced cell fusion. This glycoprotein oligomerizes with gH to form a membrane-bound heterodimer but can be secreted when expressed without gH. Twelve unique gL linker-insertion mutants were generated to identify regions critical for gH binding and gH/gL processing and regions essential for cell fusion and viral entry. All gL mutants were detected on the cell surface in the absence of gH, suggesting incomplete cleavage of the signal peptide or the presence of a cell surface receptor for secreted gL. Coexpression with gH enhanced the levels of cell surface gL detected by antibodies for all gL mutants except those that were defective in their interactions with gH. Two insertions into a conserved region of gL abrogated the binding of gL to gH and prevented gH expression on the cell surface. Three other insertions reduced the cell surface expression of gH and/or altered the properties of gH/gL heterodimers. Altered or absent interaction of gL with gH was correlated with reduced or absent cell fusion activity and impaired complementation of virion infectivity. These results identify a conserved domain of gL that is critical for its binding to gH and two noncontiguous regions of gL, one of which contains the conserved domain, that are critical for the gH/gL complex to perform its role in membrane fusion.
Collapse
|
14
|
Klyachkin YM, Geraghty RJ. Mutagenic analysis of herpes simplex virus type 1 glycoprotein L reveals the importance of an arginine-rich region for function. Virology 2008; 374:23-32. [PMID: 18222518 DOI: 10.1016/j.virol.2007.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 10/31/2007] [Accepted: 11/09/2007] [Indexed: 12/01/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) glycoproteins H and L (gH and gL) are required for virus-induced membrane fusion. Expression of gH at the virion or infected cell surface is mediated by the chaperone-like activity of gL. We have previously shown that a region between amino acids 155 and 161 is critical for gL chaperone-like activity. Here, we conducted Ala substitution mutagenesis of residues in this region and found that substitution of Cys160, Arg156, Arg158, or Arg156/158/159 with Ala resulted in a gL mutant that bound gH but displayed a reduced ability in gH trafficking and membrane fusion. Substitution of Arg156 with another positively charged amino acid, Lys, restored function. Substitution of Arg158 with Lys restored function in gH trafficking and cell fusion but not virus entry. These results indicate that an arginine-rich region of gL is critical for function.
Collapse
Affiliation(s)
- Yuri M Klyachkin
- University of Kentucky, Department of Microbiology, Immunology, and Molecular Genetics, 800 Rose St., UKMC MS423, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
15
|
Abstract
Herpes Simplex Virus‐1 is a common infectious agent, but the precise detail of entry and infection of cells has only now begun to be clarified. Four viral surface glycoproteins (gB, gD, gH and gL) are required. This review summarises the known structure and function of each of these essential viral envelope glycoproteins, and explores what is known about their close cooperation with each other in mediating cellular membrane fusion. It is suggested that, following gD binding to one of its entry receptors, membrane fusion is mediated by gB and the heterodimer gH/gL. Significantly, these four entry glycoproteins also play a key role in the interaction between HSV and the host immune system. The glycoproteins serve an important role as targets of adaptive immunity. However, recent studies have demonstrated that the same proteins also play a key role in initiating the early innate immune response to HSV. Understanding the complex functions of these HSV proteins may be essential for successful development of vaccines for HSV. Copyright © 2007 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Adi Reske
- Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, London W1T 4JF, UK
| | - Gabriele Pollara
- Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, London W1T 4JF, UK
| | - Claude Krummenacher
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, USA
| | - Benjamin M. Chain
- Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, London W1T 4JF, UK
| | - David R. Katz
- Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, London W1T 4JF, UK
| |
Collapse
|
16
|
Omerović J, Longnecker R. Functional homology of gHs and gLs from EBV-related gamma-herpesviruses for EBV-induced membrane fusion. Virology 2007; 365:157-65. [PMID: 17477951 PMCID: PMC2771917 DOI: 10.1016/j.virol.2007.03.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/27/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
Epstein-Barr virus (EBV) is a human gamma-herpesvirus that primarily infects B lymphocytes and epithelial cells. Entry of EBV into B cells requires the viral glycoproteins gp42, gH/gL and gB, while gp42 is not necessary for infection of epithelial cells. In EBV, gH and gL form two distinct complexes, a bipartite complex that contains only gH and gL, used for infection of epithelial cells, and a tripartite complex that additionally includes gp42, used for infection of B cells. The gH/gL complex is conserved within the herpesvirus family, but its exact role in entry and mechanism of fusion is not yet known. To understand more about the functionality of EBVgH/gL, we investigated the functional homology of gHs and gLs from human herpesvirus 8 (HHV8) and two primate (rhesus and marmoset) gamma-herpesviruses in EBV-mediated virus-free cell fusion assay. Overall, gHs and gLs from the more homologous primate herpesviruses were better at complementing EBV gH and gL in fusion than HHV8 gH and gL. Interestingly, marmoset gH was able to complement fusion with epithelial cells, but not B cells. Further investigation of this led to the discovery that EBVgH is the binding partner of gp42 in the tripartite complex and the absence of fusion with B cells in the presence of marmoset gH/gL is due to its inability to bind gp42.
Collapse
Affiliation(s)
- Jasmina Omerović
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Ward 6-231, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | |
Collapse
|
17
|
Cairns TM, Friedman LS, Lou H, Whitbeck JC, Shaner MS, Cohen GH, Eisenberg RJ. N-terminal mutants of herpes simplex virus type 2 gH are transported without gL but require gL for function. J Virol 2007; 81:5102-11. [PMID: 17344290 PMCID: PMC1900195 DOI: 10.1128/jvi.00097-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein H (gH) is conserved among all herpesviruses and is essential for virus entry and cell fusion along with gL, gB, and, in most alphaherpesviruses, gD. Within the gH/gL heterodimer, it is thought that gH accounts for the fusion function and gL acts as a chaperone for the folding and transport of gH. Here, we found that the N terminus of gH2 contains important elements involved in both its folding and its transport. Our conclusions are based on the phenotypes of a series of gH deletion mutants in which the signal sequence (residues 1 to 18) was retained and N-terminal residues were removed up to the number indicated. The first mutant, gH2Delta29 (deletion of residues 19 to 28), like wild-type (WT) gH, required gL for both transport and function. To our surprise, two other mutants (gH2Delta64 and gH2Delta72) were transported to the cell surface independent of gL but were nonfunctional, even when complexed with gL. Importantly, a fourth mutant (gH2Delta48) was transported independent of gL but was functional only when complexed with gL. Using a panel of monoclonal antibodies against gH2, we found that when gH2Delta48 was expressed alone, its antigenic structure differed from that of gH2Delta48/gL or gH2-WT/gL. Mutation of gH2 residue R39, Y41, W42, or D44 allowed gL-independent transport of gH. Our results also show that gL is not merely required for gH transport but is also necessary for the folding and function of the complex. Since gH2Delta64/gL and gH2Delta72/gL were nonfunctional, we hypothesized that residues critical for gH/gL function lie within this deleted region. Additional mutagenesis identified L66 and L72 as important for function. Together, our results highlight several key gH residues: R39, Y41, W42, and D44 for gH transport and L66 and L72 for gH/gL structure and function.
Collapse
Affiliation(s)
- Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Klyachkin YM, Stoops KD, Geraghty RJ. Herpes simplex virus type 1 glycoprotein L mutants that fail to promote trafficking of glycoprotein H and fail to function in fusion can induce binding of glycoprotein L-dependent anti-glycoprotein H antibodies. J Gen Virol 2006; 87:759-767. [PMID: 16528023 DOI: 10.1099/vir.0.81563-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) glycoproteins H (gH) and L (gL) form a heterodimer and efficient expression of gH at the virion or cell surface is dependent upon gL. Five carboxy-terminal deletion mutants of gL were created and their ability to interact with and mediate cell-surface expression of gH, to promote binding of gL-dependent anti-gH antibodies and to contribute to cell fusion was analysed. All of the gL mutants bound gH, but only two mutants, containing the amino-terminal 161 or 168 aa of gL, mediated cell-surface expression of gH, and only gL161 and gL168 functioned in cell fusion. The binding of gL to gH, therefore, was not sufficient to ensure gH cell-surface expression and it was not possible to separate the gH-trafficking role of gL from gL function in fusion. Co-expression of gH with any gL mutant conferred binding of the anti-gH mAbs 53S and LP11. If the acquisition of 53S and LP11 binding to gH reflects a gL-induced conformational change, such a change is not sufficient to mediate trafficking of the gH-gL heterodimer.
Collapse
Affiliation(s)
- Yuri M Klyachkin
- University of Kentucky, Department of Microbiology, Immunology, and Molecular Genetics, 800 Rose Street, UKMC MS415, Lexington, KY 40536-0298, USA
| | - Krista D Stoops
- University of Kentucky, Department of Microbiology, Immunology, and Molecular Genetics, 800 Rose Street, UKMC MS415, Lexington, KY 40536-0298, USA
| | - Robert J Geraghty
- University of Kentucky, Department of Microbiology, Immunology, and Molecular Genetics, 800 Rose Street, UKMC MS415, Lexington, KY 40536-0298, USA
| |
Collapse
|
19
|
Cairns TM, Shaner MS, Zuo Y, Ponce-de-Leon M, Baribaud I, Eisenberg RJ, Cohen GH, Whitbeck JC. Epitope mapping of herpes simplex virus type 2 gH/gL defines distinct antigenic sites, including some associated with biological function. J Virol 2006; 80:2596-608. [PMID: 16501070 PMCID: PMC1395466 DOI: 10.1128/jvi.80.6.2596-2608.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gH/gL complex plays an essential role in virus entry and cell-cell spread of herpes simplex virus (HSV). Very few immunologic reagents were previously available to either identify important functional regions or gain information about structural features of this complex. Therefore, we generated and characterized a panel of 31 monoclonal antibodies (MAbs) against HSV type 2 (HSV-2) gH/gL. Fourteen MAbs bound to a conformation-dependent epitope of the gH2/gL2 complex, and all blocked virus spread. The other 17 MAbs recognized linear epitopes of gH (12) or gL (5). Interestingly, two of the gL MAbs and six of the gH MAbs were type common. Overlapping synthetic peptides were used to map MAbs against linear epitopes. These data, along with results of competition analyses and functional assays, assigned the MAbs to groups representing eight distinct antigenic sites on gH (I to VIII) and three sites on gL (A, B, and C). Of most importance, the MAbs with biological activity mapped either to site I of gH2 (amino acids 19 to 38) or to sites B and C of gL2 (residues 191 to 210). Thus, these MAbs constitute a novel set of reagents, including the first such reagents against gH2 and gL2 as well as some that recognize both serotypes of each protein. Several recognize important functional domains of gH2, gL2, or the complex. We suggest a common grouping scheme for all of the known MAbs against gH/gL of both HSV-1 and HSV-2.
Collapse
Affiliation(s)
- Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sadaoka T, Yamanishi K, Mori Y. Human herpesvirus 7 U47 gene products are glycoproteins expressed in virions and associate with glycoprotein H. J Gen Virol 2006; 87:501-508. [PMID: 16476971 DOI: 10.1099/vir.0.81374-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The function of the human herpesvirus 7 (HHV-7) U47 gene, which is a positional homologue of the genes encoding glycoprotein O (gO) in human cytomegalovirus (HCMV) and human herpesvirus 6 (HHV-6), was analysed. A monoclonal antibody (mAb) against the U47 gene product reacted in immunoblots with proteins migrating at 49 and 51 kDa in lysates of HHV-7-infected cells and with 49 and 51 kDa proteins in partially purified virions. Digestion of the 49 and 51 kDa proteins with endoglycosidase H and peptide N-glycosidase F indicated that the U47-encoded proteins were modified with N-linked oligosaccharides. Therefore, the U47 gene and its product were named gO, as in HCMV and HHV-6. In addition, the anti-gO mAb co-immunoprecipitated glycoprotein H (gH) in HHV-7-infected cells, indicating an association between HHV-7 gO and gH. The results suggest that the HHV-7 gO-gH complex might have a similar function to that in HCMV or HHV-6, such as cell-cell fusion in virus infection.
Collapse
Affiliation(s)
- Tomohiko Sadaoka
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Koichi Yamanishi
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yasuko Mori
- Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
21
|
Cairns TM, Landsburg DJ, Whitbeck JC, Eisenberg RJ, Cohen GH. Contribution of cysteine residues to the structure and function of herpes simplex virus gH/gL. Virology 2005; 332:550-62. [PMID: 15680420 DOI: 10.1016/j.virol.2004.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 11/17/2004] [Accepted: 12/02/2004] [Indexed: 11/16/2022]
Abstract
In HSV types 1 and 2, gH forms a noncovalent heterodimer with gL. Previous studies demonstrated that the first 323 amino acids of gH1 and the first 161 amino acids of gL1 are sufficient for gH/gL binding. For gL1, substitution of any of its four cysteine (C) residues (all located within the gH/gL binding region) destroyed gH binding and function. Although gH1 contains 8 cysteines in its ectodomain, gH 2 contains 7 (C3 of gH1 is replaced by arginine in gH2). We found that mutation of any of the four C-terminal cysteines led to a reduction or loss of gH/gL function. Mutation of C5 or C6 in gH1 or gH2 rendered the proteins non-functional. However, substitution of C7 and/or C8 in gH1 has a definite negative impact on cell-cell fusion, although these mutations had less effect on complementation. Remarkably, all four gH1 N-terminal cysteines could be mutated simultaneously with little effect on fusion or complementation. As gH2 already lacks C3, we constructed a triple mutant (gH2-C1/2/4) which exhibited a similar phenotype. Since gH1 is known to bind gL2 and vice versa, we wondered whether binding of gH2 to the heterologous gL1 would enhance the fusion defect seen with the gH2-C2 mutant. The combination of mutant gH2-C2 with wild-type gL1 was nonfunctional in a cell-cell fusion assay. Interestingly, the reciprocal was not true, as gH1-C2 could utilize both gL1 and gL2. These findings suggest that there is a structural difference in the gH2 N-terminus as compared to gH1. We also present genetic evidence for at least one disulfide bond within gH2, between cysteines 2 and 4.
Collapse
Affiliation(s)
- Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
22
|
Cairns TM, Milne RSB, Ponce-de-Leon M, Tobin DK, Cohen GH, Eisenberg RJ. Structure-function analysis of herpes simplex virus type 1 gD and gH-gL: clues from gDgH chimeras. J Virol 2003; 77:6731-42. [PMID: 12767993 PMCID: PMC156167 DOI: 10.1128/jvi.77.12.6731-6742.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In alphaherpesviruses, glycoprotein B (gB), gD, gH, and gL are essential for virus entry. A replication-competent gL-null pseudorabies virus (PrV) (B. G. Klupp and T. C. Mettenleiter, J. Virol. 73:3014-3022, 1999) was shown to express a gDgH hybrid protein that could replace gD, gH, and gL in cell-cell fusion and null virus complementation assays. To study this phenomenon in herpes simplex virus type 1 (HSV-1), we constructed four gDgH chimeras, joining the first 308 gD amino acids to various gH N-terminal truncations. The chimeras were named for the first amino acid of gH at which each was truncated: 22, 259, 388, and 432. All chimeras were immunoprecipitated with both gD and gH antibodies to conformational epitopes. Normally, transport of gH to the cell surface requires gH-gL complex formation. Chimera 22 contains full-length gH fused to gD308. Unlike PrV gDgH, chimera 22 required gL for transport to the surface of transfected Vero cells. Interestingly, although chimera 259 failed to reach the cell surface, chimeras 388 and 432 exhibited gL-independent transport. To examine gD and gH domain function, each chimera was tested in cell-cell fusion and null virus complementation assays. Unlike PrV gDgH, none of the HSV-1 chimeras substituted for gL for fusion. Only chimera 22 was able to replace gH for fusion and could also replace either gH or gD in the complementation assay. Surprisingly, this chimera performed very poorly as a substitute for gD in the fusion assay despite its ability to complement gD-null virus and bind HSV entry receptors (HveA and nectin-1). Chimeras 388 and 432, which contain the same portion of gD as that in chimera 22, substituted for gD for fusion at 25 to 50% of wild-type levels. However, these chimeras functioned poorly in gD-null virus complementation assays. The results highlight the fact that these two functional assays are measuring two related but distinct processes.
Collapse
Affiliation(s)
- Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Cha SC, Kim YS, Cho JK, Cho J, Kim SY, Kang H, Cho MH, Lee HH. Enhanced protection against HSV lethal challenges in mice by immunization with a combined HSV-1 glycoprotein B:H:L gene DNAs. Virus Res 2002; 86:21-31. [PMID: 12076826 DOI: 10.1016/s0168-1702(02)00037-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effectiveness of a cocktailed HSV-1 three-glycoprotein B, H, and L gene vaccine in comparison to individual glycoprotein gene vaccines was studied with regard to protecting against the HSV-1 infection. Three glycoprotein gene recombinant DNA vaccines, which produced the corresponding glycoproteins in Vero cells, were constructed using a CMV promoter. The cocktailed DNA vaccines were prepared by combining all three genes. The titers of neurtalizing antibody following the immunization of the five vaccines were KOS(1/1024)>B:H:L=B(1/512)>H:L(1/64)>H(1/16) genes. The mice, which were immunized with L gene alone failed to induce enough neutralizing antibody. The CTL activity was rated as KOS (95%)>B:H:L (80%)>B(60%)>H:L(50%)> H (35%) gene vaccines at an E:T ratio of 50:1. The H gene alone or L gene vaccine alone induced little CTL activity. The protection rates of the DNA-vaccinated mice against the lethal intraperitoneal (i.p.) or i.m challenges were shown as KOS>B:H:L>B>H:L>H gene vaccines, and the protection activity depended on the lethal dosage of the challenging virus, which are inversely proportional to each other. Compared with the mice, which were vaccinated with individual DNA vaccines, the mice, which were vaccinated with the cocktailed three-gene vaccine, were shown to be better protected against the lethal challenging doses. It can be concluded that vaccination with the cocktailed three gene vaccines is more effective in protecting mice from the viral challenge and the protection rate varies inversely with the amount of lethal challenging dose used, although all DNA vaccines failed to block the latent infection in sensory nerves.
Collapse
Affiliation(s)
- Soung Chul Cha
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Maresová L, Kutinová L, Ludvíková V, Zák R, Mares M, Nemecková S. Characterization of interaction of gH and gL glycoproteins of varicella-zoster virus: their processing and trafficking. J Gen Virol 2000; 81:1545-52. [PMID: 10811938 DOI: 10.1099/0022-1317-81-6-1545] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Varicella-zoster virus (VZV) glycoproteins gH and gL were examined in a recombinant vaccinia virus system. Single expression of glycoprotein gL produced two molecular forms: an 18 kDa form and a 19 kDa form differing in size by one endoglycosidase H-sensitive N-linked oligosaccharide. Coexpression of gL and gH resulted in binding of the 18 kDa gL form with the mature form of gH, while the 19 kDa gL form remained uncomplexed. The glycosylation processing of gL was not dependent on gH; however, gL was required for the conversion of precursor gH (97 kDa) to mature gH (118 kDa). Subsequent analyses indicated that gL (18 kDa) was a more completely processed gL (19 kDa). Screening of the culture media revealed that gH and gL were secreted, but only if coexpressed and complexed together. The secreted form of gL was 18 kDa while that of gH was 114 kDa. The fact that secreted gH was smaller than intracytoplasmic gH suggested a proteolytic processing event prior to secretion. The 19 kDa form of gL was never secreted. These findings support a VZV gL recycling pathway between the endoplasmic reticulum and the cis-Golgi apparatus.
Collapse
Affiliation(s)
- L Maresová
- Institute of Haematology and Blood Transfusion, Dept of Experimental Virology, Prague 128 20, Czech Republic.
| | | | | | | | | | | |
Collapse
|
25
|
Westra DF, Kuiperij HB, Welling GW, Scheffer AJ, The TH, Welling-Wester S. Domains of glycoprotein H of herpes simplex virus type 1 involved in complex formation with glycoprotein L. Virology 1999; 261:96-105. [PMID: 10441558 DOI: 10.1006/viro.1999.9860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complex formation between glycoproteins H (gH) and L (gL) of herpes simplex virus type 1 (HSV-1) was studied by using five recombinant baculoviruses expressing open reading frames that contain deletions in the coding region of the extracellular domain of gH. In addition, the gH-deletion mutants contained a C-terminal tag. Complex formation of gL and the gH-deletion mutants was studied by immunoprecipitations with anti-tag monoclonal antibody (MAb) A16 and with the gH-specific MAbs 37S, 46S, and 52S. All gH-deletion mutants were complexed to gL when analyzed by MAb A16. MAb 37S precipitated complexes between gL and the two gH-deletion mutants that contain the epitope of this MAb. When the gH conformation-dependent MAbs 46S and 52S were used, gL was coprecipitated together with the gH-deletion mutant lacking amino acids 31-299, but gL was not coprecipitated with the gH-deletion mutant lacking amino acids 31-473. The data from the precipitation studies do allow at least two interpretations. There is either one site for gL binding on gH (residue 300-473) or gL contacts multiple regions of gH. We were unable to demonstrate gL-dependent cell surface expression of either of the gH-deletion mutants. This suggests that the coassociation of gH with gL is necessary but not sufficient for transport of gH to the cell surface.
Collapse
Affiliation(s)
- D F Westra
- Departments of Medical Microbiology, University of Groningen, Groningen, 9700 RB, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Krummenacher C, Nicola AV, Whitbeck JC, Lou H, Hou W, Lambris JD, Geraghty RJ, Spear PG, Cohen GH, Eisenberg RJ. Herpes simplex virus glycoprotein D can bind to poliovirus receptor-related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of virus entry. J Virol 1998; 72:7064-74. [PMID: 9696799 PMCID: PMC109927 DOI: 10.1128/jvi.72.9.7064-7074.1998] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/1998] [Accepted: 05/20/1998] [Indexed: 11/20/2022] Open
Abstract
Several cell membrane proteins have been identified as herpes simplex virus (HSV) entry mediators (Hve). HveA (formerly HVEM) is a member of the tumor necrosis factor receptor family, whereas the poliovirus receptor-related proteins 1 and 2 (PRR1 and PRR2, renamed HveC and HveB) belong to the immunoglobulin superfamily. Here we show that a truncated form of HveC directly binds to HSV glycoprotein D (gD) in solution and at the surface of virions. This interaction is dependent on the native conformation of gD but independent of its N-linked glycosylation. Complex formation between soluble gD and HveC appears to involve one or two gD molecules for one HveC protein. Since HveA also mediates HSV entry by interacting with gD, we compared both structurally unrelated receptors for their binding to gD. Analyses of several gD variants indicated that structure and accessibility of the N-terminal domain of gD, essential for HveA binding, was not necessary for HveC interaction. Mutations in functional regions II, III, and IV of gD had similar effects on binding to either HveC or HveA. Competition assays with neutralizing anti-gD monoclonal antibodies (MAbs) showed that MAbs from group Ib prevented HveC and HveA binding to virions. However, group Ia MAbs blocked HveC but not HveA binding, and conversely, group VII MAbs blocked HveA but not HveC binding. Thus, we propose that HSV entry can be mediated by two structurally unrelated gD receptors through related but not identical binding with gD.
Collapse
Affiliation(s)
- C Krummenacher
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Peng T, Ponce de Leon M, Novotny MJ, Jiang H, Lambris JD, Dubin G, Spear PG, Cohen GH, Eisenberg RJ. Structural and antigenic analysis of a truncated form of the herpes simplex virus glycoprotein gH-gL complex. J Virol 1998; 72:6092-103. [PMID: 9621073 PMCID: PMC110415 DOI: 10.1128/jvi.72.7.6092-6103.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The herpes simplex virus (HSV) gH-gL complex is essential for virus infectivity and is a major antigen for the host immune system. The association of gH with gL is required for correct folding, cell surface trafficking, and membrane presentation of the complex. Previously, a mammalian cell line was constructed which produces a secreted form of gHt-gL complex lacking the transmembrane and cytoplasmic tail regions of gH. gHt-gL retains a conformation similar to that of its full-length counterpart in HSV-infected cells. Here, we examined the structural and antigenic properties of gHt-gL. We first determined its stoichiometry and carbohydrate composition. We found that the complex consists of one molecule each of gH and gL. The N-linked carbohydrate (N-CHO) site on gL and most of the N-CHO sites on gH are utilized, and both proteins also contain O-linked carbohydrate and sialic acid. These results suggest that the complex is processed to the mature form via the Golgi network prior to secretion. To determine the antigenically active sites of gH and gL, we mapped the epitopes of a panel of gH and gL monoclonal antibodies (MAbs), using a series of gH and gL C-terminal truncation variant proteins produced in transiently transfected mammalian cells. Sixteen gH MAbs (including H6 and 37S) reacted with the N-terminal portion of gH between amino acids 19 and 276. One of the gH MAbs, H12, reacted with the middle portion of gH (residues 476 to 678). Nine gL MAbs (including 8H4 and VIII 62) reacted with continuous epitopes within the C-terminal portion of gL, and this region was further mapped within amino acids 168 to 178 with overlapping synthetic peptides. Finally, plasmids expressing the gH and gL truncations were employed in cotransfection assays to define the minimal regions of both gH and gL required for complex formation and secretion. The first 323 amino acids of gH and the first 161 amino acids of gL can form a stable secreted hetero-oligomer with gL and gH792, respectively, while gH323-gL168 is the smallest secreted hetero-oligomer. The first 648 amino acids of gH are required for reactivity with MAbs LP11 and 53S, indicating that a complex of gH648-gL oligomerizes into the correct conformation. The data suggest that both antigenic activity and oligomeric structure require the amino-terminal portions of gH and gL.
Collapse
Affiliation(s)
- T Peng
- School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nicola AV, Ponce de Leon M, Xu R, Hou W, Whitbeck JC, Krummenacher C, Montgomery RI, Spear PG, Eisenberg RJ, Cohen GH. Monoclonal antibodies to distinct sites on herpes simplex virus (HSV) glycoprotein D block HSV binding to HVEM. J Virol 1998; 72:3595-601. [PMID: 9557640 PMCID: PMC109580 DOI: 10.1128/jvi.72.5.3595-3601.1998] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HVEM (for herpesvirus entry mediator) is a member of the tumor necrosis factor receptor superfamily and mediates entry of many strains of herpes simplex virus (HSV) into normally nonpermissive Chinese hamster ovary (CHO) cells. We used sucrose density centrifugation to demonstrate that purified HSV-1 KOS virions bind directly to a soluble, truncated form of HVEM (HVEMt) in the absence of any other cell-associated components. Therefore, HVEM mediates HSV entry by serving as a receptor for the virus. We previously showed that soluble, truncated forms of HSV glycoprotein D (gDt) bind to HVEMt in vitro. Here we show that antibodies specific for gD, but not the other entry glycoproteins gB, gC, or the gH/gL complex, completely block HSV binding to HVEM. Thus, virion gD is the principal mediator of HSV binding to HVEM. To map sites on virion gD which are necessary for its interaction with HVEM, we preincubated virions with gD-specific monoclonal antibodies (MAbs). MAbs that recognize antigenic sites Ib and VII of gD were the only MAbs which blocked the HSV-HVEM interaction. MAbs from these two groups failed to coprecipitate HVEMt in the presence of soluble gDt, whereas the other anti-gD MAbs coprecipitated HVEMt and gDt. Previous mapping data indicated that site VII includes amino acids 11 to 19 and site Ib includes 222 to 252. The current experiments indicate that these sites contain residues important for HSV binding to HVEM. Group Ib and VII MAbs also blocked HSV entry into HVEM-expressing CHO cells. These results suggest that the mechanism of neutralization by these MAbs is via interference with the interaction between gD in the virus and HVEM on the cell. Group Ia and II MAbs failed to block HSV binding to HVEM yet still neutralized HVEM-mediated entry, suggesting that these MAbs block entry at a step other than HVEM binding.
Collapse
Affiliation(s)
- A V Nicola
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104-6002, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kukreja A, Love DN, Whalley JM, Field HJ. Study of the protective immunity of co-expressed glycoprotein H and L of equine herpesvirus-1 in a murine intranasal infection model. Vet Microbiol 1998; 60:1-11. [PMID: 9595623 DOI: 10.1016/s0378-1135(97)00201-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Equine herpesvirus-1 (EHV-1) glycoproteins H, and L (gH and gL) expressed individually or co-expressed by recombinant baculoviruses were used to immunise BALB/c mice prior to intranasal challenge in a murine model of respiratory infection. Only the co-expressed material (EHV-1 gH/gL) induced neutralising antibody (low levels). The same immunogen also produced the strongest cellular responses. Immunisation with gH/gL and, to a lesser extent, with gH alone was associated with a reduction of virus load in nasal turbinates and olfactory bulbs after challenge infection. Viraemia, detected by polymerase chain reaction, was also reduced. No such protective effects were observed for gL alone. Adoptive transfer of lymphocytes from gH/gL-immunised mice to näive mice subsequently challenged with EHV-1 indicated that both CD4+ and CD8+ cells had a role in protective immunity. Although clearance of EHV-1 from respiratory tissue was not as effective as previously found for glycoproteins D or C, these experiments provide evidence that the co-expression of EHV-1 gL with gH generates a conformational neutralising epitope which is not present in either molecule alone, and suggests that gH/gL antigen may have a better potential as a component of an EHV-1 vaccine than gH alone.
Collapse
Affiliation(s)
- A Kukreja
- Centre for Veterinary Science, University of Cambridge, UK
| | | | | | | |
Collapse
|
30
|
Peng T, Ponce-de-Leon M, Jiang H, Dubin G, Lubinski JM, Eisenberg RJ, Cohen GH. The gH-gL complex of herpes simplex virus (HSV) stimulates neutralizing antibody and protects mice against HSV type 1 challenge. J Virol 1998; 72:65-72. [PMID: 9420201 PMCID: PMC109350 DOI: 10.1128/jvi.72.1.65-72.1998] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) gH-gL complex which is found in the virion envelope is essential for virus infectivity and is a major antigen for the host immune system. However, little is known about the precise role of gH-gL in virus entry, and attempts to demonstrate the immunologic or vaccine efficacy of gH and gL separately or as the gH-gL complex have not succeeded. We constructed a recombinant mammalian cell line (HL-7) which secretes a soluble gH-gL complex, consisting of gH truncated at amino acid 792 (gHt) and full-length gL. Purified gHt-gL reacted with gH- and gL-specific monoclonal antibodies, including LP11, which indicates that it retains its proper antigenic structure. Soluble forms of gD (gDt) block HSV infection by interacting with specific cellular receptors. Unlike soluble gD, gHt-gL did not block HSV-1 entry into cells, nor did it enhance the blocking capacity of gD. However, polyclonal antibodies to the complex did block entry even when added after virus attachment. In addition, these antibodies exhibited high titers of complement-independent neutralizing activity against HSV-1. These sera also cross-neutralized HSV-2, albeit at low titers, and cross-reacted with gH-2 present in extracts of HSV-2-infected cells. To test the potential for gHt-gL to function as a vaccine, BALB/c mice were immunized with the complex. As controls, other mice were immunized with gD purified from HSV-infected cells or were sham immunized. Sera from the gD- or gHt-gL-immunized mice exhibited high titers of virus neutralizing activity. Using a zosteriform model of infection, we challenged mice with HSV-1. All animals showed some evidence of infection at the site of virus challenge. Mice immunized with either gD or gHt-gL showed reduced primary lesions and exhibited no secondary zosteriform lesions. The sham-immunized control animals exhibited extensive secondary lesions. Furthermore, mice immunized with either gD or gHt-gL survived virus challenge, while many control animals died. These results suggest that gHt-gL is biologically active and may be a candidate for use as a subunit vaccine.
Collapse
Affiliation(s)
- T Peng
- School of Dental Medicine, and Center for Oral Health Research, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Jöns A, Dijkstra JM, Mettenleiter TC. Glycoproteins M and N of pseudorabies virus form a disulfide-linked complex. J Virol 1998; 72:550-7. [PMID: 9420258 PMCID: PMC109407 DOI: 10.1128/jvi.72.1.550-557.1998] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Genes homologous to the herpes simplex virus UL49.5 open reading frame are conserved throughout the Herpesviridae. In the alphaherpesvirus pseudorabies virus (PrV), the UL49.5 product is an O-glycosylated structural protein of the viral envelope, glycoprotein N (gN) (A. Jöns, H. Granzow, R. Kuchling, and T. C. Mettenleiter, J. Virol. 70:1237-1241, 1996). For functional characterization of gN, a gN-negative PrV mutant, PrV-gNbeta, and the corresponding rescuant, PrV-gNbetaR, were constructed, gN-negative PrV was able to productively replicate on noncomplementing cells, and one-step growth in cell culture was only slightly reduced compared to that of wild-type PrV. However, penetration was significantly delayed. In indirect immunofluorescence assays with rabbit serum directed against baculovirus-expressed gN, specific staining of wild-type PrV-infected cells occurred only after permeabilization of cells, whereas live cells failed to react with the antiserum. This indicates the lack of surface accessibility of gN in the plasma membrane of a PrV-infected cell. Western blot analyses and radioimmunoprecipitation experiments under reducing and nonreducing conditions led to the discovery of a heteromeric complex composed of gM and gN. The complex was stable in the absence of 2-mercaptoethanol but dissociated after the addition of the reducing agent, indicating that the partners are linked by disulfide bonds. Finally, gN was absent from gM-negative PrV virions, whereas gM was readily detected in virions in the absence of gN. Thus, gM appears to be required for virion localization of gN.
Collapse
Affiliation(s)
- A Jöns
- Institute of Molecular and Cellular Virology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Insel Riems, Germany
| | | | | |
Collapse
|
32
|
Klupp BG, Fuchs W, Weiland E, Mettenleiter TC. Pseudorabies virus glycoprotein L is necessary for virus infectivity but dispensable for virion localization of glycoprotein H. J Virol 1997; 71:7687-95. [PMID: 9311852 PMCID: PMC192119 DOI: 10.1128/jvi.71.10.7687-7695.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herpesviruses contain a number of envelope glycoproteins which play important roles in the interaction between virions and target cells. Although several glycoproteins are not present in all herpesviruses, others, including glycoproteins H and L (gH and gL), are conserved throughout the Herpesviridae. To elucidate common properties and differences in herpesvirus glycoprotein function, corresponding virus mutants must be constructed and analyzed in different herpesvirus backgrounds. Analysis of gH- mutants of herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PrV) showed that in both viruses gH is essential for penetration and cell-to-cell spread and that its presence is required for virion localization of gL. Since gH homologs are found complexed with gL, it was of interest to assess the phenotype of gL- mutant viruses. By using this approach, HSV-1 gL has been shown to be required for entry and for virion localization of gH (C. Roop, L. Hutchinson, and D. Johnson, J. Virol. 67:2285-2297, 1993). To examine whether a similar phenotype is associated with lack of gL in another alphaherpesvirus, PrV, we constructed two independent gL- PrV mutants by insertion and deletion-insertion mutagenesis. The salient findings are as follows: (i) PrV gL is required for penetration of virions and cell-to-cell spread; (ii) unlike HSV-1, PrV gH is incorporated into the virion in the absence of gL; (iii) virion localization of gH in the absence of gL is not sufficient for infectivity; (iv) in the absence of gL, N-glycans on PrV gH are processed to a greater extent than in the presence of gL, indicating masking of N-glycans by association with gL; and (v) an anti-gL polyclonal antiserum is able to neutralize virion infectivity but did not inhibit cell-to-cell spread. Thus, whereas PrV gL is essential for virus replication, as is HSV-1 gL, gL- PrV mutants exhibit properties strikingly different from those of HSV-1. In conclusion, our data show an important functional role for PrV gL in the viral entry process, which is not explained by a chaperone-type mechanism in gH maturation and processing.
Collapse
Affiliation(s)
- B G Klupp
- Institute of Molecular and Cellular Virology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Insel Riems, Germany
| | | | | | | |
Collapse
|
33
|
Whitbeck JC, Peng C, Lou H, Xu R, Willis SH, Ponce de Leon M, Peng T, Nicola AV, Montgomery RI, Warner MS, Soulika AM, Spruce LA, Moore WT, Lambris JD, Spear PG, Cohen GH, Eisenberg RJ. Glycoprotein D of herpes simplex virus (HSV) binds directly to HVEM, a member of the tumor necrosis factor receptor superfamily and a mediator of HSV entry. J Virol 1997; 71:6083-93. [PMID: 9223502 PMCID: PMC191868 DOI: 10.1128/jvi.71.8.6083-6093.1997] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glycoprotein D (gD) is a structural component of the herpes simplex virus (HSV) envelope which is essential for virus entry into host cells. Chinese hamster ovary (CHO-K1) cells are one of the few cell types which are nonpermissive for the entry of many HSV strains. However, when these cells are transformed with the gene for the herpesvirus entry mediator (HVEM), the resulting cells, CHO-HVEM12, are permissive for many HSV strains, such as HSV-1(KOS). By virtue of its four cysteine-rich pseudorepeats, HVEM is a member of the tumor necrosis factor receptor superfamily of proteins. Recombinant forms of gD and HVEM, gD-1(306t) and HVEM(200t), respectively, were used to demonstrate a specific physical interaction between these two proteins. This interaction was dependent on native gD conformation but independent of its N-linked oligosaccharides, as expected from previous structure-function studies. Recombinant forms of gD derived from HSV-1(KOS)rid1 and HSV-1(ANG) did not bind to HVEM(200t), explaining the inability of these viruses to infect CHO-HVEM12 cells. A variant gD protein, gD-1(delta290-299t), showed enhanced binding to HVEM(200t) relative to the binding of gD-1(306t). Competition studies showed that gD-1(delta290-299t) and gD-1(306t) bound to the same region of HVEM(200t), suggesting that the differences in binding to HVEM are due to differences in affinity. These differences were also reflected in the ability of gD-1(delta290-299t) but not gD-1(306t) to block HSV type 1 infection of CHO-HVEM12 cells. By gel filtration chromatography, the complex between gD-1(delta290-299t) and HVEM(200t) had a molecular mass of 113 kDa and a molar ratio of 1:2. We conclude that HVEM interacts directly with gD, suggesting that HVEM is a receptor for virion gD and that the interaction between these proteins is a step in HSV entry into HVEM-expressing cells.
Collapse
Affiliation(s)
- J C Whitbeck
- School of Dental Medicine, Center for Oral Health Research, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Westra DF, Glazenburg KL, Harmsen MC, Tiran A, Jan Scheffer A, Welling GW, Hauw The T, Welling-Wester S. Glycoprotein H of herpes simplex virus type 1 requires glycoprotein L for transport to the surfaces of insect cells. J Virol 1997; 71:2285-91. [PMID: 9032364 PMCID: PMC191337 DOI: 10.1128/jvi.71.3.2285-2291.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In mammalian cells, formation of heterooligomers consisting of the glycoproteins H and L (gH and gL) of herpes simplex virus type 1 is essential for the cell-to-cell spread of virions and for the penetration of virions into cells. We examined whether formation of gH1/gL1 heterooligomers and cell surface expression of the complex occurs in insect cells. Three recombinant baculoviruses, expressing gL1, gH1, and truncated gH1 (gH1t), which lacks the transmembrane region, were constructed. It was shown that recombinant gH1/gL1 and gH1t/gL1 heterooligomers were produced in insect cells. As in mammalian cells, gH1 and gH1t were not detected on the surfaces of insect cells in the absence of gL1. When coexpressed with gL1, recombinant gH1 was displayed on the surfaces of insect cells. Coexpression of gH1t and gL1 resulted in secretion of the gH1t/gL1 complex into the cell culture medium, indicating that gH1t is also transported to the surfaces of insect cells. Our results indicate that the process of folding and intracellular transport of gH1 and gL1 is comparable in insect cells and mammalian cells and that the baculovirus expression system can be used to examine the complex formation and the intracellular transport of gH1 and gL1. The availability of secreted gH1t/gL1 complex offers the opportunity to further investigate the immunological properties of this complex.
Collapse
Affiliation(s)
- D F Westra
- Department of Medical Microbiology, University of Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Li Q, Buranathai C, Grose C, Hutt-Fletcher LM. Chaperone functions common to nonhomologous Epstein-Barr virus gL and Varicella-Zoster virus gL proteins. J Virol 1997; 71:1667-70. [PMID: 8995697 PMCID: PMC191228 DOI: 10.1128/jvi.71.2.1667-1670.1997] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Herpesviruses encode the complex-forming, essential glycoproteins gH and gL. Maturation and transport of gH are dependent on coexpression of its chaperone, gL. The gL proteins of alpha herpesviruses and gamma herpesviruses do not have a significant percentage of amino acid sequence homology. Yet, as we report herein, the diverse gL glycoproteins of Epstein-Barr virus (EBV) and varicella-zoster virus (VZV) were functionally interchangeable, although membrane expression and maturation of gH were separate functions for these viruses. In VZV both functions were performed by a single protein. EBV required two separate glycoproteins, one of which can be replaced by its homologous protein from VZV, a distant relative of EBV. Collectively, these results suggested that VZV gL is a simpler form of the gL chaperone protein than EBV gL.
Collapse
Affiliation(s)
- Q Li
- School of Biological Sciences, University of Missouri-Kansas City, 64110, USA
| | | | | | | |
Collapse
|
36
|
Duus KM, Grose C. Multiple regulatory effects of varicella-zoster virus (VZV) gL on trafficking patterns and fusogenic properties of VZV gH. J Virol 1996; 70:8961-71. [PMID: 8971025 PMCID: PMC190993 DOI: 10.1128/jvi.70.12.8961-8971.1996] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Varicella-zoster virus (VZV) is an extremely cell-associated alphaherpesvirus; VZV infection is spread almost exclusively via cell membrane fusion. The envelope glycoprotein H (gH) is highly conserved among the herpesviruses. A virus-encoded chaperone, glycoprotein L (gL), associates with gH, and the gH:gL complex is required for gH maturation and membrane expression. We recently demonstrated that in the VZV system, the gH:gL complex facilitated cell membrane fusion and extensive polykaryon formation in transfected cells (K. M. Duus, C. Hatfield, and C. Grose, Virology 210:429-440, 1995). To further define the functions of the unusual VZV gL chaperone protein, we have performed a series of mutagenesis experiments with both gH and gL and analyzed the mutants by laser scanning confocal microscopy in a transfection-based fusion assay. We established the fact that immature gH exited the endoplasmic reticulum (ER) when coexpressed with either gE or gI and appeared on the cell surface in a patch pattern. A similar effect was observed on the cell surface with gH with a cytoplasmic tail mutagenized to closely resemble the vaccinia virus hemagglutinin cytoplasmic tail. Site-directed mutagenesis of the five gL cysteine residues demonstrated that four of five cysteines participated in the gL chaperone function required for proper maturation of gH. On the other hand, the same gL mutants facilitated transport of immature gH to the cell surface, where patching occurred. Studies of gL processing demonstrated that maturation did not require transport beyond the medial-Golgi; furthermore, gL was not detected in the outer cell membrane, nor was it secreted into the medium. Colocalization studies with 3,3'-dihexyloxa-cabocyanine iodide and N-(e-7-nitrobenz-2-oxa-1,3-diazol-4-yl-aminocaproyl)-D-erythro-sphingosine confirmed that gL was found primarily in the ER and cis/medial-Golgi when expressed alone. When all of these data were considered, they suggested a posttranslational gH:gL regulation model whereby the gL chaperone modulated gH expression via retrograde flow from the Golgi to the ER. In this schema, mature gL returns to the ER, where it escorts immature gH from the ER to the Golgi; thereafter, mature gH is transported from the trans-Golgi to the outer cell membrane, where it acts as a major fusogen.
Collapse
Affiliation(s)
- K M Duus
- Department of Microbiology, University of Iowa College of Medicine, Iowa City, USA
| | | |
Collapse
|
37
|
Baranowski E, Keil G, Lyaku J, Rijsewijk FA, van Oirschot JT, Pastoret PP, Thiry E. Structural and functional analysis of bovine herpesvirus 1 minor glycoproteins. Vet Microbiol 1996; 53:91-101. [PMID: 9011001 DOI: 10.1016/s0378-1135(96)01237-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This paper focuses on the structure and functions of bovine herpesvirus 1 minor glycoproteins gH, gE, gG and gp42. It reviews the progress which has been made in their identification and characterization, in the study of their temporal expression and processing in infected cells, and finally in the understanding of their biological activities. In addition, aspects discussed include a comparison with two other alphaherpesviruses, namely herpes simplex virus and pseudorabies virus.
Collapse
Affiliation(s)
- E Baranowski
- Department of Virology and Immunology, Faculty of Veterinary Medicine, University of Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
38
|
Handler CG, Cohen GH, Eisenberg RJ. Cross-linking of glycoprotein oligomers during herpes simplex virus type 1 entry. J Virol 1996; 70:6076-82. [PMID: 8709231 PMCID: PMC190629 DOI: 10.1128/jvi.70.9.6076-6082.1996] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus (HSV) has 10 glycoproteins in its envelope. Glycoprotein B (gB), gC, gD, gH, and gL have been implicated in virus entry. We previously used chemical cross-linking to show that these five glycoproteins were close enough to each other to be cross-linked into homodimeric and hetero-oligomeric forms; hetero-oligomers of gB-gC, gC-gD, gD-gB, gH-gL, gC-gL and gD-gL were found in purified virions. To better understand the roles of these glycoproteins in viral entry, we have modified a standard HSV penetration assay to include cross-linkers. This allowed us to examine changes in associations of viral glycoproteins during the entry process. HSV-1(KOS) was adsorbed at 4 degrees C to human neuroblastoma cells (SY5Y). The temperature was raised to 37 degrees C and cells were treated with cross-linker at various times after the temperature shift. Cytoplasmic extracts were examined by Western blotting (immunoblotting) for viral glycoproteins. We found that (i) as in virus alone, the length and concentration of the cross-linking agent affected the number of specific complexes isolated; (ii) the same glycoprotein patterns found in purified virions were also present after attachment of virions to cells; and (iii) the ability to cross-link HSV glycoproteins changed as virus penetration proceeded, e.g., gB and gD complexes which were present during attachment disappeared with increasing time, and their disappearance paralleled the kinetics of penetration. However, this phenomenon appeared to be selective since it was not observed with gC oligomers. In addition, we examined the cross-linking patterns of gB and gD in null viruses K082 and KOSgD beta. Neither of these mutants, which attach but cannot penetrate, showed changes in glycoprotein cross-linking over time. We speculate that these changes are due to conformational changes which preclude cross-linking or spatial alterations which dissociate the glycoprotein interactions during the penetration events.
Collapse
Affiliation(s)
- C G Handler
- School of Dental Medicine, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | |
Collapse
|
39
|
Abstract
A number of herpes simplex virus (HSV) glycoproteins are found in oligomeric states: glycoprotein E (gE)-gI and gH-gL form heterodimers, and both gB and gC have been detected as homodimers. We have further explored the organization of glycoproteins in the virion envelope by using both purified virions to quantitate glycoprotein amounts and proportions and chemical cross-linkers to detect oligomers. We purified gB, gC, gD, and gH from cells infected with HSV type 1 and used these as immunological standards. Glycoproteins present in sucrose gradient-purified preparations of two strains of HSV type 1, KOS and NS, were detected with antibodies to each of the purified proteins. From these data, glycoprotein molar ratios of 1:2:11:16 and 1:1:14:9 were calculated for gB/gC/gD/gH in KOS and NS, respectively. gL was also detected in virions, although we lacked a purified gL standard for quantitation. We then asked whether complexes of these glycoproteins could be identified, and if they existed as homo- or hetero-oligomers. Purified KOS was incubated at 4 degrees C with bis (sulfosuccinimidyl) suberate (BS3), an 11.4 A (1A = 0.1 mm) noncleavable, water-soluble cross-linker. Virus extracts were examined by Western blotting (immunoblotting), or immunoprecipitation followed by Western blotting, to assay for homo- and hetero-oligomers. Homodimers of gB, gC, and gD were detected, and hetero-oligomers containing gB cross-linked to gC, gC to gD, and gD to gB were also identified. gH and gL were detected as a hetero-oligomeric pair and could be cross-linked to gD or gC but not to gB. We conclude that these glycoproteins are capable of forming associations with one another. These studies suggest that glycoproteins are closely associated in virions and have the potential to function as oligomeric complexes.
Collapse
Affiliation(s)
- C G Handler
- School of Dental Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|