1
|
Ma Y, Liu D, Gao J, Wang X. Similar regulation of two distinct UL24 promoters by regulatory proteins of equine herpesvirus type 1 (EHV-1). FEBS Lett 2015; 589:1467-75. [PMID: 25937123 DOI: 10.1016/j.febslet.2015.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 11/17/2022]
Abstract
To characterise the pattern of the transcriptional regulation of equine herpesvirus type 1 (EHV-1) UL24 by regulatory proteins, we identified two distinct promoter regions and two transcription initiation (Tci) sites located upstream of the UL24 open reading frame (ORF). The ORF proximal promoter exhibited higher cis-activity than that of the distal one. Contrary to the former, the latter performed its function dependent on an initiator (INR) due to its lack of a TATA box. Our results showed that the EHV-1 regulatory proteins EICP0, EICP22 and ETIF trans-activated the two promoters, whereas IEP and IR2P displayed negative regulation. In summary, the regulatory proteins exhibited similar regulatory patterns for the two distinct promoters of EHV-1 UL24.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Diqiu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jun Gao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
2
|
Zhang Y, Charvat RA, Kim SK, O'Callaghan DJ. The EHV-1 UL4 protein that tempers viral gene expression interacts with cellular transcription factors. Virology 2014; 449:25-34. [PMID: 24418534 DOI: 10.1016/j.virol.2013.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/18/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
The UL4 gene is conserved within the genome of defective interfering particles of equine herpesvirus type 1 (EHV-1) that mediate persistent infection. Here, we show that the UL4 protein inhibits EHV-1 reporter gene expression by decreasing the level of transcribed mRNA. The UL4 protein did not bind any gene class of EHV-1 promoters in electromobility or chromatin immunoprecipitation assays, but directly interacted with the TATA box-binding protein (TBP) and the carboxy-terminal domain of RNA polymerase II both in vitro (GST-pulldown assays) and in infected cells (coimmunoprecipitation analyses). Microarray analyses of the expression of the 78 EHV-1 genes revealed that viral late genes important for virion assembly displayed enhanced expression in cells infected with UL4-null virus as compared to wild-type or UL4-restored EHV-1. Quantitative PCR analyses showed that viral DNA replication was not retarded in cells infected with the UL4-null virus as compared to wild-type EHV-1.
Collapse
Affiliation(s)
- Yunfei Zhang
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Robert A Charvat
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Seong K Kim
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Dennis J O'Callaghan
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| |
Collapse
|
3
|
Charvat RA, Zhang Y, O'Callaghan DJ. Deletion of the UL4 gene sequence of equine herpesvirus 1 precludes the generation of defective interfering particles. Virus Genes 2012; 45:295-303. [PMID: 22752566 DOI: 10.1007/s11262-012-0781-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/20/2012] [Indexed: 11/30/2022]
Abstract
Serial, high multiplicity passage of equine herpesvirus 1 (EHV-1) leads to the generation of defective interfering particles (DIP). EHV-1 DIP inhibit and interfere with the replication of standard EHV-1, establishing a state of persistent infection. These DIP package severely truncated and rearranged forms of the standard viral genome. Contained within the DIP genome are only three genes: UL3, UL4, and a unique hybrid gene (Hyb). The hybrid gene forms through a recombination event that fuses portions of the early regulatory IR4 and UL5 genes and is essential for DIP-mediated interference. The UL4 gene is an early gene dispensable for lytic replication and inhibits viral and cellular gene expression. However, the contribution of the UL4 gene during DIP-mediated persistent infection is unknown. Here, we describe the generation of a completely deleted UL4 virus and its use to investigate the role of the UL4 gene in the generation of the defective genome. Deletion of the UL4 gene resulted in delayed virus growth at late times post-infection. Cells infected with a mutant EHV-1 that lacked expression of the UL4 protein due to an inserted stop codon in the UL4 gene produced defective particles, while cells infected with a mutant EHV-1 that had the complete UL4 gene sequence deleted were unable to produce DIP. These data suggest that the UL4 gene sequence, but not the UL4 protein, is critical for the generation of defective interfering particles.
Collapse
Affiliation(s)
- Robert A Charvat
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, P.O. Box 33932, Shreveport, LA 71130-3932, USA
| | | | | |
Collapse
|
4
|
Ahn BC, Kim S, Zhang Y, Charvat RA, O'Callaghan DJ. The early UL3 gene of equine herpesvirus-1 encodes a tegument protein not essential for replication or virulence in the mouse. Virology 2011; 420:20-31. [PMID: 21917286 DOI: 10.1016/j.virol.2011.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 07/25/2011] [Accepted: 08/23/2011] [Indexed: 12/01/2022]
Abstract
The UL3 gene of equine herpesvirus-1 (EHV-1) is retained in the genome of defective interfering particles and encodes a ~33kDa myristylated protein. Further characterization showed that the UL3 gene is trans-activated only by the sole immediate early (IE) protein and encodes an early protein that is dispensable for EHV-1 replication and localizes in the tegument of purified virions. UL3-deleted EHV-1 (vL11ΔUL3) exhibits properties of host cell tropism, plaque size, and growth kinetics similar to those of the parental virus. Expression levels of EHV-1 proteins representative of all three gene classes in vL11ΔUL3-infected cells were identical to those in cells infected with parental virus. Mice intranasally infected with vL11ΔUL3 and parental virus showed no significant difference in mortality or virus lung titers. These findings suggest that the UL3 protein does not play a major role in the biology of EHV-1 in cell culture or virulence in the mouse.
Collapse
Affiliation(s)
- Byung Chul Ahn
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|
5
|
Charvat RA, Breitenbach JE, Ahn B, Zhang Y, O’Callaghan DJ. The UL4 protein of equine herpesvirus 1 is not essential for replication or pathogenesis and inhibits gene expression controlled by viral and heterologous promoters. Virology 2011; 412:366-77. [PMID: 21324502 PMCID: PMC3060994 DOI: 10.1016/j.virol.2011.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/23/2010] [Accepted: 01/19/2011] [Indexed: 11/26/2022]
Abstract
Defective interfering particles (DIP) of equine herpesvirus 1 (EHV-1) inhibit standard virus replication and mediate persistent infection. The DIP genome is comprised of only three genes: UL3, UL4, and a hybrid gene composed of portions of the IR4 (EICP22) and UL5 (EICP27) genes. The hybrid gene is important for DIP interference, but the function(s) of the UL3 and UL4 genes are unknown. Here, we show that UL4 is an early gene activated solely by the immediate early protein. The UL4 protein (UL4P) was detected at 4hours post-infection, was localized throughout the nucleus and cytoplasm, and was not present in purified virions. EHV-1 lacking UL4P expression was infectious and displayed cell tropism and pathogenic properties in the mouse model similar to those of parental and revertant viruses. Reporter assays demonstrated that the UL4P has a broad inhibitory function, suggesting a potential role in establishing and/or maintaining DIP-mediated persistent infection.
Collapse
Affiliation(s)
- Robert A. Charvat
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | - ByungChul Ahn
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Yunfei Zhang
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Dennis J. O’Callaghan
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| |
Collapse
|
6
|
Ahn B, Zhang Y, Osterrieder N, O'Callaghan DJ. Properties of an equine herpesvirus 1 mutant devoid of the internal inverted repeat sequence of the genomic short region. Virology 2010; 410:327-35. [PMID: 21176938 DOI: 10.1016/j.virol.2010.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/03/2010] [Accepted: 11/20/2010] [Indexed: 01/08/2023]
Abstract
The 150 kbp genome of equine herpesvirus-1 (EHV-1) is composed of a unique long (UL) region and a unique short (Us) segment, which is flanked by identical internal and terminal repeat (IR and TR) sequences of 12.7 kbp. We constructed an EHV-1 lacking the entire IR (vL11ΔIR) and showed that the IR is dispensable for EHV-1 replication but that the vL11ΔIR exhibits a smaller plaque size and delayed growth kinetics. Western blot analyses of cells infected with vL11ΔIR showed that the synthesis of viral proteins encoded by the immediate-early, early, and late genes was reduced at immediate-early and early times, but by late stages of replication reached wild type levels. Intranasal infection of CBA mice revealed that the vL11ΔIR was significantly attenuated as mice infected with the vL11ΔIR showed a reduced lung viral titer and greater ability to survive infection compared to mice infected with parental or revertant virus.
Collapse
Affiliation(s)
- ByungChul Ahn
- Center for Molecular and Tumor Virology and Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
7
|
Breitenbach JE, Ebner PD, O'Callaghan DJ. The IR4 auxiliary regulatory protein expands the in vitro host range of equine herpesvirus 1 and is essential for pathogenesis in the murine model. Virology 2009; 383:188-94. [PMID: 19012943 DOI: 10.1016/j.virol.2008.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 09/18/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
Abstract
IR4, an early regulatory protein of equine herpesvirus 1 (EHV-1), is not a DNA-binding protein, but interacts with the sole immediate-early protein (IEP) to increase both IEP site-specific DNA-binding and IEP-mediated trans-activation of EHV-1 promoters. To investigate the biological properties of IR4 and ascertain whether this regulatory protein is essential for virus growth, bacterial artificial chromosome methods were employed to generate an IR4-null EHV-1. The IR4 gene was dispensable for EHV-1 growth in non-immortalized equine NBL-6 cells, but virus replication was delayed and was reduced by greater than 10-fold. In addition, replication of the IR4 mutant was abrogated in all other cell types tested, including equine ETCC tumor cells and cells of mouse, rabbit, monkey, and human origin. Further, in contrast to the highly pathogenic parent virus, the IR4 deletion mutant failed to cause disease in the CBA mouse as judged by assessing body weight and clinical signs and was unable to replicate in the murine lung. To define the nature of the block in the replication of the IR4-null virus, molecular analyses were carried out in RK-13 rabbits' cells infected with the IR4-deleted virus and revealed that: 1) the synthesis of the sole IEP was not inhibited; 2) the synthesis of early viral proteins examined was either not affected or was delayed to late times; 3) viral DNA replication was inhibited by more than 99.9%; and 4) synthesis of essential late proteins such as glycoprotein D and glycoprotein K was prevented. These findings indicate that the IR4 protein is required for EHV-1 DNA replication in non-permissive cells, and, like its homologues in other alphaherpesviruses, contributes a function required for virus replication in a variety of cell types.
Collapse
Affiliation(s)
- Jonathan E Breitenbach
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | |
Collapse
|
8
|
Ebner PD, Kim SK, O'Callaghan DJ. Biological and genotypic properties of defective interfering particles of equine herpesvirus 1 that mediate persistent infection. Virology 2008; 381:98-105. [PMID: 18805562 DOI: 10.1016/j.virol.2008.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/15/2008] [Accepted: 08/09/2008] [Indexed: 10/21/2022]
Abstract
Infection with equine herpesvirus 1 (EHV-1) preparations enriched for defective interfering particles (DIP) leads to a state of persistent infection in which infected cells become lysis resistant and release both infectious (standard) virus and DIP. EHV-1 DIP are unique in that the recombination events that generate DIP genomes produce new open reading frames (ORFs; Hyb1.0 and Hyb2.0) consisting of 5' sequences of varying lengths of the early regulatory gene IR4 fused to 3' sequences of varying lengths of the UL5 regulatory gene. Only two additional ORFs (UL3 and UL4) are conserved. Because persistently infected cells release a heterogeneous mixture of DIP, characterization of the elements responsible for this altered state of infection has proved difficult. Here we describe a method for studying persistent infection using recombinant DIP (rDIP). Infection with rDIP resulted in the production of recombinant DIP that replicated faithfully to, at least, five passages and mediated a rapid progression to persistent infection as measured by: 1) production of cells resistant to lysis by the standard virus; and 2) infected cells that released both standard virus and DIP. High concentrations of rDIP also resulted in interference with the standard virus replication, another hallmark of persistent infection. rDIP deleted of UL3, UL4, and either Hyb gene, the only functional genes conserved in the DIP genome, replicated but exhibited markedly reduced ability to interfere with standard virus replication. Restoring only the Hyb genes (either Hyb1.0 or Hyb2.0), the IR4 gene, or specific portions of the IR4 gene restored interference. These data suggest that residues 144 to 196 of the IR4 protein within the HYB proteins are important for DIP interference and that persistent infection results from recombination events that produce DIP genomes.
Collapse
Affiliation(s)
- Paul D Ebner
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130-3932, USA.
| | | | | |
Collapse
|
9
|
Ebner PD, O'Callaghan DJ. Genetic Complexity of EHV-1 Defective Interfering Particles and Identification of Novel IR4/UL5 Hybrid Proteins Produced During Persistent Infection. Virus Genes 2006; 32:313-20. [PMID: 16732484 DOI: 10.1007/s11262-005-6916-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 08/22/2005] [Indexed: 11/26/2022]
Abstract
This study examined the genetic complexity of three equine herpesvirus 1 (EHV-1) defective interfering particles (DIP) and found the DIP genomes to range from 5.9 kbp to 7.3 kbp in total size. Each DIP contains an identical 5' end ( approximately 1.9 kb) that harbors UL3 and UL4 genes that are 100% identical to those of the infectious virus. DIP2 and DIP3 contain a previously described unique IR4/UL5 (EICP22/EICP27) hybrid gene (Hyb1.0). The DIP1 genome, however, appears to be generated from a different recombination event which results in the formation of a new distinct hybrid ORF. The new ORF (Hyb2.0) is comprised of 684 bp from the 5' end of IR4 fused to 45 bp from the 3' terminus of UL5. In contrast to Hyb1.0, the UL5 sequences present in Hyb2.0 are not in-frame. Thus, the Hyb2.0 protein is comprised of 228 residues from IR4 linked to a sequence of 15 amino acids that result from a frameshifted reading of UL5 sequences. Western blot analysis confirmed that the Hyb2.0 ORF is expressed during persistent infection to produce a family of proteins that migrate at 36-42 kDa. Fluorescence microscopy revealed that both Hyb proteins display diffuse cytoplasmic localization patterns dissimilar to the nuclear localization patterns of both IR4 and UL5. Neither Hyb protein, however, disrupts the nuclear entry of the EHV-1 immediate-early, IR4, or UL5 proteins or cellular TATA box binding protein (TBP) previously shown to interact with both IR4 or UL5 in productive infection. DIP genomic segments ( approximately 3.5-5.0 kbp) downstream of the 100% conserved origin of replication are highly variable among the three DIP genomes and contain large areas of repetitive sequences. The possibility that the non-coding sequences play a role in viral interference and/or persistent infection remains to be determined.
Collapse
Affiliation(s)
- Paul D Ebner
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130-3932, USA
| | | |
Collapse
|
10
|
Albrecht RA, Kim SK, Zhang Y, Zhao Y, O'Callaghan DJ. The equine herpesvirus 1 EICP27 protein enhances gene expression via an interaction with TATA box-binding protein. Virology 2004; 324:311-26. [PMID: 15207618 DOI: 10.1016/j.virol.2004.03.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 03/11/2004] [Accepted: 03/24/2004] [Indexed: 11/25/2022]
Abstract
The mechanism(s) by which the early EICP27 gene product cooperates with other equine herpesvirus 1 (EHV-1) regulatory proteins to achieve maximal promoter activity remains unknown. Transient transfection assays revealed that deletion of residues 93-140 of the 470-aa EICP27 protein substantially diminished its activation of the immediate-early (IE) promoter, whereas deletion of residues 140-470 that contain a zinc-finger motif abolished this activity. Fluorescence microscopy of cells expressing the full-length EICP27 protein or portions of this protein revealed that an arginine-rich sequence spanning residues 178-185 mediates nuclear entry. Experiments employing the mammalian Gal4 two-plasmid system revealed that the EICP27 protein does not possess an independent trans-activation domain (TAD). Protein-protein interaction assays using purified proteins revealed that residues 124-220 of the EICP27 protein mediate its direct interaction with TATA box-binding protein (TBP). Partial deletion of this TBP-binding domain attenuated the ability of the EICP27 protein to stimulate the IE and early EICP0 promoters by 68% and 71%, respectively, indicating the importance of this protein-protein interaction.
Collapse
Affiliation(s)
- Randy A Albrecht
- Center for Molecular and Tumor Virology and Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Defective-interfering (DI) viruses arise spontaneously by deletion mutations. The shortened genomes of the DI particles cannot replicate unless they coinfect a cell with a wild-type virus. Upon coinfection, the DI genome replicates more quickly and outcompetes the wild type. The coinfected cell produces mostly DI viruses. At the population level, the abundances of DI and wild-type viruses fluctuate dramatically under some conditions. In other cases, the DI viruses appear to mediate persistent infections with relatively low levels of host cell death. This moderation of viral damage has led some to suggest DI particles as therapeutic agents. Previous mathematical models have shown that either fluctuation or persistence can occur for plausible parameter values. I develop new mathematical models for the population dynamics of DI and wild-type viruses. My work extends the theory by developing specific predictions that can be tested in the laboratory. These predictions, if borne out by experiment, will explain the key processes that control the diversity of observed outcomes. The most interesting prediction concerns the rate at which killed host cells are replaced. A low rate of replacement causes powerful epidemics followed by a crash in viral abundance. As the rate of replacement increases, the frequency of oscillations increases in DI and wild-type viral abundances, but the severity (amplitude) of the fluctuations declines. At higher replacement rates for host cells, nearly all cells become infected by DI particles and a low level of fluctuating, wild-type viremia persists.
Collapse
Affiliation(s)
- S A Frank
- Department of Ecology and Evolutionary Biology, University of California, Irvine 92697-2525, USA.
| |
Collapse
|
12
|
Derbigny WA, Kim SK, Caughman GB, O'Callaghan DJ. The EICP22 protein of equine herpesvirus 1 physically interacts with the immediate-early protein and with itself to form dimers and higher-order complexes. J Virol 2000; 74:1425-35. [PMID: 10627553 PMCID: PMC111477 DOI: 10.1128/jvi.74.3.1425-1435.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The EICP22 protein (EICP22P) of Equine herpesvirus 1 (EHV-1) is an early protein that functions synergistically with other EHV-1 regulatory proteins to transactivate the expression of early and late viral genes. We have previously identified EICP22P as an accessory regulatory protein that has the ability to enhance the transactivating properties and the sequence-specific DNA-binding activity of the EHV-1 immediate-early protein (IEP). In the present study, we identify EICP22P as a self-associating protein able to form dimers and higher-order complexes during infection. Studies with the yeast two-hybrid system also indicate that physical interactions occur between EICP22P and IEP and that EICP22P self-aggregates. Results from in vitro and in vivo coimmunoprecipitation experiments and glutathione S-transferase (GST) pull-down studies confirmed a direct protein-protein interaction between EICP22P and IEP as well as self-interactions of EICP22P. Analyses of infected cells by laser-scanning confocal microscopy with antibodies specific for IEP and EICP22P revealed that these viral regulatory proteins colocalize in the nucleus at early times postinfection and form aggregates of dense nuclear structures within the nucleoplasm. Mutational analyses with a battery of EICP22P deletion mutants in both yeast two-hybrid and GST pull-down experiments implicated amino acids between positions 124 and 143 as the critical domain mediating the EICP22P self-interactions. Additional in vitro protein-binding assays with a library of GST-EICP22P deletion mutants identified amino acids mapping within region 2 (amino acids [aa] 65 to 196) and region 3 (aa 197 to 268) of EICP22P as residues that mediate its interaction with IEP.
Collapse
Affiliation(s)
- W A Derbigny
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | |
Collapse
|
13
|
Chen M, Garko-Buczynski KA, Zhang Y, O'Callaghan DJ. The defective interfering particles of equine herpesvirus 1 encode an ICP22/ICP27 hybrid protein that alters viral gene regulation. Virus Res 1999; 59:149-64. [PMID: 10082387 DOI: 10.1016/s0168-1702(98)00128-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The genomes of equine herpesvirus 1 (EHV-1) defective interfering (DI) particles that mediate persistent infection were shown to encode a unique hybrid open reading frame composed of sequences that encode the 196 N-terminal amino acids of ICP22 linked in-frame to the C-terminal 68 amino acids of ICP27. Previous studies demonstrated that this hybrid gene, designated as ICP22/ICP27. was expressed abundantly at both the mRNA and the protein levels in DI particle-enriched infections, but not in standard EHV-1 infection (Chen et al., 1996 J. Virol. 70, 313-320). Since the ICP22/ICP27 hybrid protein contains portions of two EHV-1 early regulatory proteins, its effect on EHV-1 gene regulation was investigated. In EHV-1-infected cells, the ICP22/ICP27 hybrid protein expressed from plasmid vectors significantly reduced expression of a reporter gene under the control of the EHV-1 immediate-early (IE) gene promoter and early gene promoter, such as the viral ICP27 gene. In uninfected cells, the ICP22/ICP27 hybrid protein moderately down-regulated the IE and ICP22 promoters, up-regulated late gene promoters such as IR5, and altered the regulatory function of the IE and 1CP22 proteins in co-transfected cells. These results demonstrated that DI particles might alter viral gene regulation by expression of a unique hybrid gene encoded on the DI particle genome.
Collapse
Affiliation(s)
- M Chen
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | | | | | |
Collapse
|
14
|
Bowles DE, Holden VR, Zhao Y, O'Callaghan DJ. The ICP0 protein of equine herpesvirus 1 is an early protein that independently transactivates expression of all classes of viral promoters. J Virol 1997; 71:4904-14. [PMID: 9188552 PMCID: PMC191720 DOI: 10.1128/jvi.71.7.4904-4914.1997] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To assess the role of the equine herpesvirus type 1 (EHV-1) ICP0 protein (EICP0) in gene regulation, a variety of molecular studies on the EICP0 gene and gene products of both the attenuated cell culture-adapted Kentucky A (KyA) strain and the Ab4p strain were conducted. These investigations revealed that (i) the ICP0 open reading frame (ORF) of the KyA virus strain is 1,257 bp in size and would encode a protein of 419 amino acids, and in comparison to the ICP0 gene (ORF63) of the Ab4p strain of 1,596 bp (E. A. Telford, M. S. Watson, K. McBride, and A. J. Davison, Virology 189:304-316, 1992), it has an internal in-frame deletion of 339 bp; (ii) one early transcript of 1.4 kb predicted to encode the EICP0 protein and a late transcript of 1.8 kb are detected in Northern blot analyses using probes containing the EICP0 ORF; (iii) the KyA EICP0 protein (50 kDa) and the Ab4p EICP0 protein (80 kDa) are expressed as several species of early proteins that are first detected at 3 to 4 h postinfection by Western blot analyses of infected-cell polypeptides, using an antiserum generated to a TrpE fusion protein that harbors amino acids 46 to 153 of the EICP0 protein; and (iv) the EICP0 protein of both EHV-1 strains is a potent transactivator of EHV-1 genes. Transient expression assays using a simian virus 40 expression construct of the EICP0 protein of the KyA strain showed that the EICP0 protein independently transactivated chloramphenicol acetyltransferase reporter constructs under the control of the immediate-early promoter (3.9-fold), the early thymidine kinase promoter (95-fold), the late (gamma1) IR5 promoter (85-fold), and the late (gamma2) glycoprotein K promoter (21-fold). The finding that the EICP0 protein of the KyA virus can function as an activator of gene expression indicates that amino acids corresponding to residues 319 to 431 of the Ab4p EICP0 protein are not essential for EICP0 transactivation of EHV-1 promoters.
Collapse
Affiliation(s)
- D E Bowles
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | | | | | |
Collapse
|